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We consider the recovery of high-dimensional sparse signals via ℓ
1
-minimization under mutual incoherence condition, which is

shown to be sufficient for sparse signals recovery in the noiseless and noise cases. We study both ℓ
1
-minimization under the ℓ

2

constraint and the Dantzig selector. Using the two ℓ
1
-minimization methods and a technical inequality, some results are obtained.

They improve the results of the error bounds in the literature and are extended to the general case of reconstructing an arbitrary
signal.

1. Introduction

The problem of recovering a high-dimensional sparse signal
based on a small number of measurements, possibly cor-
rupted by noise, has attracted much recent attention. In the
existing literature on sparse signals recovery and compressed
sensing (see [1–13] and references therein), the emphasis is on
assessing sparse signal 𝑤 ∈ 𝑅

𝑛 from an observation𝑦 ∈ 𝑅𝑚:

𝑦 = 𝐴𝑤 + 𝑧, (1)

where thematrix𝐴 ∈ 𝑅
𝑚×𝑛 with𝑚 ≪ 𝑛 is given and 𝑧 ∈ 𝑅𝑚 is

a vector of measurement errors.The goal is to reconstruct the
unknown vector 𝑤 ∈ 𝑅

𝑛 based on 𝑦 and 𝐴. Throughout the
paper, we will assume that the columns of𝐴 are standardized
to have unit ℓ

2
-norm.

When noise is present, there are two well-known ℓ
1
-

minimization methods, which are well suited for recover-
ing sparse signals. One is ℓ

1
-minimization under the ℓ

2
-

constraint on the residuals:

(𝑃
1
) 𝑤 = argmin

𝑤

{‖𝑤‖1 :
󵄩󵄩󵄩󵄩𝐴𝑤 − 𝑦

󵄩󵄩󵄩󵄩2
≤ 𝜀} . (2)

Another method, called Dantzig selector, is proposed by
Candes and Tao [4]. The Dantzig selector solves the sparse
recovery problem through ℓ

1
-minimization with a constraint

on the correlation between the residuals and the column
vectors of 𝐴:

(𝑃
2
) 𝑤 = argmin

𝑤

{‖𝑤‖1 :
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
(𝐴𝑤 − 𝑦)

󵄩󵄩󵄩󵄩󵄩∞
≤ 𝜀} . (3)

It is clear that regularity conditions are needed in order for
these problems to be well behaved. Over the last few years,
many interesting results for recovering sparse signals have
been obtained in the framework of the mutual incoherence
property (MIP) introduced by Donoho and Huo [14]. The
MIP requires the pairwise correlations among the column
vectors of 𝐴 to be small. Let

𝜇 = max
𝑖 ̸= 𝑗

󵄨󵄨󵄨󵄨󵄨
⟨𝐴
𝑖
, 𝐴
𝑗
⟩
󵄨󵄨󵄨󵄨󵄨
. (4)

See, for example, [8, 10, 14, 15].
It was first shown by Donoho and Huo [14], in the

noiseless case for the setting where 𝐴 is a concatenation of
two square orthogonal matrices, that

𝑘 <
1

2
(
1

𝜇
+ 1) , (5)

ensuring that the exact recovery of 𝑤 when 𝑤 has at most 𝑘
nonzero entries (such a signal is called 𝑘-sparse). This result
was then extended in the noiseless case in [11, 16] to a general
dictionary 𝐴.
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Stronger MIP conditions have been used in the literature
to guarantee stable recovery of sparse signals in the noisy
case. When noise is assumed to be bounded in ℓ

2
-norm,

Donoho et al. [15] showed that sparse signals can be recovered
approximately through ℓ

1
-minimization, with the error being

at worst proportional to the input noise level, when

𝑘 <
1

4
(
1

𝜇
+ 1) . (6)

The results in [17] imply that

𝑘 <
2

3 + √6

(
1

𝜇
+ 1) ≈ 0.368 (

1

𝜇
+ 1) (7)

is sufficient for stable recovery. And Tseng [18] used

𝑘 < (
1

2
− 𝑂 (𝜇))

1

𝜇
+ 1. (8)

Cai et al. [19] have showed that the condition

𝑘 <
1

2
(
1

𝜇
+ 1) (9)

is not only sufficient but in fact sharp for stable recovery with
bounded noise as well as Gaussian noise.

