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Multisender authentication codes allow a group of senders to construct an authenticated message for one receiver such that the
receiver can verify authenticity of the received message. In this paper, we construct one multisender authentication code from
pseudosymplectic geometry over finite fields. The parameters and the probabilities of deceptions of this code are also computed.

1. Introduction

Multisender authentication code was firstly constructed by
Gilbert et al. in [1] in 1974.Multisender authentication system
refers to a group of senders that cooperatively send amessage
to the receiver, and then the receiver should be able to
ascertain that the message is authentic. About this case,
many scholars had also much researches and had made great
contributions to multisender authentication codes [2–6].

In the actual computer network communications, mul-
tisender authentication codes include sequential model and
simultaneous model. Sequential model is that each sender
uses its own encoding message to the receiver, and the
receiver receives the message and verifies whether the mes-
sage is legal or not. Simultaneous model is that all senders
use their own encoding rules to encode a source state, and
each sender sends the encoded message to the synthesizer,
respectively, and then the synthesizer forms an authenticated
message and verifies whether the message is legal or not. In
this paper, we will adopt the second model.

In a simultaneous model, there are four participants: a
group of senders 𝑃 = {𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑛
}, the keys distribution

center, he is responsible for the key distribution to senders
and receiver, including solving the disputes between them,
a receiver 𝑅, a synthesizer, he only runs the trusted syn-
thesis algorithm. The code works as follows: each sender
and receiver has their own cartesian authentication code,

respectively. Let (𝑆, 𝐸
𝑖
, 𝑇
𝑖
; 𝑓
𝑖
) (𝑖 = 1, 2, . . . , 𝑛) be the senders’

cartesian authentication code, (𝑆, 𝐸
𝑅
, 𝑇; 𝑔) be the receiver’s

cartesian authentication code, ℎ : 𝑇
1
× 𝑇
2
× ⋅ ⋅ ⋅ × 𝑇

𝑛
→ 𝑇

the synthesis algorithm. 𝜋
𝑖
: 𝐸 → 𝐸

𝑖
is a subkey generation

algorithm,where𝐸 is the key set of the key distribution center.
When authenticating a message, the senders and the receiver
should comply with the protocol. The key distribution center
randomly selects an encoding rule 𝑒 ∈ 𝐸 and sends 𝑒

𝑖
= 𝜋
𝑖
(𝑒)

to the 𝑖th sender 𝑃
𝑖
(𝑖 = 1, 2, . . . , 𝑛) secretly, and then he

calculates 𝑒
𝑅
by 𝑒 according to an effective algorithm and

secretly sends 𝑒
𝑅
to the receiver 𝑅; if the senders would

like to send a source state 𝑠 to the receiver 𝑅, 𝑃
𝑖
computes

𝑡
𝑖

= 𝑓
𝑖
(𝑠, 𝑒
𝑖
) (𝑖 = 1, 2, . . . , 𝑛) and sends 𝑚

𝑖
= (𝑠, 𝑡

𝑖
) (𝑖 =

1, 2, . . . , 𝑛) to the synthesizer through an open channel; the
synthesizer receives the message 𝑚

𝑖
= (𝑠, 𝑡

𝑖
) (𝑖 = 1, 2, . . . , 𝑛)

and calculates 𝑡 = ℎ(𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) by the synthesis algorithm ℎ

and then sendsmessage𝑚 = (𝑠, 𝑡) to the receiver𝑅, he checks
the authenticity by verifying whether 𝑡 = 𝑔(𝑠, 𝑒

𝑅
) or not. If

the equality holds, the message is authentic and is accepted.
Otherwise, the message is rejected.

We assume that the key distribution center is credible,
though he know the senders’ and receiver’s encoding rules,
hewill not participate in any communication activities.When
transmitters and receiver are disputing, the key distribution
center settles it. At the same time, we assume that the system
follows Kerckhoff ’s principle in which except for the actual
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used keys, the other information of the whole system is
public.

In a multisender authentication system, we assume that
the whole senders are cooperating to form a valid message;
that is, all senders as a whole and receiver are reliable.
But there are some malicious senders which they together
cheat the receiver, the part of senders and receiver are not
credible, they can take impersonation attack and substitution
attack. In the whole system, we assume that {𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑛
}

are senders, 𝑅 is a receiver, 𝐸
𝑖
is the encoding rules set of

the sender 𝑃
𝑖
, and 𝐸

𝑅
is the decoding rules set of receiver

𝑅. If the source state space 𝑆 and the key space 𝐸
𝑅
of

receiver 𝑅 are according to a uniform distribution, then the
probability distribution of message space 𝑀 and tag space
𝑇 is determined by the probability distribution of 𝑆 and 𝐸

𝑅
.

Consider 𝐿 = {𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑙
} ⊂ {1, 2, . . . , 𝑛}, 𝑙 < 𝑛, 𝑃

𝐿
=

{𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑙
}, and 𝐸

𝐿
= {𝐸

𝑝
1

, 𝐸
𝑝
2

, . . . , 𝐸
𝑝
𝑙

}. Now, let us
consider the attacks from malicious groups of senders. Here,
there still are two kinds of attacks.

(i) The Opponent’s Impersonation Attack. 𝑃
𝐿
sends a

message𝑚 to receiver.𝑃
𝐿
is successful if the receiver accepts it

as legitimate message. Denote 𝑃
𝐼
(𝐿) as the largest probability

of some opponent’s successful impersonation attack, and it
can be expressed as

𝑃
𝐼
(𝐿) = max

𝑒
𝐿
∈𝐸
𝐿

max
𝑚∈𝑀

𝑃(𝑚 is accepted by 𝑅

𝑒
𝐿

) . (1)

(ii) The Opponent’s Substitution Attack. It is the largest
probability of some opponent’s successful substitution attack,
and it can be expressed as

𝑃
𝑆
(𝐿) = max

𝑒
𝐿
∈𝐸
𝐿

max
𝑚∈𝑀

max
𝑚
󸀠
̸= 𝑚∈𝑀

𝑃(𝑚
󸀠 is accepted by 𝑅

𝑚, 𝑒
𝐿

) .

(2)

In this paper, we give a construction about multisender
authentication code from pseudosymplectic geometry over
finite fields.

