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The notion of strongly quotient graph (SQG) was introduced by Adiga et al. (2007). In this paper, we obtain some better results
for the distance energy and the distance Estrada index of any connected strongly quotient graph (CSQG) as well as some relations
between the distance Estrada index and the distance energy. We also present some bounds for the distance energy and the distance
Estrada index of CSQG whose diameter does not exceed two. Additionally, we show that our results improve most of the results
obtained by Güngör and Bozkurt (2009) and Zaferani (2008).

1. Introduction

Since the distance matrix and related matrices based on
graph-theoretical distances are efficient sources of many
topological indices that are widely used in theoretical chem-
istry [1, 2], it is of interest to study spectrum and spectrum-
based invariants of these matrices.

Let 𝐺 be a connected graph with 𝑛 vertices and 𝑚 edges
and let the vertices of 𝐺 be labeled as V

1
, V
2
, . . . , V

𝑛
. Such a

graph will be referred to as connected (𝑛,𝑚)-graph. Let 𝐷 =
𝐷(𝐺) be the distancematrix of the graph𝐺, where 𝑑

𝑖𝑗
denotes

the distance (i.e., the length of the shortest path [3]) between
the vertices V

𝑖
and V

𝑗
of 𝐺. The diameter of the graph 𝐺,

denoted by diam(𝐺), is the maximum distance between any
two vertices of 𝐺. The eigenvalues of 𝐷(𝐺) are said to be the
𝐷-eigenvalues of 𝐺. Since 𝐷(𝐺) is a real symmetric matrix,
its eigenvalues are real numbers. So, we can order them so
that 𝜇

1
≥ 𝜇

2
≥ ⋅ ⋅ ⋅ ≥ 𝜇

𝑛
. For more details on 𝐷-eigenvalues,

especially on 𝜇
1
, see [3–12].

The distance energy of the graph 𝐺 is defined as [13]

𝐸
𝐷
= 𝐸

𝐷
(𝐺) =

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜇𝑖
󵄨󵄨󵄨󵄨 . (1)

This concept was motivated by the ordinary graph energy
which is defined as the sum of absolute values of ordinary
graph eigenvalues [14–16]. It was also studied intensely
in the literature. For instance, Indulal et al. [13] reported
lower and upper bounds for the distance energy of graphs
whose diameter does not exceed two. In [17] Ramane et al.
generalized the results obtained in [13]. Zhou and Ilić [10]
established lower bounds for the distance energy of graphs
and characterized the extremal graphs. They also discussed
upper bounds for the distance energy. Ilić [18] calculated
the distance energy of unitary Cayley graphs and presented
two families of integral circulant graphs with equal distance
energy. Zaferani [19] established an upper bound for the
distance energy of strongly quotient graphs. For more results
on distance energy, see also the recent papers [6, 20].

Recently, another graph invariant based on graph eigen-
values was put forward in [21]. It was eventually studied
under the name Estrada index in [22]. For more details on
Estrada index, see [21–27].Motivating the ideas in [21, 22] and
considering the distance matrix of the graph 𝐺, the authors
defined the distance Estrada index of 𝐺 as the following [28]:

DEE = DEE (𝐺) =
𝑛

∑

𝑖=1

𝑒
𝜇𝑖 . (2)
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In [28], they also established some lower and upper bounds
for this index.

During the past forty years or so enormous amount of
research work has been done on graph labeling, where the
vertices are assigned values subject to certain conditions.
These interesting problems have been motivated by practical
problems. Recently, Adiga et al. [29] introduced the notion of
strongly quotient graphs and studied these types of graphs.
Throughout this paper by a labeling 𝑓 of a graph𝐺 of order 𝑛
we mean an injective mapping

𝑓 : 𝑉 (𝐺) 󳨀→ {1, 2, . . . , 𝑛} . (3)

We define the quotient function

𝑓
𝑞
: 𝐸 (𝐺) 󳨀→ 𝑄 (4)

by

𝑓
𝑞
(𝑒) = min{

𝑓 (V)

𝑓 (𝑤)
,
𝑓 (𝑤)

𝑓 (V)
} (5)

if 𝑒 joins V and 𝑤. Note that for any 𝑒 ∈ 𝐸(𝐺), 0 < 𝑓
𝑞
(𝑒) < 1.