In this paper, we consider the problem of recovering a
high-dimensional sparse signal via two well ℓ

1
-minimization

methods under the condition 𝑘 < (1/2)(1/𝜇 + 1). We study
both ℓ

1
-minimization under the ℓ

2
constraint (𝑃

1
) and the

Dantzig selector (𝑃
2
). Using the two methods and a technical

inequality, we give some results, which slightly improve those
in [19]. Moreover, we obtain some results when unknown
vector is not 𝑘-sparse in the noise case and noiseless case.

The rest of the paper is organized as follows. In Section 2,
some basic notation and definitions are reviewed; an ele-
mentary inequality, which allow us to make finer analysis
of the sparse recovery problem, is introduced. We begin
the analysis of ℓ

1
-minimization methods for sparse signals

recovery by considering the exact recovery in the noise case in
Section 3; our results are similar to those in [19] and to some
extent, we provide tighter error bounds than the existing
results in the literature. In Section 4, we consider the case of
unknown vector which is not 𝑘-sparse under the condition
𝑘 < (1/2)(1/𝜇 + 1). We give some facts and the proofs of the
theorems in Section 5.

2. Preliminaries

We begin by introducing basic notation and definitions and
then develop an important inequality which will be used in
proving our main results.

For a vector V = (V
𝑖
) ∈ R𝑛, we will denote by supp(V) =

{𝑖 : V
𝑖
̸= 0} the support of a vector V. We use the standard

notation ‖V‖
𝑞
= (∑
𝑝

𝑖=1
|V
𝑖
|
𝑞
)
1/𝑞 to denote the ℓ

𝑞
-norm of the

vector of V. Moreover, a vector V is said to be 𝑘-sparse if
| supp(V)| ≤ 𝑘. We also treat a vector V = (V

𝑖
) ∈ R𝑛 as a

function V : {1, 2, . . . , 𝑛} → R by assigning V(𝑖) = V
𝑖
.

We now introduce a useful elementary inequality, which
is used in the proofs of the theorems.

Proposition 1. Let 𝑘 < 𝑛 be positive integers. For any descend-
ing chain of real numbers

𝑥
1
≥ 𝑥
2
≥ ⋅ ⋅ ⋅ ≥ 𝑥

𝑘
≥ 𝑥
𝑘+1

≥ ⋅ ⋅ ⋅ ≥ 𝑥
𝑛−1

≥ 𝑥
𝑛
≥ 0, (10)

One has

𝑥
2

𝑘+1
+ 𝑥
2

𝑘+2
+ ⋅ ⋅ ⋅ + 𝑥

2

𝑛

≤
(𝑥
𝑘+1

+ 𝑥
𝑘+2

+ ⋅ ⋅ ⋅ + 𝑥
𝑛
) (𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑘
)

𝑘

(11)

Proof. Since 𝑥
𝑖
≥ 𝑥
𝑗
for 𝑖 < 𝑗, we have

𝑥
2

𝑘+1
+ 𝑥
2

𝑘+2
+ ⋅ ⋅ ⋅ + 𝑥

2

𝑛

≤ 𝑥
𝑘
𝑥
𝑘+1

+ 𝑥
𝑘+1

𝑥
𝑘+2

+ ⋅ ⋅ ⋅ + 𝑥
𝑛−1

𝑥
𝑛

=
𝑘 (𝑥
𝑘
𝑥
𝑘+1

+ 𝑥
𝑘+1

𝑥
𝑘+2

+ ⋅ ⋅ ⋅ + 𝑥
𝑛−1

𝑥
𝑛
)

𝑘

≤
(𝑥
𝑘+1

+ 𝑥
𝑘+2

+ ⋅ ⋅ ⋅ + 𝑥
𝑛
) (𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑘
)

𝑘
.

(12)

3. Recovery of 𝑘-Sparse Signals

As previously above, the condition (5) has been proved to
guarantee the recovery of 𝑘-sparse signal in noiseless case.
Cai et al. [19] have shown that this condition is also sufficient
for stable reconstruction of 𝑘-sparse signals in the noisy case
when the error is in a bounded set.Wewill also give the results
for reconstruction of 𝑘-sparse signals both in the noiseless
and noisy cases with error bounded, which are proved using
different methods from [19].