2. Pseudosymplectic Geometry

Let 𝐹
𝑞
be the finite field with 𝑞 elements, where 𝑞 is a power

of 2, 𝑛 = 2] + 𝛿, and 𝛿 = 1, 2. Let

𝐾 = (
0 𝐼
(])

𝐼
(])

0
) , 𝑆

1
= (

𝐾

1
) ,

𝑆
2
= (

𝐾

0 1

1 1

) ,

(3)

and 𝑆
𝛿
is a (2]+𝛿) × (2]+𝛿) nonalternate symmetric matrix.

The pseudosymplectic group of degree (2] + 𝛿) over 𝐹
𝑞
is

defined to be the set of matrices 𝑃𝑠
2]+𝛿(𝐹𝑞) = {𝑇 | 𝑇𝑆

𝛿

𝑡

𝑇 =

𝑆
𝛿
} denoted by 𝑃𝑠

2]+𝛿(𝐹𝑞).

Let 𝐹(2]+𝛿)
𝑞

be the (2] + 𝛿)-dimensional row vector space
over𝐹

𝑞
.𝑃𝑠
2]+𝛿(𝐹𝑞) has an action on𝐹

(2]+𝛿)
𝑞

defined as follows:

𝐹
(2]+𝛿)
𝑞

× 𝑃𝑠
2]+𝛿 (𝐹𝑞) 󳨀→ 𝐹

(2]+𝛿)
𝑞

,

((𝑥
1
, 𝑥
2
, . . . , 𝑥

2]+𝛿) , 𝑇) 󳨀→ (𝑥
1
, 𝑥
2
, . . . , 𝑥

2]+𝛿) 𝑇.

(4)

The vector space 𝐹
(2]+𝛿)
𝑞

together with this group action is
called the pseudosymplectic space over the finite field 𝐹

𝑞
of

characteristic 2.
Let 𝑃 be an 𝑚-dimensional subspace of 𝐹

(2]+𝛿)
𝑞

; then,
𝑃𝑆
𝛿

𝑡
𝑃 is cogredient to one of the following three normal

forms:

𝑀(𝑚, 2𝑠, 𝑠) = (

0 𝐼
(𝑠)

𝐼
(𝑠)

0

0
(𝑚−2𝑠)

),

𝑀(𝑚, 2𝑠 + 1, 𝑠) = (

0 𝐼
(𝑠)

𝐼
(𝑠)

0

1

0
(𝑚−2𝑠−1)

),

𝑀(𝑚, 2𝑠 + 2, 𝑠) = (

0 𝐼
(𝑠)

𝐼
(𝑠)

0

0 1

1 1

0
(𝑚−2𝑠−2)

),

(5)

for some 𝑠 such that 0 ≤ 𝑠 ≤ [𝑚/2].We say that𝑃 is a subspace
of type (𝑚, 2𝑠 + 𝜏, 𝑠, 𝜖), where 𝜏 = 0, 1, or 2 and 𝜖 = 0 or 1, if

(i) 𝑃𝑆
𝛿

𝑡
𝑃 is cogredient to𝑀(𝑚, 2𝑠 + 𝜏, 𝑠);

(ii) 𝑒
2]+1 ∉ 𝑃 or 𝑒

2]+1 ∈ 𝑃 according to 𝜖 = 0 or 𝜖 = 1,
respectively.

Let𝑃 be an𝑚-dimensional subspace of𝐹(2]+𝛿)
𝑞

. Denote by
𝑃
⊥ the set of vectors which are orthogonal to every vector of

𝑃; that is,

𝑃
⊥
= {𝑦 ∈ 𝐹

(2]+𝛿)
𝑞

| 𝑦𝑆
𝛿

𝑡
𝑥 = 0 ∀𝑥 ∈ 𝑃} . (6)

Obviously, 𝑃⊥ is a (2] + 𝛿 − 𝑚)-dimensional subspace of
𝐹
(2]+𝛿)
𝑞

.
More properties of pseudosymplectic geometry over

finite fields can be found in [7].
In [2], Desmedt et al. gave two constructions for MRA-

codes based on polynomials and finite geometries, respec-
tively. There are other constructions of multisender authen-
tication codes which are given in [3–6]. The construction
of authentication codes is of combinational design in its
nature. We know that the geometry of classical groups over
finite fields, including symplectic geometry, pseudosymplec-
tic geometry, unitary geometry, and orthogonal geometry,
can provide a better combination of structure and can be easy
to count. In this paper, we construct onemultisender authen-
tication code from pseudosymplectic geometry over finite
fields. The parameters and the probabilities of deceptions of
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this code are also computed. We realize the generalization
and application of the similar idea and method of article
[8] from symplectic geometry to pseudosymplectic geometry
over finite fields.

3. Construction

Let F
𝑞
be a finite field with 𝑞 elements and 𝑒

𝑖
(1 ≤ 𝑖 ≤

2] + 2) the row vector in F (2]+2)
𝑞

whose 𝑖th coordinate is
1 and all other coordinates are 0. Assume that 2 < 𝑛 +

1 < 𝑟 < ]. Let 𝑈 = ⟨𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
⟩; that is, 𝑈 is an

𝑛-dimensional subspace of F (2]+2)
𝑞

generated by 𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
,

and then 𝑈
⊥

= ⟨𝑒
1
, . . . , 𝑒], 𝑒]+𝑛+1, . . . , 𝑒2]+2⟩. Consider 𝑊𝑖 =

⟨𝑒
1
, . . . , 𝑒

𝑖−1
, 𝑒
𝑖+1

, . . . , 𝑒
𝑛
⟩, 1 ≤ 𝑖 ≤ 𝑛; then, 𝑊

𝑖

⊥
=

⟨𝑒
1
, . . . , 𝑒], 𝑒]+𝑖, 𝑒]+𝑛+1, . . . , 𝑒2]+2⟩. The set of source states 𝑆 =

{𝑠 | 𝑠 is a subspace of type (2𝑟 − 𝑛 + 1, 2(𝑟 − 𝑛), 𝑟 − 𝑛, 1)

and 𝑈 ⊂ 𝑠 ⊂ 𝑈
⊥
}; the set of 𝑖th sender’s encoding rules

𝐸
𝑃
𝑖

= {𝑒
𝑃
𝑖

| 𝑒
𝑃
𝑖

is a subspace of type (𝑛 + 1, 0, 0, 0) and 𝑈 ⊂

𝑒
𝑃
𝑖

, 𝑒
𝑃
𝑖

⊥ 𝑊
𝑖
}, 1 ≤ 𝑖 ≤ 𝑛; the set of receiver’s decoding

rules 𝐸
𝑅
={𝑒
𝑅

| 𝑒
𝑅

is a subspace of type (2𝑛, 2𝑛, 𝑛, 0)