A graph with 𝑛 vertices is called a strongly quotient
graph if its vertices can be labeled 1, 2, . . . , 𝑛 such that the
quotient function 𝑓

𝑞
is injective, that is, the values 𝑓

𝑞
(𝑒) on

the edges are all distinct. For detailed information on graph
labeling and strongly quotient graphs, see [19, 23, 29, 30].
Throughout this paper SQG and CSQG stand for strongly
quotient graph and connected strongly quotient graph of
order 𝑛 with maximum number of edges, respectively.

In this paper, we obtain some bounds for the distance
energy 𝐸

𝐷
(𝐺) and the distance Estrada index DEE(𝐺) as well

as some relations between DEE(𝐺) and 𝐸
𝐷
(𝐺) where 𝐺 is

CSQG. We present some bounds for 𝐸
𝐷
(𝐺) and DEE(𝐺) of

CSQG whose diameter does not exceed two. We also show
that our results improve most of the results obtained in [19,
28] for CSQG.

2. Preliminaries

In this section, we give some lemmas which will be used in
our main results.

Lemma 1 (see [31]). Let 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
be nonnegative numbers.

Then

𝑛[

[

1

𝑛

𝑛

∑

𝑖=1

𝑎
𝑖
− (

𝑛

∏

𝑖=1

𝑎
𝑖
)

1/𝑛

]

]

≤ 𝑛

𝑛

∑

𝑖=1

𝑎
𝑖
− (

𝑛

∑

𝑖=1

√𝑎𝑖)

2

≤ 𝑛 (𝑛 − 1)[

[

1

𝑛

𝑛

∑

𝑖=1

𝑎
𝑖
− (

𝑛

∏

𝑖=1

𝑎
𝑖
)

1/𝑛

]

]

.

(6)

Lemma 2 (see [17]). Let 𝐺 be a connected (𝑛,𝑚)-graph and
𝜇
1
, 𝜇

2
, . . . , 𝜇

𝑛
its𝐷-eigenvalues. Then

𝑛

∑

𝑖=1

𝜇
𝑖
= 0, (7)

𝑛

∑

𝑖=1

𝜇
2

𝑖
= 2∑

𝑖<𝑗

(𝑑
𝑖𝑗
)
2

. (8)

Lemma 3 (see [13]). Let 𝐺 be a connected (𝑛,𝑚)-graph and
let diam(𝐺) ≤ 2, where diam(𝐺) denotes the diameter of the
graph 𝐺. Then

𝑛

∑

𝑖=1

𝜇
2

𝑖
= 2 (2𝑛

2
− 2𝑛 − 3𝑚) . (9)

Lemma 4 (see [28]). Let 𝐺 be a connected (𝑛,𝑚)-graph and
diam(𝐺) be the diameter of 𝐺. Then

∑

𝑖<𝑗

(𝑑
𝑖𝑗
)
2

≤
𝑛 (𝑛 − 1)

2
diam2

(𝐺) . (10)

The equality holds in (10) if and only if 𝐺 ≅ 𝐾
𝑛
.

Lemma 5 (see [19]). If 𝐺 is a SQG, then −1 is a 𝐷-eigenvalue
of 𝐺 with multiplicity greater than or equal to |𝑃| = 𝑙, where

𝑃 = {𝑝 : 𝑝 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒 𝑎𝑛𝑑
𝑛

2
< 𝑝 ≤ 𝑛} . (11)

Lemma 6 (see [19]). If 𝐺 is a SQG, then −2 is a 𝐷-eigenvalue
of 𝐺 with multiplicity greater than or equal to 𝑠 where

𝑠 = ∑

𝑝-𝑝𝑟𝑖𝑚𝑒
𝑝≤[𝑛/2]

([log
𝑝
𝑛] − 1) .

