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The singular value decomposition (SVD) is a fundamental matrix decomposition in linear algebra. It is widely applied in many
modern techniques, for example, high- dimensional data visualization, dimension reduction, data mining, latent semantic analysis,
and so forth. Although the SVD plays an essential role in these fields, its apparent weakness is the order three computational cost.
This order three computational cost makes many modern applications infeasible, especially when the scale of the data is huge and
growing. Therefore, it is imperative to develop a fast SVD method in modern era. If the rank of matrix is much smaller than the
matrix size, there are already some fast SVD approaches. In this paper, we focus on this case but with the additional condition that
the data is considerably huge to be stored as a matrix form. We will demonstrate that this fast SVD result is sufficiently accurate,
andmost importantly it can be derived immediately. Using this fast method, many infeasible modern techniques based on the SVD
will become viable.

1. Introduction

The singular value decomposition (SVD) and the principle
component analysis (PCA) are fundamental in linear algebra
and statistics. There are many modern applications based
on these two tools, such as linear discriminate analysis [1],
multidimensional scaling analysis [2], and feature extraction,
high-dimensional data visualization. In recent years, digital
information has been proliferating and many analytic meth-
ods based on the PCA and the SVD are facing the challenge
of their significant computational cost. Thus, it is crucial to
develop a fast approach to compute the PCA and the SVD.

Currently there are some well-known methods for com-
puting the SVD. For example, the GR-SVD is a two-step
method which performs Householder transformations to
reduce the matrix to bidiagonal form then performs the QR
iteration to obtain the singular values [3, 4]. Since the off-
diagonal regions are used to store the transform information,
this approach is very efficient in saving the computational
memory. If we only want to compute a few of the largest
singular values and associated singular vectors of a large

matrix, the Lanczos bidiagonalization is an important proce-
dure for solving this problem [5–8]. However, the previously
mentionedmethods all require matrix multiplications for the
SVD. One interesting problem is how do we compute the
SVD for a matrix when the matrix size is huge and loading
the whole matrix into the memory is not possible? The main
purpose of this paper is to deal with this problem when the
numerical rank of the huge matrix is small.

The second purpose of this paper is to update the SVD
when the matrix size is extended by new data updating. If the
rank of matrix is much smaller than the matrix size, Matthew
proposed a fast SVD updating method for the low-rank
matrix in 2006 [9]. A rank-𝑟 thin SVD of an𝑚×𝑛matrix can
be computed in 𝑂(𝑚𝑛𝑟) time for 𝑟 ≤ √min(𝑚, 𝑛). Although
the matrix size remains unchanged in theMatthew’s method,
we can still adopt the analysis of this paper for updating the
SVD when the matrix size is changed.

Multidimensional scaling (MDS) is a method of repre-
senting the high-dimensional data into the low-dimensional
configuration [10–12]. One of the key approaches of the MDS
is simply the SVD, that is, if we can find a fast approach of
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the MDS then it is possible to find a fast approach of the
SVD. When the data configuration is Euclidean, the MDS
is similar to the PCA, in that both can remove inherent
noise with its compact representation of data. The order
three computational complexity makes it infeasible to apply
to huge data, for example, when the sample size is more
than one million. In 2008, Tzeng et al. developed a fast
multidimensional scaling method which turned the classical
order three MDS method to be linear [13]. In this paper, we
would like to implement SCMDS to the fast SVD approach,
say SCSVD. The following subsections are reviews of the
classical MDS and the SCSVD.

1.1. Review of the Classical MDS. Assume that 𝑋 is an 𝑛-by-
𝑟 matrix with rank 𝑟, where the 𝑖th row of 𝑋 represents the
coordinates of the 𝑖th data point in an 𝑟-dimensional space.
Let 𝐷 = 𝑋𝑋

𝑇 be the product matrix of 𝑋. Torgerson [10]
proposed the first classical MDS method to reconstruct a
matrix 𝑋 of Cartesian coordinates of points from a given
symmetric matrix 𝐷. The key of the classical MDS is to
apply the double centering operator and the singular value
decomposition.