and 𝑈 ⊂ 𝑒
𝑅
}; the set of 𝑖th sender’s tags 𝑇

𝑖
= {𝑡
𝑖

|

𝑡
𝑖
is a subspace of type (2𝑟−𝑛+2, 2(𝑟−𝑛+1), 𝑟−𝑛+1, 1)

and 𝑈 ⊂ 𝑡
𝑖

⊂ 𝑊
𝑖

⊥
, 𝑡
𝑖

̸⊂ 𝑈
⊥
}; the set of receiver’s tags

𝑇 = {𝑡 | 𝑡 is a subspace of type (2𝑟 + 1, 2𝑟, 𝑟, 1) and
𝑈 ⊂ 𝑡}.

Define the encoding map 𝑓
𝑖
: 𝑆 × 𝐸

𝑃
𝑖

→ 𝑇
𝑖
, 𝑓
𝑖
(𝑠, 𝑒
𝑃
𝑖

) =

𝑠 + 𝑒
𝑃
𝑖

, 1 ≤ 𝑖 ≤ 𝑛.
The decoding map 𝑓 : 𝑆 × 𝐸

𝑅
→ 𝑇,𝑓(𝑠, 𝑒

𝑅
) = 𝑠 + 𝑒

𝑅
.

The synthesizing map ℎ : 𝑇
1

× 𝑇
2

× ⋅ ⋅ ⋅ × 𝑇
𝑛

→

𝑇, ℎ(𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) = 𝐴(𝑡

1
+ 𝑡
2
+ ⋅ ⋅ ⋅ + 𝑡

𝑛
), where 𝐴 is a

nonsingular matrix and 𝐴(𝑡
1
+ 𝑡
2
+ ⋅ ⋅ ⋅ + 𝑡

𝑛
) is a subspace of

type (2𝑟 + 1, 2𝑟, 𝑟, 1).
The code works as follows.

(1) Key Distribution. The key distribution center randomly
chooses an 𝑒

𝑅
∈ 𝐸
𝑅
and selects a (2𝑛, 𝑛) subspace 𝑒 such that

𝑈 ⊂ 𝑒, and it selects 𝑒
𝑃
𝑖

∈ 𝐸
𝑃
𝑖

so that 𝑒
𝑃
1

+ 𝑒
𝑃
2

+ ⋅ ⋅ ⋅ + 𝑒
𝑃
𝑛

= 𝑒,
and 𝐴 is a nonsingular matrix satisfying 𝑒

𝑅
= ⟨𝑒, 𝐴⟩. The

key distribution center randomly secretly sends 𝑒
𝑅
, 𝑒
𝑃
𝑖

to the
receiver and the senders, respectively, and sends 𝐴 to the
synthesizer.
(2) Broadcast. If the senders want to send a source state 𝑠 ∈ 𝑆

to the receiver𝑅, the sender𝑃
𝑖
calculates 𝑡

𝑖
= 𝑓
𝑖
(𝑠, 𝑒
𝑃
𝑖

) = 𝑠+𝑒
𝑃
𝑖

then sends 𝑡
𝑖
(1 ≤ 𝑖 ≤ 𝑛) to the synthesizer.

(3) Synthesis. After the synthesizer receives 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
, he

calculates ℎ = (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) = 𝐴(𝑡

1
+ 𝑡
2
+ ⋅ ⋅ ⋅ + 𝑡

𝑛
) and then

sends𝑚 = (𝑠, 𝑡) to the receiver 𝑅.
(4) Verification. When the receiver 𝑅 receives 𝑚 = (𝑠, 𝑡), he
calculates 𝑡

󸀠
= 𝑔(𝑠, 𝑒

𝑅
) = 𝑠 + 𝑒

𝑅
. If 𝑡 = 𝑡

󸀠, he accepts 𝑡;
otherwise, he rejects it.

Let

𝑈 =
(

𝐼
(𝑙)

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
)

𝑙 𝑛 − 𝑙 ] − 𝑛 𝑙 𝑖 − 𝑙 − 1 1 𝑛 − 𝑖 ] − 𝑛 1 1

; (7)

then,

𝑈
⊥
=

(

(

𝐼
(𝑙)

0

0

0

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

0

0

𝐼
(]−𝑛)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

𝐼
(]−𝑛)

0

0

0

0

0

0

1

0

0

0

0

0

0

1

)

)

𝑙 𝑛 − 𝑙 ] − 𝑛 𝑙 𝑖 − 𝑙 − 1 1 𝑛 − 𝑖 ] − 𝑛 1 1

,

𝑊
𝑖

⊥
=

(
(
(

(

𝐼
(𝑙)

0

0

0

0

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

0

0

0

𝐼
(]−𝑛)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

𝐼
(]−𝑛)

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

)
)
)

)

𝑙 𝑛 − 𝑙 ] − 𝑛 𝑙 𝑖 − 𝑙 − 1 1 𝑛 − 𝑖 ] − 𝑛 1 1

.

(8)

Lemma 1. Let 𝐶
𝑖

= (𝑆, 𝐸
𝑃
𝑖

, 𝑇
𝑖
; 𝑓
𝑖
); the code is a cartesian

authentication code, 1 ≤ 𝑖 ≤ 𝑛.
Proof. For any 𝑒

𝑝
𝑖

∈ 𝐸
𝑝
𝑖

, 𝑠 ∈ 𝑆. Because 𝑒
𝑝
𝑖

is a subspace of
type (𝑛 + 1, 0, 0, 0) and 𝑈 ⊂ 𝑒

𝑝
𝑖

⊂ 𝑈
⊥, we can assume that
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𝑒
𝑝
𝑖

=
(

𝐼
(𝑙)

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

𝑅
8

0

0

𝑅
9

0

0

0

)

𝑙 𝑛 − 𝑙 ] − 𝑛 𝑙 𝑖 − 𝑙 − 1 1 𝑛 − 𝑖 ] − 𝑛 1 1

. (9)