(12)

3. Bounds on Distance Energy of CSQG

In this section, we will present a better upper bound and
a new lower bound for 𝐸

𝐷
(𝐺) where 𝐺 is CSQG with 𝐷-

eigenvalues 𝜇
1
, 𝜇

2
, . . . , 𝜇

𝑛
. Let 𝑛

+
be the number of positive

𝐷-eigenvalues of 𝐺 and 𝑙 and 𝑠 are as defined in Lemmas 5
and 6, respectively. For our convenience, we rename the 𝐷-
eigenvalues such that 𝜇

𝑛−𝑙−𝑠+1
= 𝜇

𝑛−𝑙−𝑠+2
= ⋅ ⋅ ⋅ = 𝜇

𝑛−𝑠
= −1

and 𝜇
𝑛−𝑠+1

= 𝜇
𝑛−𝑠+2

= ⋅ ⋅ ⋅ = 𝜇
𝑛
= −2.

Theorem 7. Let 𝐺 be a connected strongly quotient graph
(CSQG) with 𝑛 > 3 vertices and maximum edges 𝑚. Let
𝑃 = {𝑝 : 𝑝 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒 𝑎𝑛𝑑 (𝑛/2) < 𝑝 ≤ 𝑛} and |𝑃| = 𝑙. Then

𝐸
𝐷
(𝐺) ≥ 𝑙 + 2𝑠 + √𝑊 + (𝑛 − 𝑙 − 𝑠) (𝑛 − 𝑙 − 𝑠 − 1) 𝜙2/𝑛−𝑙−𝑠,

(13)

𝐸
𝐷
(𝐺) ≤ 𝑙 + 2𝑠 + √(𝑛 − 𝑙 − 𝑠 − 1)𝑊 + (𝑛 − 𝑙 − 𝑠) 𝜙2/𝑛−𝑙−𝑠,

(14)
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where

𝜙 =

𝑛−𝑙−𝑠

∏

𝑖=1

󵄨󵄨󵄨󵄨𝜇𝑖
󵄨󵄨󵄨󵄨 =
|det𝐷|
2𝑠

,

𝑠 = ∑

𝑝-𝑝𝑟𝑖𝑚𝑒
𝑝≤[𝑛/2]

([log
𝑝
𝑛] − 1) , 𝑊 = 2∑

𝑖<𝑗

(𝑑
𝑖𝑗
)
2

− 𝑙 − 4𝑠.

(15)

Proof. Taking 𝑎
𝑖
= 𝜇

2

𝑖
and replacing 𝑛 by 𝑛− 𝑙 − 𝑠 in Lemma 1,

we obtain

𝐾 ≤ (𝑛 − 𝑙 − 𝑠)

𝑛−𝑙−𝑠

∑

𝑖=1

𝜇
2

𝑖
− (

𝑛−𝑙−𝑠

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜇𝑖
󵄨󵄨󵄨󵄨)

2

≤ (𝑛 − 𝑙 − 𝑠 − 1)𝐾,

(16)

where

𝐾 = (𝑛 − 𝑙 − 𝑠) [

[

1

𝑛 − 𝑙 − 𝑠

𝑛−𝑙−𝑠

∑

𝑖=1

𝜇
2

𝑖
− (

𝑛−𝑙−𝑠

∏

𝑖=1

𝜇
2

𝑖
)

1/𝑛−𝑙−𝑠

]

]

. (17)

By Lemmas 5 and 6, we know that −1 and −2 are the 𝐷-
eigenvalues of the strongly quotient graph𝐺withmultiplicity
greater than or equal to 𝑙 and 𝑠, respectively. Therefore,
considering (8) we obtain

𝐾 ≤ (𝑛 − 𝑙 − 𝑠)(2∑

𝑖<𝑗

(𝑑
𝑖𝑗
)
2

− 𝑙 − 4𝑠) − (𝐸
𝐷
(𝐺) − 𝑙 − 2𝑠)

2

≤ (𝑛 − 𝑙 − 𝑠 − 1)𝐾.