Theorem 2. Consider the model (1) with ‖𝑧‖
2
≤ 𝜀. Suppose

that 𝑤 is k-sparse and 𝑤 is the solution of ℓ
1
-minimization

problem (𝑃
1
). Then, under the condition 𝑘 < (1/2)(1/𝜇 + 1),

‖𝑤 − 𝑤‖2 ≤

2√2 (1 + (𝑘 − 1) 𝜇)

1 − (2𝑘 − 1) 𝜇
𝜀.

(13)

We now consider sparse recovery of 𝑘-sparse signals with
error in a different bounded set. Candes and Tao [4] treated
the sparse signal recovery in the Gaussian noise case by
solving minimization

min ‖𝑤‖
1

subject to 󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
(𝑦 − 𝐴𝑤)

󵄩󵄩󵄩󵄩󵄩∞
≤ 𝜂, (14)

with bounded set {𝑧 : ‖𝐴𝑇𝑧‖
∞
≤ 𝜂} and referred the solution

as the Dantzig Selector. The following result shows that the
condition 𝑘 < (1/2)(1/𝜇 + 1) is also sufficient when the error
is in the bounded set {𝑧 : ‖𝐴𝑇𝑧‖

∞
≤ 𝜀}.

Theorem3. Consider themodel (1)with ‖𝐴𝑇𝑧‖
∞
≤ 𝜀. Suppose

that 𝑤 is k-sparse and 𝑤 is the solution of ℓ
1
-minimization

problem (𝑃
2
). Then, under the condition 𝑘 < (1/2)(1/𝜇 + 1),

‖𝑤 − 𝑤‖2 ≤
2√2𝑘

1 − (2𝑘 − 1) 𝜇
𝜀. (15)
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Remark 4. We consider the stable recovery of sparse signals
with error in the ℓ

2
-ball; for example, 𝐵 ⊂ R𝑛 is a bounded

set. 𝐵 is taken to be {0} in the noiseless case and can be 𝐵ℓ2 =
{𝑧 : ‖𝑧‖

2
≤ 𝜂} or 𝐵𝐷𝑆 = {𝑧 : ‖𝐴𝑇𝑧‖

∞
≤ 𝜂} in the noisy case.

Note that 2𝑘𝜇 < 𝜇+1, under the condition 𝑘 < (1/2)(1/𝜇+
1), the result of Theorem 2 is equivalent to

‖𝑤 − 𝑤‖2 ≤
√3 − 𝜇

1 − (2𝑘 − 1) 𝜇
(𝜀 + 𝜂) , (16)

andTheorem 3 is equivalent to

‖𝑤 − 𝑤‖2 ≤

√2𝑘

1 − (2𝑘 − 1) 𝜇
(𝜀 + 𝜂) . (17)

To some extent,Theorem 2 improvesTheorem 2.1 in [19],
while Theorem 3 is improved using different method from
[19] and gets the same results as Theorem 2.2 in [19].

4. Recovery of Approximately 𝑘-Sparse Signals

In the previous section, the focus was on recovering 𝑘-sparse
signals. As discussed in [17, 19, 20], our results can also be
stated in the general setting of reconstructing an arbitrary
signal under the condition 𝑘 < (1/2)(1/𝜇 + 1).

We begin in this section by considering the problem of
exact recovery of spares signals when no noise is present.This
is an interesting problem in itself and has been considered
in a number of papers; see, for example, [9, 11, 17, 21]. More
importantly, the solutions to this “clean” problem shed light
on the noisy case.

When𝑤 is not 𝑘-sparse, ℓ
1
-minimization can also recover

𝑤 with accuracy if 𝑤 has good 𝑘-term approximation. For a
general vector 𝑤 ∈ 𝑅

𝑛, denote by 𝑤max(𝑘) with all but the 𝑘-
largest entries (in absolute value) set to zero and𝑤

−max(𝑘) the
vector 𝑤 with the 𝑘-largest entries (in absolute value) set to
zero.