Obviously, 𝑒
𝑝
𝑖

∩ 𝑈
⊥

= 𝑈. Let 𝑠 ∈ 𝑆; since 𝑈 ⊂ 𝑠 ⊂ 𝑈
⊥, 𝑠 has

the form as follows:

𝑠 = (

𝐼
(𝑛)

0 0 0 0 0

0 𝐵
2

0 𝐵
4

0 0

0 0 0 0 1 0

) , (10)

where 𝐵
2
, 𝐵
4
is a subspace of type (2(𝑟 − 𝑛), 2(𝑟 − 𝑛), 𝑟 − 𝑛, 0)

in the pseudosymplectic space 𝐹
𝑞

(2]+2). Let 𝑡
𝑖

= 𝑠 + 𝑒
𝑝
𝑖

;
then,

𝑡
𝑖
=

(

𝐼
(𝑙)

0

0

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

0

𝐵
2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

𝐵
4

𝑅
8

0

0

0

0

0

1

0

0

0

0

0

)

𝑙 𝑛 − 𝑙 ] − 𝑛 𝑙 𝑖 − 𝑙 − 1 1 𝑛 − 𝑖 ] − 𝑛 1 1

,

𝑡
𝑖
𝑆
2

𝑡
𝑡
𝑖
∼ (

𝐼
(𝑟−𝑛)

0 0 0

0 𝐼
(𝑟−𝑛)

0 0

0 0 1 0

0 0 0 1

) .

(11)

Obviously, 𝑡
𝑖

̸⊂ 𝑈
⊥. So, 𝑡

𝑖
is a subspace of type (2𝑟−𝑛+2, 2(𝑟−

𝑛 + 1), 𝑟 − 𝑛 + 1, 1) satisfying 𝑈 ⊂ 𝑡
𝑖
⊂ 𝑊
𝑖

⊥; that is, 𝑡
𝑖
∈ 𝑇
𝑖
.

Furthermore, we know that 𝑡
𝑖
∩ 𝑈
⊥

= (𝑠 + 𝑒
𝑝
𝑖

) ∩ 𝑈
⊥

= 𝑠 +

(𝑒
𝑝
𝑖

∩ 𝑈
⊥
) = 𝑠 + 𝑈 = 𝑠.

Conversely, for any 𝑡
𝑖
∈ 𝑇
𝑖
, let 𝑠 = 𝑡

𝑖
∩𝑈
⊥
, 𝐿 ⊂ 𝑡

𝑖
, satisfying

𝑡
𝑖
= 𝑠 ⊕ 𝐿. Obviously, 𝑈 ⊂ 𝑠 ⊂ 𝑈

⊥. For 𝑈 ⊂ 𝑡
𝑖
⊂ 𝑊
𝑖

⊥, let

𝑡
𝑖
=

(

𝐼
(𝑙)

0

0

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

0

𝐵
2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

𝐵
4

𝑅
8

0

0

0

0

0

1

0

0

0

0

0

)

𝑙 𝑛 − 𝑙 ] − 𝑛 𝑙 𝑖 − 𝑙 − 1 1 𝑛 − 𝑖 ] − 𝑛 1 1

. (12)

Obviously,

𝑡
𝑖
∩ 𝑈
⊥
=

(

𝐼
(𝑙)

0

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

𝐶
2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

𝐶
4

0

0

0

0

1

0

0

0

0

)

𝑙 𝑛 − 𝑙 ] − 𝑛 𝑙 𝑖 − 𝑙 − 1 1 𝑛 − 𝑖 ] − 𝑛 1 1

. (13)

For 𝑡
𝑖
being a subspace of type (2𝑟−𝑛+2, 2(𝑟−𝑛+1), 𝑟−𝑛+1, 1),

then 𝑡
𝑖
∩𝑈
⊥ is a subspace of type (2𝑟−𝑛+1, 2(𝑟−𝑛), 𝑟 −𝑛, 1);

that is, 𝑠 ∈ 𝑆. Choose

𝐿 = (0 0 𝐵
2

0 0 1 0 𝐵
4

0 0) . (14)

Let 𝑒
𝑃
𝑖

= 𝑈+𝐿; then, 𝑒
𝑃
𝑖

∈ 𝐸
𝑃
𝑖

, and 𝑠⊕𝐿 = 𝑠⊕𝑒
𝑃
𝑖

.Therefore,𝑓
𝑖

is a surjection. For any 𝑡
𝑖
∈ 𝑇
𝑖
, 𝑒
𝑃
𝑖

∈ 𝐸
𝑃
𝑖

, if there exist 𝑠 ∈ 𝑆 so
that 𝑡
𝑖
= 𝑠+𝑒

𝑃
𝑖

; then, 𝑠 ∈ 𝑡
𝑖
∩𝑈
⊥. However, dim 𝑠 = 2𝑟−𝑛+1 =

dim (𝑡
𝑖
∩𝑈
⊥
), and so 𝑠 = 𝑡

𝑖
∩𝑈
⊥; that is, 𝑠 is determined by 𝑡

𝑖

and 𝑒
𝑃
𝑖

.
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Lemma 2. Let 𝐶 = (𝑆, 𝐸
𝑅
, 𝑇; 𝑔); the code is a cartesian

authentication code.

Proof. (1) For any 𝑠 ∈ 𝑆, 𝑒
𝑅

∈ 𝐸
𝑅
. From the definition of 𝑠

and 𝑒
𝑅
, we assume that

𝑠 = (

𝑈

𝑄

𝑒
2]+1

)

𝑛

2 (𝑟 − 𝑛)

1

,

(

𝑈

𝑄

𝑒
2]+1

)𝑆
2

𝑡

(

𝑈

𝑄

𝑒
2]+1

) = (

0
(𝑛)

0 0 0

0 0 𝐼
(𝑟−𝑛)

0

0 𝐼
(𝑟−𝑛)

0 0

0 0 0 0

) ,

𝑒
𝑅
= (

𝑈

𝑉
)

𝑛

𝑛
,

(
𝑈

𝑉
) 𝑆
2

𝑡

(
𝑈

𝑉
)𝑆
2

𝑡

(
𝑈

𝑉
) = (

0 𝐼
(𝑛)

𝐼
(𝑛)

0
) .