(18)

Observe that

𝐾 = (𝑛 − 𝑙 − 𝑠) [

[

1

𝑛 − 𝑙 − 𝑠

𝑛−𝑙−𝑠

∑

𝑖=1

𝜇
2

𝑖
− (

𝑛−𝑙−𝑠

∏

𝑖=1

𝜇
2

𝑖
)

1/𝑛−𝑙−𝑠

]

]

= (𝑛 − 𝑙 − 𝑠) [

[

1

𝑛 − 𝑙 − 𝑠
(2∑

𝑖<𝑗

(𝑑
𝑖𝑗
)
2

− 𝑙 − 4𝑠)

−(

𝑛−𝑙−𝑠

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜇𝑖
󵄨󵄨󵄨󵄨)

2/𝑛−𝑙−𝑠

]

]

= 𝑊 − (𝑛 − 𝑙 − 𝑠) 𝜙
2/𝑛−𝑙−𝑠

.

(19)

Hence we get the result.

Remark 8. In [19] Zaferani obtained the following upper
bound for the distance energy of CSQG:

𝐸
𝐷
(𝐺) ≤ 𝑙 + 2𝑠 + √(𝑛 − 𝑙 − 𝑠)(2∑

𝑖<𝑗

(𝑑
𝑖𝑗
)
2

− 𝑙 − 4𝑠). (20)

The upper bound (14) is better than the upper bound (20).
Using the Arithmetic-Geometric Mean Inequality, we can
easily see that

𝑊 = 2∑

𝑖<𝑗

(𝑑
𝑖𝑗
)
2

− 𝑙 − 4𝑠 ≥ (𝑛 − 𝑙 − 𝑠) 𝜙
2/𝑛−𝑙−𝑠

. (21)

Considering this and the upper bound (14), we arrive at

𝐸𝐷 (𝐺) ≤ 𝑙 + 2𝑠 + √(𝑛 − 𝑙 − 𝑠 − 1)𝑊+ (𝑛 − 𝑙 − 𝑠) 𝜙
2/𝑛−𝑙−𝑠

≤ 𝑙 + 2𝑠 + √(𝑛 − 𝑙 − 𝑠)𝑊− (𝑛 − 𝑙 − 𝑠) 𝜙
2/𝑛−𝑙−𝑠

+ (𝑛 − 𝑙 − 𝑠) 𝜙
2/𝑛−𝑙−𝑠

= 𝑙 + 2𝑠 + √(𝑛 − 𝑙 − 𝑠) (2∑

𝑖<𝑗

(𝑑𝑖𝑗)
2

− 𝑙 − 4𝑠)

(22)
which is the upper bound (20).

UsingTheorem 7 and Lemma 3, we can give the following
result.

Corollary 9. Let 𝐺 be a connected strongly quotient graph
(CSQG) with 𝑛 > 3 vertices and maximum edges 𝑚 and let
diam(𝐺) ≤ 2, where diam(𝐺) denotes the diameter of 𝐺. Then

𝐸
𝐷
(𝐺) ≥ 𝑙 + 2𝑠 + √𝑅 + (𝑛 − 𝑙 − 𝑠) (𝑛 − 𝑙 − 𝑠 − 1) 𝜙2/𝑛−𝑙−𝑠,

𝐸
𝐷
(𝐺) ≤ 𝑙 + 2𝑠 + √(𝑛 − 𝑙 − 𝑠 − 1) 𝑅 + (𝑛 − 𝑙 − 𝑠) 𝜙2/𝑛−𝑙−𝑠,

(23)

where 𝑅 = 2(2𝑛2 − 2𝑛 − 3𝑚) − 𝑙 − 4𝑠.

4. Bounds on Distance Estrada Index of CSQG

In this section, we will use similar ideas as in [22, 24–27] to
obtain some bounds for DEE(𝐺), where 𝐺 is CSQG. These
bounds are based on the distance energy 𝐸

𝐷
(𝐺) and several

other graph invariants.