Assume that 1̇ is an 𝑛-by-1matrix whose elements are all
1’s. We define a symmetric matrix 𝐵 by

𝐵 = (𝑋 −
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,

(1)

where 𝐷
𝑅
= (1/𝑛)𝐷1̇1̇

𝑇 is the row mean matrix of 𝐷, 𝐷
𝐶
=

(1/𝑛)1̇1̇

𝑇

𝐷 is the column mean matrix of 𝐷, and 𝐷
𝐺
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(1/𝑛
2
)1̇1̇
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𝑇 is the ground mean matrix of 𝐷. The
operator from 𝐷 to 𝐷 − 𝐷

𝑅
− 𝐷
𝐶
+ 𝐷
𝐺
is called double

centering. If we define a matrix𝐻 by

𝐻 = 𝐼 −

1

𝑛

1̇1̇

𝑇

, (2)

𝐵 can be simplified to𝐵 = 𝐻𝐷𝐻. Sincematrix𝐵 is symmetric,
the SVD decomposes 𝐵 into 𝐵 = 𝑉Σ𝑉𝑇. Then we have

√𝐵 = 𝑉Σ
1/2
𝑃
𝑇
= 𝑋 −

1

𝑛

1̇1̇

𝑇

𝑋, (3)

for some unitary matrix 𝑃. In practice, we set 𝑃 = 𝐼 to obtain
the MDS result, namely,√𝐵.

Although √𝐵 ̸=𝑋, √𝐵 = 𝑉Σ1/2 = (𝑋 − (1/𝑛)1̇1̇𝑇𝑋)𝑃 for
some unitary matrix 𝑃, it is the same as shifting all the rows
of 𝑋 such that the row’s mean is zero and then multiplying
the result by 𝑃. Hence, the row of √𝐵 preserves the pairwise

relationship among the data points. 𝐵 is derived from 𝐷 by
double centering, whose cost is lower than obtaining √𝐵 by
the SVD. When the data size is huge, the cost of the classical
MDS is dominated by the cost of the SVD, whose 𝑂(𝑛3)
computational complexity makes it infeasible. Therefore, we
need a fast MDS method to deal with the huge data problem.

The MDS method is useful in the application of dimen-
sion reduction. If the matrix 𝑋 is extended to the higher
dimensional space and then shifted and/or rotated by an
affine mapping, the double centering result of the corre-
sponding product matrix stays the same. More generally, let
𝑋
1
∈ 𝑀
𝑛,𝑟
1

be derived from 𝑋 ∈ 𝑀
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and 𝑏 is a nonzero vector in 𝑅𝑟1 and 𝑟 ≪ min(𝑛, 𝑟
1
).
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that𝐷
1
= 𝑋
1
𝑋
𝑇

1
, the double centering of𝐷

1
obtains the same

𝐵 as double centering of𝐷.

Theorem 1. Let𝑋
1
be the dimensional extension from𝑋 by an

affine mapping 𝑋
1
= 𝑋𝑄 + 1̇𝑏

𝑇. Then the double centering of
𝑋
1
𝑋
𝑇

1
is the same as the double centering of𝑋𝑋𝑇.

Proof. Let 𝐷
1
= 𝑋
1
𝑋
𝑇

1
= (𝑋𝑄 + 1̇𝑏

𝑇
)(𝑋𝑄 + 1̇𝑏

𝑇
)
𝑇 and let

𝐷 = 𝑋𝑋
𝑇, we have

𝐷
1
= 𝑋𝑄𝑄

𝑇
𝑋
𝑇
+ 𝑋𝑄𝑏1̇

𝑇

+ 1̇𝑏
𝑇
𝑄
𝑇
𝑋
𝑇
+ ‖𝑏‖
2
1̇1̇

𝑇

= 𝑋𝑋
𝑇
+ 𝑎1̇

𝑇

+ 1̇𝑎
𝑇
+ ‖𝑏‖
2
1̇1̇

𝑇

= 𝐷 + 𝑎1̇

𝑇

+ 1̇𝑎
𝑇
+ ‖𝑏‖
2
1̇1̇

𝑇

,

(4)

where 𝑎 = 𝑋𝑄𝑏 is a vector inR𝑚. By the definition of𝐷
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where 𝑎
𝑖
is the element of 𝑎. Then we have,