(15)

Obviously, for any V ∈ 𝑉 and V ̸= 0, V ∉ 𝑠; therefore,

𝑡 = 𝑠 + 𝑒
𝑅
= (

𝑈

𝑉

𝑄

𝑒
2]+1

), (16)

(

𝑈

𝑉

𝑄

𝑒
2]+1

)𝑆
2

𝑡

(

𝑈

𝑉

𝑄

𝑒
2]+1

)

= (

0 𝐼
(𝑛)

0 0 0

𝐼
(𝑛)

0 0 0 0

0 0 0 𝐼
(𝑟−𝑛)

0

0 0 𝐼
(𝑟−𝑛)

0 0

0 0 0 0 0

).

(17)

From the above mentioned, 𝑡 is a subspace of type (2𝑟 +

1, 2𝑟, 𝑟, 1) and 𝑈 ⊂ 𝑡; that is, 𝑡 ∈ 𝑇.
(2) For 𝑡 ∈ 𝑇, 𝑡 is a subspace of type (2𝑟 + 1, 2𝑟, 𝑟, 1) and

𝑈 ⊂ 𝑡; so, there is a subspace 𝑉 ⊂ 𝑡, satisfying

(
𝑈

𝑉
)𝑆
2

𝑡

(
𝑈

𝑉
) = (

0 𝐼
(𝑛)

𝐼
(𝑛)

0
) . (18)

Then, we can assume that

𝑡 = (

𝑈

𝑉

𝑄

𝑒
2]+1

) (19)

satisfying

(

𝑈

𝑉

𝑄

𝑒
2]+1

)𝑆
2

𝑡

(

𝑈

𝑉

𝑄

𝑒
2]+1

)

= (

0 𝐼
(𝑛)

0 0 0

𝐼
(𝑛)

0 0 0 0

0 0 0 𝐼
(𝑟−𝑛)

0

0 0 𝐼
(𝑟−𝑛)

0 0

0 0 0 0 0

).

(20)

Let

𝑠 = (

𝑈

𝑄

𝑒
2]+1

) , (21)

for 𝑠 is a subspace of type (2𝑟 − 𝑛 + 1, 2(𝑟 − 𝑛), 𝑟 − 𝑛, 1) and
𝑈 ⊂ 𝑠 ⊂ 𝑈

⊥; that is, 𝑠 ∈ 𝑆 is a source state. For any V ∈ 𝑉

and V ̸= 0, V ∉ 𝑠 is obvious; that is, 𝑉 ∩ 𝑈
⊥

= {0}. Therefore,
𝑡 ∩ 𝑈

⊥
= (
𝑈

𝑄

𝑒
2]+1

) = 𝑠. Let 𝑒
𝑅

= (
𝑈

𝑉
); then, 𝑒

𝑅
is receiver’s

decoding rule satisfying 𝑡 = 𝑠 + 𝑒
𝑅
.

If 𝑠󸀠 is another source state contained in 𝑡, then 𝑈 ⊂ 𝑠
󸀠
⊂

𝑈
⊥. Therefore, 𝑠󸀠 ⊂ 𝑡 ∩ 𝑈

⊥
= 𝑠, while dim 𝑠

󸀠
= dim 𝑠, and so

𝑠
󸀠
= 𝑠; that is, 𝑠 is the uniquely source state contained in 𝑡.
From Lemmas 1 and 2, we know that such construction of

multisender authentication codes is reasonable, and there are
𝑛 senders in this system. Next, we compute the parameters
of this code and the maximum probability of success in
impersonation attack and substitution attack by group of
senders.

Lemma 3. Some parameters of this code are

|𝑆| = 𝑁 (2 (𝑟 − 𝑛) , 2 (𝑟 − 𝑛) , 𝑟 − 𝑛, 0; 2] + 2) ;

󵄨󵄨󵄨󵄨󵄨
𝐸
𝑃
𝑖

󵄨󵄨󵄨󵄨󵄨
= 𝑞

]−𝑛+1
(1 ≤ 𝑖 ≤ 𝑛) .

(22)

Proof. Since 𝑈 ⊂ 𝑠 ⊂ 𝑈
⊥, 𝑠 has the following form:

𝑠 = (

𝐼
(𝑛)

0 0 0 0 0

0 𝐵
2

0 𝐵
4

0 0

0 0 0 0 1 0

) , (23)

where 𝐵
2
, 𝐵
4
is a subspace of type (2(𝑟−𝑛), 2(𝑟−𝑛), 𝑟−𝑛, 0) in

the pseudosymplectic space𝐹
𝑞

(2]+2). So, |𝑆| = 𝑁(2(𝑟−𝑛), 2(𝑟−

𝑛), 𝑟 − 𝑛, 0; 2] + 2).
For any 𝑒

𝑝
𝑖

∈ 𝐸
𝑝
𝑖

, we can assume that 𝑒
𝑃
𝑖

has the following
form:
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𝑒
𝑃
𝑖

=
(

𝐼
(𝑙)

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

𝑅
3

0

0

0

0

0

0

0

0

1

0

0

0

0

0

𝑅
8

0

0

𝑅
9

0

0

𝑅
10

)

𝑙 𝑛 − 𝑙 ] − 𝑛 𝑙 𝑖 − 𝑙 − 1 1 𝑛 − 𝑖 ] − 𝑛 1 1

. (24)

Since 𝑒
𝑝
𝑖

is a subspace of type (𝑛 + 1, 0, 0, 0), so 𝑅
3
= 0 and

𝑅
10

= 0, 𝑅
8
, 𝑅
9
arbitrarily. Therefore, |𝐸

𝑃
𝑖

| = 𝑞
]−𝑛+1.

Lemma 4. (1) For any 𝑡
𝑖
∈ 𝑇
𝑖
, the number of 𝑡

𝑖
containing 𝑒

𝑃
𝑖

is 𝑞𝑟−𝑛+1(1 ≤ 𝑖 ≤ 𝑛);

(2) The number of the 𝑖th sender’s tag is |𝑇
𝑖
| = 𝑞

]−𝑟
𝑁(2(𝑟 −

𝑛), 2(𝑟 − 𝑛), 𝑟 − 𝑛, 0; 2] + 2) (1 ≤ 𝑖 ≤ 𝑛).