Theorem 10. Let 𝐺 be a connected strongly quotient graph
(CSQG) with 𝑛 > 3 vertices and maximum edges𝑚. Then

DEE (𝐺) ≥ 𝑠𝑒−2 + 𝑙𝑒−1 + (𝑛 − 𝑙 − 𝑠) 𝑒(𝑙+2𝑠)/(𝑛−𝑙−𝑠). (24)

Proof. Using the Arithmetic-Geometric Mean Inequality, we
get

DEE (𝐺) = 𝑠𝑒−2 + 𝑙𝑒−1 +
𝑛−𝑙−𝑠

∑

𝑖=1

𝑒
𝜇𝑖

≥ 𝑠𝑒
−2
+ 𝑙𝑒

−1
+ (𝑛 − 𝑙 − 𝑠)(

𝑛−𝑙−𝑠

∏

𝑖=1

𝑒
𝜇𝑖)

1/(𝑛−𝑙−𝑠)

= 𝑠𝑒
−2
+ 𝑙𝑒

−1
+ (𝑛 − 𝑙 − 𝑠) (𝑒

∑
𝑛−𝑙−𝑠

𝑖=1
𝜇𝑖)

1/(𝑛−𝑙−𝑠)

.

(25)

From (7) and Lemmas 5 and 6, we have
𝑛−𝑙−𝑠

∑

𝑖=1

𝜇
𝑖
+ 𝑠 (−2) + 𝑙 (−1) = 0 that is,

𝑛−𝑙−𝑠

∑

𝑖=1

𝜇
𝑖
= 𝑙 + 2𝑠. (26)
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Employing (25) and (26), we conclude that

DEE (𝐺) ≥ 𝑠𝑒−2 + 𝑙𝑒−1 + (𝑛 − 𝑙 − 𝑠) 𝑒(𝑙+2𝑠)/(𝑛−𝑙−𝑠). (27)

This completes the proof.

Theorem 11. The distance Estrada index DEE(𝐺) and the
distance energy 𝐸

𝐷
(𝐺) of CSQG with 𝑛 > 3 vertices and

maximum edges𝑚 satisfy the following inequalities:

DEE (𝐺) ≥ 𝑠𝑒−2 + 𝑙𝑒−1 + 1
2
𝐸
𝐷
(𝐺) (𝑒 − 1) + (𝑛 + 𝑠 − 𝑛

+
) ,

(28)

DEE (𝐺) ≤ 𝑠𝑒−2 + 𝑙𝑒−1 + (𝑛 − 𝑙 − 𝑠 − 1) + 𝑒𝐸𝐷(𝐺)/2. (29)

Proof. Lower bound: Using Lemmas 5 and 6 and the inequal-
ities 𝑒𝑥 ≥ 𝑥𝑒 and 𝑒𝑥 ≥ 1 + 𝑥, we obtain

DEE (𝐺) =
𝑛

∑

𝑖=1

𝑒
𝜇𝑖 = 𝑠𝑒

−2
+ 𝑙𝑒

−1
+

𝑛−𝑙−𝑠

∑

𝑖=1

𝑒
𝜇𝑖

≥ 𝑠𝑒
−2
+ 𝑙𝑒

−1
+ ∑

𝜇𝑖>0

𝑒𝜇
𝑖
+

𝑛−𝑙−𝑠

∑

𝑖=1

𝜇𝑖≤0

(1 + 𝜇
𝑖
) .

(30)

From (26), we get

DEE (𝐺) ≥ 𝑠𝑒−2 + 𝑙𝑒−1 + (𝑒 − 1) (𝜇
1
+ 𝜇

2
+ ⋅ ⋅ ⋅ + 𝜇

𝑛+
)

+ (𝑛 − 𝑙 − 𝑠 − 𝑛
+
) + 𝑙 + 2𝑠

= 𝑠𝑒
−2
+ 𝑙𝑒

−1
+
1

2
𝐸
𝐷
(𝐺) (𝑒 − 1) + (𝑛 + 𝑠 − 𝑛

+
) .