Theorem 5. Let 𝐴 ∈ 𝑅
𝑚×𝑛. Suppose that 𝑘 ≥ 1 satisfies

𝑘 < (1/2)(1/𝜇 + 1) and 𝑤 is the solution of the following ℓ
1
-

minimization problem

(𝑃) min ‖𝑤‖1 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦 = 𝐴𝑤. (18)

Then

‖𝑤 − 𝑤‖2 ≤

2𝜇√2𝑘
󵄩󵄩󵄩󵄩𝑤−max(𝑘)

󵄩󵄩󵄩󵄩1

1 − (2𝑘 − 1) 𝜇
. (19)

Wenow turn to the noisy case. Suppose that𝐴 ∈ 𝑅
𝑚×𝑛 and

𝑦 = 𝐴𝑤+𝑧, where the noise 𝑧 is bounded.Wewill specifically
consider two cases: ‖𝑧‖

2
≤ 𝜀 and ‖𝐴𝑇𝑧‖

∞
≤ 𝜀. We will first

consider the case ‖𝑧‖
2
≤ 𝜀.

Theorem 6. Consider the model (1)with 𝑧 satisfying ‖𝑧‖
2
≤ 𝜀.

Suppose that 𝑘 ≥ 1 satisfies 𝑘 < (1/2)(1/𝜇 + 1) and 𝑤 is the
solution of the ℓ

1
-minimization problem (𝑃

1
). Then

‖𝑤 − 𝑤‖2 ≤

2𝜀√2 (1 + (𝑘 − 1) 𝜇) + 2𝜇√2𝑘
󵄩󵄩󵄩󵄩𝑤−max(𝑘)

󵄩󵄩󵄩󵄩1

1 − (2𝑘 − 1) 𝜇
.

(20)

We next turn to the case ‖𝐴𝑇𝑧‖
∞

≤ 𝜀, which is called
Dantzig selector.

Theorem 7. Consider the model (1) with ‖𝐴𝑇𝑧‖
∞

≤ 𝜀. Sup-
pose that 𝑘 ≥ 1 satisfies 𝑘 < (1/2)(1/𝜇+1) and𝑤 is the solution
of ℓ
1
-minimization problem (𝑃

2
). Then

‖𝑤 − 𝑤‖2 ≤

2𝜀√2𝑘 + 2𝜇√2𝑘
󵄩󵄩󵄩󵄩𝑤−max(𝑘)

󵄩󵄩󵄩󵄩1

1 − (2𝑘 − 1) 𝜇
. (21)

We have so far focused on stable recovery with bounded
error. The results can be extended directly to the Gaussian
noise case. This is due to the fact that Gaussian noise is
“essentially bounded.” See, for example, [17, 19, 20].

5. The Proofs of the Theorems

Before giving the proofs of the theorems, we introduce three
widely used facts, which are useful for the proofs.

(A) The following fact is well known in the recovery of
sparse signals. Let 𝑥 ∈ R𝑛 be any 𝑘-sparse signal and
𝐴 ∈ 𝑅

𝑚×𝑛; then

(1 − (𝑘 − 1) 𝜇) ‖𝑥‖
2

2

≤ ‖𝐴𝑥‖
2

2
≤ (1 + (𝑘 − 1) 𝜇) ‖𝑥‖

2

2
,

(22)

where 𝜇 is defined by (4); see, for example, [17, 18, 22, 23].
Let𝑤 be a solution to the minimization problem; then by

definition ‖𝑤‖
1
≤ ‖𝑤‖

1
. Let 𝛿 = 𝑤−𝑤, and 𝛿

𝑆
0

= 𝛿𝐼 supp(𝑤).
Here, 𝐼

𝐽
denotes the indicator function of a set 𝐽; that is,

𝐼
𝐽
(𝑗) = 1 if 𝑗 ∈ 𝐽 and 0 if 𝑗 ∉ 𝐽.

(B) The following is a widely used fact (see, e.g., [4, 7, 14,
17]):

󵄩󵄩󵄩󵄩󵄩
𝛿 − 𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1
≤
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1
. (23)

This follows directly from the fact that

‖𝑤‖1 ≥ ‖𝑤‖1 = ‖𝑤 + 𝛿‖1

=
󵄩󵄩󵄩󵄩󵄩
𝑤 + 𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩󵄩
𝛿 − 𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1

≥ ‖𝑤‖1 −
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩󵄩
𝛿 − 𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1
.