Proof. (1) Considering the transitivity properties of the same
subspaces under the pseudosymplectic groups, we may take
𝑡
𝑖
as follows:

𝑡
𝑖
=

(

(

𝐼
(𝑙)

0

0

0

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

0

0

𝐼
(𝑟−𝑛)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

𝐼
(𝑟−𝑛)

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

)

)

𝑙 𝑛 − 𝑙 𝑟 − 𝑛 ] − 𝑟 𝑙 𝑖 − 𝑙 − 1 1 𝑛 − 𝑖 𝑟 − 𝑛 ] − 𝑟 1 1

. (25)

twocolumngrid If 𝑒
𝑃
𝑖

⊂ 𝑡
𝑖
, then we assume that

𝑒
𝑃
𝑖

=
(

𝐼
(𝑙)

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

𝑅
7

0

0

0

0

0

𝑅
9

0

0

0

0

0

𝑅
11

0

0

0

)

𝑙 𝑛 − 𝑙 𝑟 − 𝑛 ] − 𝑟 𝑙 𝑖 − 𝑙 − 1 1 𝑛 − 𝑖 𝑟 − 𝑛 ] − 𝑟 1 1

; (26)

from 𝑒
𝑃
𝑖

⊥ 𝑊
𝑖
, we know that𝑅

7
= 1, where𝑅

9
, 𝑅
11
arbitrarily,

and therefore the number of 𝑡
𝑖
containing 𝑒

𝑃
𝑖

is 𝑞𝑟−𝑛+1 (1 ≤ 𝑖 ≤

𝑛).
(2) We know that every 𝑡

𝑖
contains only one source state

𝑡
𝑖
∩𝑈
⊥and the number of 𝑡

𝑖
containing 𝑒

𝑃
𝑖

.Therefore, we have
|𝑡
𝑖
| = |𝑆||𝐸

𝑃
𝑖

|/𝑞
𝑟−𝑛+1

= |𝑆|𝑞
]−𝑛+1

/𝑞
𝑟−𝑛+1

= 𝑞
]−𝑟

𝑁(2(𝑟−𝑛), 2(𝑟−

𝑛), 𝑟 − 𝑛, 0; 2] + 2).

Lemma 5. (1) The number of the receiver’s decoding rules is
|𝐸
𝑅
| = 𝑞
𝑛(]−𝑛+1).

(2) For any 𝑡 ∈ 𝑇, the number of 𝑒
𝑅
which contained 𝑡 is

𝑞
𝑛(𝑟−𝑛+1)

(1 ≤ 𝑖 ≤ 𝑛).

(3) The number of the receiver’s tag is |𝑇| = 𝑞
𝑛(]−𝑟)

𝑁(2(𝑟 −

𝑛), 2(𝑟 − 𝑛), 𝑟 − 𝑛, 0; 2] + 2).

Proof. (1) Let 𝑒
𝑅
∈ 𝐸
𝑅
; 𝑒
𝑅
has the following form:

𝑒
𝑅
=

(
𝐼
(𝑛)

0

0

𝑅
2

0

𝐼
(𝑛)

0

𝑅
4

0

𝑅
5

0

𝑅
6

)

𝑛 ] − 𝑛 𝑛 ] − 𝑛 1 1

. (27)

For 𝑒
𝑅
being a subspace of type (2𝑛, 2𝑛, 𝑛, 0), so 𝑅

2
and 𝑅

6
=

0; 𝑅
4
, 𝑅
5
arbitrarily. Therefore, |𝐸

𝑅
| = 𝑞
𝑛(]−𝑛+1).

(2) Considering the transitivity properties of the same
subspaces under the pseudosymplectic groups, we may
choose 𝑡 as follows:

𝑡 =
(

𝐼
(𝑛)

0

0

0

0

0

𝐼
(𝑟−𝑛)

0

0

0

0

0

0

0

0

0

0

𝐼
(𝑛)

0

0

0

0

0

𝐼
(𝑟−𝑛)

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

)

𝑛 𝑟 − 𝑛 ] − 𝑟 𝑛 𝑟 − 𝑛 ] − 𝑟 1 1

. (28)
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If 𝑒
𝑅
⊂ 𝑡, then

𝑒
𝑅
=

(
𝐼
(𝑛)

0

0

0

0

0

0

𝐼
(𝑛)

0

𝑅
5

0

0

0

𝑅
7

0

0
)

𝑛 𝑟 − 𝑛 ] − 𝑟 𝑛 𝑟 − 𝑛 ] − 𝑟 1 1

, (29)

where 𝑅
5
and 𝑅

7
arbitrarily. Therefore, the number of 𝑒

𝑅

which contained 𝑡 is 𝑞𝑛(𝑟−𝑛+1).
(3) Similar to Lemma 4(2), |𝑇| = |𝑆||𝐸

𝑅
|/𝑞
𝑟−𝑛+1

=

|𝑆|𝑞
𝑛(]−𝑛+1)

/𝑞
𝑟−𝑛+1

= 𝑞
𝑛(]−𝑟)

𝑁(2(𝑟−𝑛), 2(𝑟−𝑛), 𝑟−𝑛, 0; 2]+2).
Without loss of generality, we assume that 𝐿 = {𝑖

1
, 𝑖
2
, . . . ,

𝑖
𝑙
} ⊂ {1, 2, . . . , 𝑛}, 𝑙 < 𝑛, 𝑃

𝐿
= {𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑙
}, and 𝐸

𝐿
=

{𝐸
𝑝
1

, 𝐸
𝑝
2

, . . . , 𝐸
𝑝
𝑙

}. Now, let us consider the attacks on 𝑅 from
malicious groups of senders.

Lemma 6. For any 𝑒
𝐿
= {𝐸
𝑝
1

, 𝐸
𝑝
2

, . . . , 𝐸
𝑝
𝑙

} ∈ 𝐸
𝐿
, the number

of 𝑒
𝑅
containing 𝑒

𝐿
is 𝑞(]−𝑛+1)(𝑛−𝑙).