(31)

Hence the lower bound (28).
Upper bound: Considering 𝑓(𝑥) = 𝑒𝑥 which monotoni-

cally increases in the interval (−∞, +∞), we obtain

DEE =
𝑛

∑

𝑖=1

𝑒
𝜇𝑖 = 𝑠𝑒

−2
+ 𝑙𝑒

−1
+

𝑛−𝑙−𝑠

∑

𝑖=1

𝑒
𝜇𝑖

≤ 𝑠𝑒
−2
+ 𝑙𝑒

−1
+ (𝑛 − 𝑙 − 𝑠 − 𝑛

+
) +

𝑛+

∑

𝑖=1

𝑒
𝜇𝑖

= 𝑠𝑒
−2
+ 𝑙𝑒

−1
+ (𝑛 − 𝑙 − 𝑠 − 𝑛

+
) +

𝑛+

∑

𝑖=1

∑

𝑘≥0

(𝜇
𝑖
)
𝑘

𝑘!

= 𝑠𝑒
−2
+ 𝑙𝑒

−1
+ (𝑛 − 𝑙 − 𝑠) + ∑

𝑘≥1

1

𝑘!

𝑛+

∑

𝑖=1

(𝜇
𝑖
)
𝑘

≤ 𝑠𝑒
−2
+ 𝑙𝑒

−1
+ (𝑛 − 𝑙 − 𝑠) + ∑

𝑘≥1

1

𝑘!
[

𝑛+

∑

𝑖=1

(𝜇
𝑖
)]

𝑘

= 𝑠𝑒
−2
+ 𝑙𝑒

−1
+ (𝑛 − 𝑙 − 𝑠 − 1) + 𝑒

𝐸𝐷(𝐺)/2.

(32)

This completes the proof.

Remark 12. In [28] the following result was obtained for
connected (𝑛,𝑚)-graphs

DEE (𝐺) ≤ 𝑛 − 1 + 𝑒𝐸𝐷(𝐺). (33)

Since the function 𝑓(𝑥) = 𝑒𝑥 monotonically increases in the
interval (−∞, +∞), we conclude that the upper bound (29) is
better than the upper bound (33) for DEE(𝐺) of CSQG with
𝑛 > 3 vertices and maximum edges𝑚.

Theorem 13. The distance Estrada index DEE(𝐺) and the
distance energy 𝐸

𝐷
(𝐺) of CSQG with 𝑛 > 3 vertices and

maximum edges𝑚 satisfy the following inequality:

DEE (𝐺) − 𝐸
𝐷
(𝐺) < 𝑠𝑒

−2
+ 𝑙𝑒

−1
+ (𝑛 − 𝑙 − 𝑠 − 1)

− √𝑇 + 𝑒
√𝑇
,

(34)

where 𝑇 = 𝑛(𝑛 − 1)diam2
(𝐺) − 𝑙 − 4𝑠 and diam(𝐺) is the

diameter of 𝐺.

Proof. From (32) and Lemma 2, we get

DEE (𝐺) ≤ 𝑠𝑒−2 + 𝑙𝑒−1 + (𝑛 − 𝑙 − 𝑠) + ∑
𝑘≥1

1

𝑘!

𝑛+

∑

𝑖=1

(𝜇
𝑖
)
𝑘

= 𝑠𝑒
−2
+ 𝑙𝑒

−1
+ (𝑛 − 𝑙 − 𝑠) +

𝐸
𝐷
(𝐺)

2

+ ∑

𝑘≥2

1

𝑘!

𝑛+

∑

𝑖=1

(𝜇
𝑖
)
𝑘

< 𝑠𝑒
−2
+ 𝑙𝑒

−1
+ (𝑛 − 𝑙 − 𝑠) + 𝐸

𝐷
(𝐺)

+ ∑

𝑘≥2

1

𝑘!