(24)

(C) The following fact, which is based on the minimality
of 𝑤, has been widely used; see for example, [14, 19,
20]:

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
0

󵄩󵄩󵄩󵄩󵄩1
≥
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
𝑐

0

󵄩󵄩󵄩󵄩󵄩1
, (25)

where 𝑇
0
is the support of 𝑤. This follows directly from the

fact that

‖𝑤‖1 ≥ ‖𝑤‖1 = ‖𝑤 + 𝛿‖1

=
󵄩󵄩󵄩󵄩󵄩
𝑤 + 𝛿
𝑇
0

󵄩󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑐

𝑇
0

󵄩󵄩󵄩󵄩󵄩1

≥ ‖𝑤‖1 −
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
0

󵄩󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
𝑐

0

󵄩󵄩󵄩󵄩󵄩1
.

(26)
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Proof of Theorem 2. The proof makes use of the ideas from
[17, 19, 22].

Let 𝛿 = 𝑤 − 𝑤. Rearranging the indices if necessary, we
assume that

󵄨󵄨󵄨󵄨𝛿(1)
󵄨󵄨󵄨󵄨 ≥

󵄨󵄨󵄨󵄨𝛿(2)
󵄨󵄨󵄨󵄨 ≥ ⋅ ⋅ ⋅ ≥

󵄨󵄨󵄨󵄨𝛿(𝑘+1)
󵄨󵄨󵄨󵄨 ≥

󵄨󵄨󵄨󵄨𝛿(𝑘+2)
󵄨󵄨󵄨󵄨 ≥ ⋅ ⋅ ⋅ . (27)

Let 𝑇
1
= {1, 2, . . . , 𝑘} and 𝑇

2
be the support of 𝑤; then,

from the fact (C),
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
2

󵄩󵄩󵄩󵄩󵄩1
≥
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
𝑐

2

󵄩󵄩󵄩󵄩󵄩1
. (28)

Note that 𝑇𝑐
2
∩ 𝑇
1
and 𝑇

2
∩ 𝑇
𝑐

1
both have 𝑘 − |𝑇

1
∩ 𝑇
2
|

elements, so we have
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
𝑐

2
∩𝑇
1

󵄩󵄩󵄩󵄩󵄩1
≥
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
2
∩𝑇
𝑐

1

󵄩󵄩󵄩󵄩󵄩1
. (29)

We will show that this implies that
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
1

󵄩󵄩󵄩󵄩󵄩1
≥
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
𝑐

1

󵄩󵄩󵄩󵄩󵄩1
. (30)

In fact
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
1

󵄩󵄩󵄩󵄩󵄩1
=
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
1
∩𝑇
2

󵄩󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
1
∩𝑇
𝑐

2

󵄩󵄩󵄩󵄩󵄩1

=
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
2

󵄩󵄩󵄩󵄩󵄩1
−
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
2
∩𝑇
𝑐

1

󵄩󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
1
∩𝑇
𝑐

2

󵄩󵄩󵄩󵄩󵄩1

≥
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
𝑐

2

󵄩󵄩󵄩󵄩󵄩1
−
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
2
∩𝑇
𝑐

1

󵄩󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
1
∩𝑇
𝑐

2

󵄩󵄩󵄩󵄩󵄩1

=
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
𝑐

1
∩𝑇
𝑐

2

󵄩󵄩󵄩󵄩󵄩1
−
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
2
∩𝑇
𝑐

1

󵄩󵄩󵄩󵄩󵄩1
+ 2

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
1
∩𝑇
𝑐

2

󵄩󵄩󵄩󵄩󵄩1

=
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
𝑐

1

󵄩󵄩󵄩󵄩󵄩1
− 2

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
2
∩𝑇
𝑐

1

󵄩󵄩󵄩󵄩󵄩1
+ 2

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
1
∩𝑇
𝑐

2

󵄩󵄩󵄩󵄩󵄩1
≥
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑇
𝑐

1

󵄩󵄩󵄩󵄩󵄩1
.

(31)

For simplicity, partition {1, 2, . . . , 𝑛} into the following
sets:

𝑆
0
= {1, 2, . . . , 𝑘} , 𝑆

1
= {𝑘 + 1, 𝑘 + 2, . . . , 𝑘 + 𝑘

1
} ,

𝑆
2
= {𝑘 + 𝑘

1
+ 1, 𝑘 + 𝑘

1
+ 2, . . . , 𝑘 + 𝑘

1
+ 𝑘
2
} , . . . ,

(32)

where 𝑘
𝑗
(𝑗 > 0) is an positive integer.