Proof. For any 𝑒
𝐿
= {𝐸
𝑝
1

, 𝐸
𝑝
2

, . . . , 𝐸
𝑝
𝑙

} ∈ 𝐸
𝐿
, we assume 𝑒

𝐿
to

be as follows:

𝑒
𝐿
=

(

𝐼
(𝑙)

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

0

0

𝐼
(𝑙)

0

0

0

0

0

𝑅
6

0

0

𝑅
7

0

0

0

)

𝑙 𝑛 − 𝑙 ] − 𝑛 𝑙 𝑛 − 𝑙 ] − 𝑛 1 1

. (30)

If 𝑒
𝑅
⊃ 𝑒
𝐿
, then 𝑒

𝑅
has the following form:

𝑒
𝑅
=

(

𝐼
(𝑙)

0

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

0

0

0

0

𝐼
(𝑙)

0

0

0

0

𝐼
(𝑛−𝑙)

0

0

𝑅
6

𝑅
󸀠

6

0

0

𝑅
7

𝑅
󸀠

7

0

0

0

0

)

𝑙 𝑛 − 𝑙 ] − 𝑛 𝑙 𝑛 − 𝑙 ] − 𝑛 1 1

, (31)

where𝑅󸀠
6
, 𝑅
󸀠

7
arbitrarily.Therefore, the number of 𝑒

𝑅
contain-

ing 𝑒
𝐿
is 𝑞(]−𝑛+1)(𝑛−𝑙).

Lemma 7. For any 𝑡 ∈ 𝑇 and 𝑒
𝐿
= {𝐸
𝑝
1

, 𝐸
𝑝
2

, . . . , 𝐸
𝑝
𝑙

} ∈ 𝐸
𝐿
,

the number of 𝑒
𝑅
which contained in 𝑡 and containing 𝑒

𝐿
is

𝑞
(𝑟−𝑛+1)(𝑛−𝑙).

Proof. For any 𝑡 ∈ 𝑇, we assume 𝑡 to be as follows:

𝑡 =

(
(
(

(

𝐼
(𝑙)

0

0

0

0

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

0

0

0

𝐼
(𝑟−𝑛)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

𝐼
(𝑙)

0

0

0

0

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

0

0

0

𝐼
(𝑟−𝑛)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

)
)
)

)

𝑙 𝑛 − 𝑙 𝑟 − 𝑛 ] − 𝑟 𝑙 𝑛 − 𝑙 𝑟 − 𝑛 ] − 𝑟 1 1

. (32)

If 𝑒
𝐿
⊂ 𝑡, then 𝑒

𝐿
has the following form:

𝑒
𝐿
=

(

𝐼
(𝑙)

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

0

0

0

0

0

𝐼
(𝑙)

0

0

0

0

0

𝑅
7

0

0

0

0

0

𝑅
9

0

0

0

)

𝑙 𝑛 − 𝑙 𝑟 − 𝑛 ] − 𝑟 𝑙 𝑛 − 𝑙 𝑟 − 𝑛 ] − 𝑟 1 1

. (33)
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Since 𝑒
𝐿
⊂ 𝑒
𝑅
⊂ 𝑡, then we assume 𝑒

𝑅
to be as follows:

𝑒
𝑅
=

(

𝐼
(𝑙)

0

0

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

𝐼
(𝑙)

0

0

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

𝑅
7

𝐻
7

0

0

0

0

0

0

0

0

𝑅
9

𝐻
9

0

0

0

0

0

)

𝑙 𝑛 − 𝑙 𝑟 − 𝑛 ] − 𝑟 𝑙 𝑛 − 𝑙 𝑟 − 𝑛 ] − 𝑟 1 1

, (34)

where 𝐻
7
and 𝐻

9
arbitrarily. Therefore, the number of

𝑒
𝑅
which contained in 𝑡 and containing 𝑒

𝐿
is 𝑞(𝑟−𝑛+1)(𝑛−𝑙).

Lemma 8. Assume that 𝑡
1
and 𝑡
2
are two distinct tags (𝑡

1
, 𝑡
2
∈

𝑇) decoded by receiver’s key 𝑒
𝑅
, and 𝑠

1
and 𝑠

2
contained in

𝑡
1
and 𝑡
2
are two source states, respectively. Let 𝑠

0
= 𝑠
1
∩ 𝑠
2
,

dim𝑠
0
= 𝑘; then, 𝑛 ≤ 𝑘 ≤ 2𝑟 − 𝑛, and the number of 𝑒

𝑅
which

contained in 𝑡
1
∩ 𝑡
2
and containing 𝑒

𝐿
is 𝑞(𝑘−𝑟)(𝑛−1).

Proof. Since 𝑡
1
= 𝑠
1
+ 𝑒
𝑅
, 𝑡
2
= 𝑠
2
+ 𝑒
𝑅
, and 𝑡

1
̸= 𝑡
2
, then 𝑠

1
̸= 𝑠
2
.

For any 𝑠 ∈ 𝑆, 𝑈 ∈ 𝑠, obviously 𝑛 ≤ 𝑘 ≤ 2𝑟 − 𝑛. Assume

that 𝑠󸀠
𝑖
is the complementary subspace of 𝑠

0
in the 𝑠

𝑖
; then,

𝑠
𝑖
= 𝑠
0
+ 𝑠
󸀠

𝑖
(𝑖 = 1, 2). From 𝑡

𝑖
= 𝑠
𝑖
+ 𝑒
𝑅

= 𝑠
0
+ 𝑠
󸀠

𝑖
+ 𝑒
𝑅
and

𝑠
𝑖
= 𝑡
𝑖
∩ 𝑈
⊥, we know that 𝑠

0
= (𝑡
1
∩ 𝑈
⊥
) ∩ (𝑡
2
∩ 𝑈
⊥
) =

𝑡
1
∩ 𝑡
2
∩ 𝑈
⊥
= 𝑠
1
∩ 𝑡
2
= 𝑠
2
∩ 𝑡
1
, and 𝑡

1
∩ 𝑡
2
= (𝑠
1
+ 𝑒
𝑅
) ∩ 𝑡
2
=

(𝑠
0
+ 𝑠
󸀠

1
+ 𝑒
𝑅
) ∩ 𝑡
2
= ((𝑠
0
+ 𝑒
𝑅
) + 𝑠
󸀠

1
) ∩ 𝑡
2
, since 𝑠

0
+ 𝑒
𝑅

⊆ 𝑡
2
;

then, 𝑡
1
∩ 𝑡
2
= (𝑠
0
+ 𝑒
𝑅
) + (𝑠
󸀠

1
∩ 𝑡
2
), while 𝑠󸀠

1
∩ 𝑡
2
⊆ 𝑠
1
∩ 𝑡
2
= 𝑠
0
,

and so we have 𝑡
1
∩ 𝑡
2
= 𝑠
0
+ 𝑒
𝑅
.