𝑛+

∑

𝑖=1

(𝜇
𝑖
)
𝑘

≤ 𝑠𝑒
−2
+ 𝑙𝑒

−1
+ (𝑛 − 𝑙 − 𝑠) + 𝐸

𝐷
(𝐺)

+ ∑

𝑘≥2

1

𝑘!
[

𝑛+

∑

𝑖=1

(𝜇
𝑖
)
2

]

𝑘/2

≤ 𝑠𝑒
−2
+ 𝑙𝑒

−1
+ (𝑛 − 𝑙 − 𝑠) + 𝐸

𝐷
(𝐺)

(35)

+ ∑

𝑘≥2

1

𝑘!

[

[

2∑

𝑖<𝑗

(𝑑
𝑖𝑗
)
2

−

𝑛

∑

𝑖=𝑛++1

(𝜇
𝑖
)
2]

]

𝑘/2

. (36)

By Lemmas 5 and 6, we know that −1 and −2 are the 𝐷-
eigenvalues of the strongly quotient graph𝐺withmultiplicity
greater than or equal to 𝑙 and 𝑠, respectively. These imply that

𝑛

∑

𝑖=𝑛++1

(𝜇
𝑖
)
2

≥ 𝑙 + 4𝑠. (37)
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Therefore,

DEE (𝐺) − 𝐸
𝐷
(𝐺)

< 𝑠𝑒
−2
+ 𝑙𝑒

−1
+ (𝑛 − 𝑙 − 𝑠 − 1)

− √2∑

𝑖<𝑗

(𝑑
𝑖𝑗
)
2

− 𝑙 − 4𝑠 + 𝑒
√2∑
𝑖<𝑗
(𝑑𝑖𝑗)
2
−𝑙−4𝑠

.

(38)

It is easy to see that the function𝑓(𝑥) = 𝑒𝑥 −𝑥monotonically
increases in the interval (0, +∞). Then by Lemma 4, we
obtain

DEE (𝐺) − 𝐸
𝐷
(𝐺) < 𝑠𝑒

−2
+ 𝑙𝑒

−1
+ (𝑛 − 𝑙 − 𝑠 − 1)

− √𝑇 + 𝑒
√𝑇
.

(39)

From (36) and Lemma 4, we also have

DEE (𝐺) −
𝐸
𝐷
(𝐺)

2
≤ 𝑠𝑒

−2
+ 𝑙𝑒

−1
+ (𝑛 − 𝑙 − 𝑠 − 1)

− √𝑇 + 𝑒
√𝑇

(40)

that is better than the upper bound (34).

FromTheorem 13 and Lemma 3, we can give the following
result.

Corollary 14. Let 𝐺 be a connected strongly quotient graph
(CSQG) with 𝑛 > 3 vertices and maximum edges 𝑚 and let
diam(𝐺) ≤ 2, where diam(𝐺) denotes the diameter of 𝐺. Then

DEE (𝐺) − 𝐸
𝐷
(𝐺) < 𝑠𝑒

−2
+ 𝑙𝑒

−1
+ (𝑛 − 𝑙 − 𝑠 − 1)

− √𝑅 + 𝑒
√𝑅
,

(41)

where 𝑅 = 2(2𝑛2 − 2𝑛 − 3𝑚) − 𝑙 − 4𝑠.

Remark 15. In [28] the following result was obtained for a
connected (𝑛,𝑚)-graph 𝐺

DEE (𝐺) − 𝐸
𝐷
(𝐺)

≤ 𝑛 − 1 − diam (𝐺)√𝑛 (𝑛 − 1)

+ 𝑒
diam(𝐺)√𝑛(𝑛−1)

.

(42)

Since the functions 𝑓(𝑥) = 𝑒𝑥 and 𝑓(𝑥) = 𝑒𝑥 − 𝑥 mono-
tonically increase in the intervals (−∞, +∞) and (0, +∞),
respectively, we conclude that the upper bound (34) is better
than the upper bound (42) for CSQG with 𝑛 > 3 vertices and
maximum edges𝑚.
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