Note that 𝑘 < (1/2)(1/𝜇+1) is equivalent to (2𝑘−1)𝜇 < 1
or 1 − (2𝑘 − 1)𝜇 > 0. Now
󵄨󵄨󵄨󵄨󵄨
⟨𝐴𝛿, 𝐴𝛿

𝑆
0

⟩
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
⟨𝐴𝛿
𝑆
0

, 𝐴𝛿
𝑆
0

⟩ + ⟨𝐴 (𝛿 − 𝛿
𝑆
0

) , 𝐴𝛿
𝑆
0

⟩
󵄨󵄨󵄨󵄨󵄨

≥ (1 − (𝑘 − 1) 𝜇)
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩

2

2
− 𝜇

󵄩󵄩󵄩󵄩󵄩
𝛿 − 𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1

≥ (1 − (𝑘 − 1) 𝜇)
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩

2

2
− 𝜇

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩

2

1

≥ (1 − (𝑘 − 1) 𝜇)
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩

2

2
− 𝜇𝑘

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩

2

2

≥ (1 − (2𝑘 − 1) 𝜇)
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩

2

2
,

(33)

where the second inequality applies the facts (A) and (B).
On the other hand, it follows from the fact (A) that

󵄩󵄩󵄩󵄩󵄩
𝐴𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩

2

2
≤ (1 + (𝑘 − 1) 𝜇)

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩

2

2
. (34)

Note that

‖𝐴𝛿‖2 = ‖𝐴 (𝑤 − 𝑤)‖
2
≤
󵄩󵄩󵄩󵄩𝐴𝑤 − 𝑦

󵄩󵄩󵄩󵄩2
+
󵄩󵄩󵄩󵄩𝐴𝑤 − 𝑦

󵄩󵄩󵄩󵄩2
≤ 2𝜀.

(35)

From Proposition 1 and the fact that |𝛿
(1)
| ≥ |𝛿
(2)
| ≥ ⋅ ⋅ ⋅ ≥

|𝛿
(𝑘+1)

| ≥ |𝛿
(𝑘+2)

| ≥ ⋅ ⋅ ⋅ , we get

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
𝑐

0

󵄩󵄩󵄩󵄩󵄩

2

2
≤
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
𝑐

0

󵄩󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1

𝑘
≤

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩

2

1

𝑘
≤
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩

2

2
,

(36)

which implies

‖𝛿‖
2

2
=
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩

2

2
+
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
𝑐

0

󵄩󵄩󵄩󵄩󵄩

2

2
≤ 2

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩

2

2
. (37)

Putting them together, we get

‖𝛿‖
2
≤ √2

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2
≤

√2
󵄨󵄨󵄨󵄨󵄨
⟨𝐴𝛿, 𝐴𝛿

𝑆
0

⟩
󵄨󵄨󵄨󵄨󵄨

(1 − (2𝑘 − 1) 𝜇)
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2

≤

√2‖𝐴𝛿‖2

󵄩󵄩󵄩󵄩󵄩
𝐴𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2

(1 − (2𝑘 − 1) 𝜇)
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2

≤

2√2 (1 + (𝑘 − 1) 𝜇)
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2

(1 − (2𝑘 − 1) 𝜇)
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2

𝜀

=

2√2 (1 + (𝑘 − 1) 𝜇)

1 − (2𝑘 − 1) 𝜇
𝜀.

(38)

Proof of Theorem 3. Note that from the fact (A) and the first
part of the proof of Theorem 2, we have

󵄨󵄨󵄨󵄨󵄨
⟨𝐴𝛿, 𝐴𝛿

𝑆
0

⟩
󵄨󵄨󵄨󵄨󵄨
≥ (1 − (2𝑘 − 1) 𝜇)

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩

2

2
. (39)

On the other hand, we also obtain the following relation:

󵄨󵄨󵄨󵄨󵄨
⟨𝐴𝛿, 𝐴𝛿

𝑆
0

⟩
󵄨󵄨󵄨󵄨󵄨
= (𝐴𝛿

𝑆
0

)
𝑇

𝐴𝛿

≤
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑇
𝐴𝛿

󵄩󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1
≤ 2𝜀√𝑘

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2
,

(40)

We get, together with them, that

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2
≤

2𝜀√𝑘

1 − (2𝑘 − 1) 𝜇
. (41)

Then

‖𝛿‖2 ≤
√2

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2
≤

2√2𝑘

1 − (2𝑘 − 1) 𝜇
𝜀, (42)

where the last second inequality uses (37).