𝐷
1
− 𝐷
1𝑅
− 𝐷
1𝐶
+ 𝐷
1𝐺
= 𝐷 − 𝐷

𝑅
− 𝐷
𝐶
+ 𝐷
𝐺
. (6)

Unlike the previous definition of 𝐷, if 𝐷 is a distance
matrix with each element 𝑑

𝑖,𝑗
= √(𝑥

𝑖
− 𝑥
𝑗
)
𝑇
(𝑥
𝑖
− 𝑥
𝑗
), the

double centering of 𝐷2 is equivalent to −2𝐵, provided that
∑
𝑛

𝑖=1
𝑥
𝑖
= 0. Hence, the MDS method performs double cen-

tering on𝐷2, multiplies by −1/2, and then performs the SVD,
which gives the configurations of the data set.

1.2. Review of the SCMDS. In 2008, we adapted the classical
MDS so as to reduce the original 𝑂(𝑛3) complexity to 𝑂(𝑛)
[13], in which we have proved that when the data dimension
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is significantly smaller than the number of data entries, there
is a fast linear approach for the classical MDS.

The main idea of fast MDS is using statistical resampling
to split data into overlapping subsets.Weperform the classical
MDS on each subset and get the compact Euclidean configu-
ration. Then we use the overlapping information to combine
each configuration of subsets to recover the configuration of
the whole data. Hence, we named this fast MDS method by
the split-and-combine MDS (SCMDS).

Let𝐷 be the 𝑛-by-𝑛 product matrix for some𝑋 and letI
be a random permutation of 1, 2, . . . , 𝑛. Assume that I
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only demonstrate how to combine the coordinates of the first
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Here, the unitary operator is 𝑈 = 𝑄
1
𝑄
𝑇

2
and the shifting

is 𝑏 = −𝑄
1
𝑄
𝑇

2
𝑋
2
+ 𝑋
1
. Since the key step of finding this

affine mapping is QR decomposition, the computational cost
is 𝑂((𝑛

𝐼
)
3
), where 𝑛

𝐼
is the number of columns of 𝑋

1
and

𝑋
2
. Therefore, the cost 𝑂((𝑛

𝐼
)
3
) complexity is limited by the

number of samples in each overlapping region. The proof of
the computational cost of SCMDS is given later.

Assume that there are 𝑛 points in a data set. We divide
these 𝑛 samples into 𝐾 overlapping subgroups, and let 𝑛

𝐺

be the number of points in each subgroup and let 𝑛
𝐼
be the

number of points in each intersection region. Then we have
the relationship

𝐾𝑛
𝐺
− (𝐾 − 1) 𝑛𝐼

= 𝑛 (9)
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𝐼
)

(𝑛
𝐺
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𝐼
)

. (10)

For each subgroup, we apply the classical MDS to compute
the configuration of each group data, which costs 𝑂((𝑛

𝐺
)
3
).

In each overlapping region, we apply QR factorization to
compute the affine transformation, which costs 𝑂((𝑛

𝐼
)
3
).

Assume that the true data dimension is 𝑟, and the lower
bound of 𝑛

𝐼
is 𝑟 + 1. For convenience, we take 𝑛

𝐺
= 𝛼𝑝 for

some constant 𝛼 > 2. Then the total computational cost is
about
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(𝛼 − 1) 𝑟

𝑂 (𝛼
3
𝑟
3
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𝑂 (𝑟
3
) ≈ 𝑂 (𝑟

2
𝑁) . (11)

When 𝑟 ≪ 𝑛, the computational cost 𝑂(𝑟2𝑛) is much smaller
than𝑂(√𝑛𝑛), which is the computation time of the fast MDS
method proposed by Morrison et al., 2003 [14]. The key idea
of our fast MDS method is to split data into subgroups, then
combine the configurations to recover the whole one. Since
all the order three complexities are restricted in the small
number of data entries, we can therefore speed up MDS.

Proposition 2. When the number of samples 𝑛 is much greater
than the dimension of data 𝑟, the computational complexity of
SCMDS is 𝑂(𝑟2𝑛), which is linear.