From the definition of 𝑡, we may take 𝑡
𝑖
, 𝑖 = 1, 2, as

follows:

𝑡
𝑖
=

(
(
(
(
(

(

𝐼
(𝑙)

0

0

0

0

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

0

0

0

𝐼
(𝑟−𝑛)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

𝐼
(𝑙)

0

0

0

0

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

0

0

0

𝑃
𝑖
7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

)
)
)
)
)

)

𝑙

𝑛 − 𝑙

𝑟 − 𝑛

𝑙

𝑛 − 𝑙

𝑟 − 𝑛

1

𝑙 𝑛 − 𝑙 𝑟 − 𝑛 ] − 𝑟 𝑙 𝑛 − 𝑙 𝑟 − 𝑛 ] − 𝑟 1 1

. (35)

Let

𝑡
1
∩ 𝑡
2
=

(
(
(
(
(

(

𝐼
(𝑙)

0

0

0

0

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

0

0

0

𝐼
(𝑟−𝑛)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

𝐼
(𝑙)

0

0

0

0

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

0

0

0

𝑃
7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

)
)
)
)
)

)

𝑙

𝑛 − 𝑙

𝑟 − 𝑛

𝑙

𝑛 − 𝑙

𝑟 − 𝑛

1

𝑙 𝑛 − 𝑙 𝑟 − 𝑛 ] − 𝑟 𝑙 𝑛 − 𝑙 𝑟 − 𝑛 ] − 𝑟 1 1

. (36)

From the above mentioned, we know that 𝑡
1
∩ 𝑡
2
= 𝑠
0
+ 𝑒
𝑅
,

and then dim (𝑡
1
∩ 𝑡
2
) = 𝑘 + 2𝑛 − 𝑛 = 𝑘 + 𝑛; therefore,

dim(
0 𝑃
7

0 0 0

0 0 0 1 0
) = 𝑘 + 𝑛 − (2𝑛 + 𝑟 − 𝑛) = 𝑘 − 𝑟. (37)
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For any 𝑒
𝐿
, 𝑒
𝑅
⊂ 𝑡
1
∩ 𝑡
2
, we can assume that

𝑒
𝐿
=

(

𝐼
(𝑙)

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

0

0

0

0

0

𝐼
(𝑙)

0

0

0

0

0

𝑅
7

0

0

0

0

0

𝑅
9

0

0

0

)

𝑙

𝑛 − 𝑙

𝑙

𝑙 𝑛 − 𝑙 𝑟 − 𝑛 ] − 𝑟 𝑙 𝑛 − 𝑙 𝑟 − 𝑛 ] − 𝑟 1 1

,

𝑒
𝑅
=

(

𝐼
(𝑙)

0

0

0

0

𝐼
(𝑛−𝑙)

0

0

0

0

0

0

0

0

0

0

0

0

𝐼
(𝑙)

0

0

0

0

𝐼
(𝑛−𝑙)

0

0

𝑅
7

𝐻
7

0

0

0

0

0

0

𝑅
9

𝐻
9

0

0

0

0

)

𝑙

𝑛 − 𝑙

𝑙

𝑛 − 𝑙

𝑙 𝑛 − 𝑙 𝑟 − 𝑛 ] − 𝑟 𝑙 𝑛 − 𝑙 𝑟 − 𝑛 ] − 𝑟 1 1

,

(38)

where every row of

(0 𝐻
7

0 𝐻
9

0) (39)

is the linear combination of the base of

(
0 𝑃
7

0 0 0

0 0 0 1 0
) . (40)

Therefore, the number of 𝑒
𝑅

⊂ 𝑡
1
∩ 𝑡
2
and containing 𝑒

𝐿
is

𝑞
(𝑘−𝑟)(𝑛−𝑙).

Theorem 9. In the constructed multisender authentication
codes, the largest probabilities of success for impersonation
attack and substitution attack from 𝑃

𝐿
on a receiver 𝑅 are

𝑃
𝐼
(𝐿) =

1

𝑞(]−𝑟)(𝑛−𝑙)
, 𝑃

𝑆
(𝐿) =

1

𝑞2(𝑛−𝑙)
, (41)

respectively.

Proof. Impersonation Attack. 𝑃
𝐿
, after receiving his secret

keys, encodes a message and sends it to receiver. 𝑃
𝐿
is

successful if the receiver accepts it as legitimate message. So,

𝑃
𝐼
(𝐿)

= max
𝑒
𝐿
∈𝐸
𝐿

max
𝑚∈𝑀

{

󵄨󵄨󵄨󵄨{𝑒𝑅 ∈ 𝐸
𝑅
| 𝑒
𝐿
⊂ 𝑒
𝑅
and 𝑒

𝑅
⊂ 𝑡}

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨{𝑒𝑅 ∈ 𝐸

𝑅
| 𝑒
𝐿
⊂ 𝑒
𝑅
}
󵄨󵄨󵄨󵄨

}

=
𝑞
(𝑛−𝑙)(𝑟−𝑛+1)

𝑞(𝑛−𝑙)(]−𝑛+1)
=

1

𝑞(]−𝑟)(𝑛−𝑙)
.

(42)

Substitution Attack. 𝑃
𝐿
replaces 𝑡 with another message 𝑡

󸀠,
after it observes a legitimate message 𝑡. 𝑃

𝐿
is successful if the

receiver accepts it as legitimate message. So,

𝑃
𝑆
(𝐿)

= max
𝑒
𝐿
∈𝐸
𝐿

max
𝑚∈𝑀

max
𝑚
󸀠
̸= 𝑚∈𝑀

{

󵄨󵄨󵄨󵄨󵄨
{𝑒
𝑅
∈ 𝐸
𝑅
| 𝑒
𝑅
⊂ 𝑡, 𝑡
󸀠 and 𝑒

𝐿
⊂ 𝑒
𝑅
}
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨{𝑒𝑅 ∈ 𝐸
𝑅
| 𝑒
𝑅
⊂ 𝑡 and 𝑒

𝐿
⊂ 𝑒
𝑅
}
󵄨󵄨󵄨󵄨

}

= max
𝑛≤𝑘≤2𝑟−𝑛

𝑞
(𝑛−𝑙)(𝑘−𝑟)

𝑞(𝑛−𝑙)(𝑟−𝑛+1)

= max
𝑛≤𝑘≤2𝑟−𝑛

1

𝑞(2𝑟−𝑛+1−𝑘)(𝑛−𝑙)

=
1

𝑞(𝑛−𝑙)
.

(43)
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