Proof of Theorem 5. Let 𝛿 = 𝑤 − 𝑤 and 𝑇 = {1, 2, . . . , 𝑘} ⊂

{1, 2, . . . , 𝑛} be the support of 𝑤max(𝑘). Following the notation
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and the first part in the proof of Theorem 2, we first give the
following relation:

󵄩󵄩󵄩󵄩󵄩
𝛿 − 𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1
≤
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1
+ 2

󵄩󵄩󵄩󵄩
𝑤
−max(𝑘)

󵄩󵄩󵄩󵄩1
. (43)

In fact, since ‖𝑤‖
1
≥ ‖𝑤‖

1
, we have

‖𝑤‖1 ≥ ‖𝑤‖1 = ‖𝑤 + 𝛿‖1

=
󵄩󵄩󵄩󵄩󵄩
𝑤max(𝑘) + 𝑤−max(𝑘) + 𝛿 − 𝛿𝑆

0

+ 𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1

=
󵄩󵄩󵄩󵄩󵄩
𝑤max(𝑘) + 𝛿𝑆

0

󵄩󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩󵄩
𝑤
−max(𝑘) + 𝛿 − 𝛿𝑆

0

󵄩󵄩󵄩󵄩󵄩1

≥
󵄩󵄩󵄩󵄩𝑤max(𝑘)

󵄩󵄩󵄩󵄩1
−
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1

+
󵄩󵄩󵄩󵄩󵄩
𝛿 − 𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1
−
󵄩󵄩󵄩󵄩𝑤−max(𝑘)

󵄩󵄩󵄩󵄩1
.

(44)

Since 𝑤 = 𝑤max(𝑘) + 𝑤−max(𝑘), this yields

󵄩󵄩󵄩󵄩󵄩
𝛿 − 𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1
≤
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1
+ 2

󵄩󵄩󵄩󵄩
𝑤
−max(𝑘)

󵄩󵄩󵄩󵄩1
. (45)

Note that

𝐴𝛿 = 𝐴𝑤 − 𝐴𝑤 = 0. (46)

So

0 =
󵄨󵄨󵄨󵄨󵄨
⟨𝐴𝛿, 𝐴𝛿

𝑆
0

⟩
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
⟨𝐴𝛿
𝑆
0

, 𝐴𝛿
𝑆
0

⟩ + ⟨𝐴 (𝛿 − 𝛿
𝑆
0

) , 𝐴𝛿
𝑆
0

⟩
󵄨󵄨󵄨󵄨󵄨

≥ (1 − (𝑘 − 1) 𝜇)
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩

2

2
− 𝜇

󵄩󵄩󵄩󵄩󵄩
𝛿 − 𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1

≥ (1 − (𝑘 − 1) 𝜇)
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩

2

2
− 𝜇 (

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1
+ 2

󵄩󵄩󵄩󵄩𝑤−max(𝑘)
󵄩󵄩󵄩󵄩1
)
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩1

≥ (1 − (2𝑘 − 1) 𝜇)
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩

2

2
− 2𝜇√𝑘

󵄩󵄩󵄩󵄩𝑤−max(𝑘)
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2
,

(47)

where the last second inequality holds from (43).
Then

󵄩󵄩󵄩󵄩
𝛿
0

󵄩󵄩󵄩󵄩2
≤

2𝜇√𝑘
󵄩󵄩󵄩󵄩𝑤−max(𝑘)

󵄩󵄩󵄩󵄩1

1 − (2𝑘 − 1) 𝜇
. (48)

From (37), we have that

‖𝛿‖2 ≤
√2

󵄩󵄩󵄩󵄩𝛿0
󵄩󵄩󵄩󵄩2
≤

2𝜇√2𝑘
󵄩󵄩󵄩󵄩𝑤−max(𝑘)

󵄩󵄩󵄩󵄩1

1 − (2𝑘 − 1) 𝜇
. (49)

The proof is completed.

Proof of Theorem 6. From the proof of Theorem 5, we have

󵄨󵄨󵄨󵄨󵄨
⟨𝐴𝛿, 𝐴𝛿

𝑆
0

⟩
󵄨󵄨󵄨󵄨󵄨
≥ (1 − (2𝑘 − 1) 𝜇)

×
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩

2

2
− 2𝜇√𝑘

󵄩󵄩󵄩󵄩𝑤−max(𝑘)
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2
.

(50)

It follows from the fact (A) that

󵄩󵄩󵄩󵄩󵄩
𝐴𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩

2

2
≤ (1 + (𝑘 − 1) 𝜇)

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩

2

2
. (51)

Note that

‖𝐴𝛿‖2 = ‖𝐴 (𝑤 − 𝑤)‖2 ≤
󵄩󵄩󵄩󵄩𝐴𝑤 − 𝑦

󵄩󵄩󵄩󵄩2
+
󵄩󵄩󵄩󵄩𝐴𝑤 − 𝑦

󵄩󵄩󵄩󵄩2
≤ 2𝜀.

(52)

Together with them, we get

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2
≤

󵄨󵄨󵄨󵄨󵄨
⟨𝐴𝛿, 𝐴𝛿

𝑆
0

⟩
󵄨󵄨󵄨󵄨󵄨
+ 2𝜇√𝑘

󵄩󵄩󵄩󵄩𝑤−max(𝑘)
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2

(1 − (2𝑘 − 1) 𝜇)
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2

≤

‖𝐴𝛿‖2

󵄩󵄩󵄩󵄩󵄩
𝐴𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2
+ 2𝜇√𝑘

󵄩󵄩󵄩󵄩𝑤−max(𝑘)
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2

(1 − (2𝑘 − 1) 𝜇)
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2

≤

2𝜀√1 + (𝑘 − 1) 𝜇
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2
+ 2𝜇√𝑘

󵄩󵄩󵄩󵄩𝑤−max(𝑘)
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2

(1 − (2𝑘 − 1) 𝜇)
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2

≤

2𝜀√1 + (𝑘 − 1) 𝜇 + 2𝜇√𝑘
󵄩󵄩󵄩󵄩𝑤−max(𝑘)

󵄩󵄩󵄩󵄩1

1 − (2𝑘 − 1) 𝜇
.

(53)

Then, from (37),

‖𝛿‖2 ≤
√2

󵄩󵄩󵄩󵄩𝛿0
󵄩󵄩󵄩󵄩2

≤

2𝜀√2 (1 + (𝑘 − 1) 𝜇) + 2𝜇√2𝑘
󵄩󵄩󵄩󵄩𝑤−max(𝑘)

󵄩󵄩󵄩󵄩1

1 − (2𝑘 − 1) 𝜇
.

(54)

Proof of Theorem 7. From the proof of Theorems 3 and 5, we
get

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2
≤

󵄨󵄨󵄨󵄨󵄨
⟨𝐴𝛿, 𝐴𝛿

𝑆
0

⟩
󵄨󵄨󵄨󵄨󵄨
+ 2𝜇√𝑘

󵄩󵄩󵄩󵄩𝑤−max(𝑘)
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2

(1 − (2𝑘 − 1) 𝜇)
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2

≤

2𝜀√𝑘
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2
+ 2𝜇√𝑘

󵄩󵄩󵄩󵄩𝑤−max(𝑘)
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2

(1 − (2𝑘 − 1) 𝜇)
󵄩󵄩󵄩󵄩󵄩
𝛿
𝑆
0

󵄩󵄩󵄩󵄩󵄩2

=

2𝜀√𝑘 + 2𝜇√𝑘
󵄩󵄩󵄩󵄩𝑤−max(𝑘)

󵄩󵄩󵄩󵄩1

1 − (2𝑘 − 1) 𝜇
.

(55)

Then

‖𝛿‖2 ≤
√2

󵄩󵄩󵄩󵄩𝛿0
󵄩󵄩󵄩󵄩2
≤

2𝜀√2𝑘 + 2𝜇√2𝑘
󵄩󵄩󵄩󵄩𝑤−max(𝑘)

󵄩󵄩󵄩󵄩1

1 − (2𝑘 − 1) 𝜇
. (56)
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