2. Methodology

After reviewing the MDS and the SCMDS, We will now
demonstrate how to adapt the SCMDSmethod to become the
fast PCA and how the fast PCA can become the fast SVDwith
further modification.

2.1. From the SCMDS to the SCPCA. Because the MDS is
similar to the PCA when the data configuration is Euclidean,
we can adapt the SCMDSmethod to obtain the fast PCAwith
the similar constraint when the rank 𝑟 is much smaller than
the size𝑚 and 𝑛.

Equation (1) shows how to use double centering to
convert the product matrix 𝐷 to 𝐵 and the √𝐵 = 𝑋 − 1̇1̇𝑇𝑋.
We note that the MDS result √𝐵 is equal to the matrix
obtained from shifting the coordinates of𝑋with the mean of
data points to the original point followed by a transformation
by some unitary matrix 𝑃.

Let 𝐴 ∈ 𝑀
𝑛,𝑟
; the purpose of the PCA is to find the

eigenvectors of the covariance matrix of 𝐴 and to obtain
the corresponding scores. Since the covariance matrix of 𝐴
defined by (1/(𝑟 − 1))(𝐴 − 𝐴(1/𝑟)1̇1̇𝑇)(𝐴 − (1/𝑟)1̇1̇𝑇)𝑇 is
symmetric and finding the eigenvectors of the covariance
matrix of 𝐴 is similar to obtaining 𝑉 of √𝐵 in (1), we set
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𝐴 − A(1/𝑟)1̇1̇𝑇 = 𝑋 − (1/𝑛)1̇1̇𝑇𝑋 by omitting the constant
1/√𝑟 − 1. We note that such omission of the constant will not
change the direction of the eigenvectors. When we want to
carry out the PCA on𝐴, the relatedmatrix𝑋 can be obtained
by𝑋 = 𝐴 − 𝐴(1/𝑟)1̇1̇𝑇 + 1̇𝜇, where 𝜇 ∈ 𝑅𝑟 is defined by

𝜇 =

1

2𝑛

1̇

𝑇

(𝐴 − 𝐴

1

𝑟

1̇1̇

𝑇

) . (12)

In other words, carrying out the PCA on A is equivalent to
carrying out the MDS on𝐷 = 𝑋𝑋𝑇. That is
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𝑟

1̇1̇

𝑇

)

𝑇

= 𝑉Σ𝑉
𝑇
,

(13)

and the result of PCA will be𝑉 and (1/√𝑟 − 1)Σ1/2. From the
result of the MDS (√𝐵 = 𝑉Σ1/2), we can easily obtain 𝑉 and
Σ by normalizing the column vectors of√𝐵.

In practice, we do not want to produce the productmatrix
𝐷 = 𝑋𝑋

𝑇 when 𝑛 is huge. Rather, after we obtain matrix 𝑋
from 𝐴, we will randomly produce the index permutationI
and use the index of overlapping subgroup I

𝑘
to compute

𝐷
𝑘
. And then we follow the step of the SCMDS to obtain the

result,√𝐵.
However, the result of the SCMDS is of the form √𝐵𝑄 +

1̇𝑏
𝑇, where𝑄 is an unitarymatrix in𝑀

𝑟
and 𝑏 ∈ R𝑟 is usually

a nonzero vector. Removal of the factor 𝑏 can be easily done
by computing the average of the row vectors of the SCMDS
result. After removing the component 𝑏 from each row vector,
we obtain√𝐵𝑄.

Since√𝐵𝑄 ∈ 𝑀
𝑚,𝑟

and 𝑟 ≪ 𝑚, we have

(√𝐵𝑄)

𝑇
√𝐵𝑄 = 𝑄

𝑇
Σ
1/2
𝑉
𝑇
𝑉Σ
1/2
𝑄 = 𝑄

𝑇
Σ𝑄, (14)

which is a 𝑟 × 𝑟 small matrix. It is easy to solve this small
eigenvalue problem to obtain𝑄, Σ, and𝑉.The computational
cost from √𝐵𝑄 + 1̇

𝑏

𝑇 to obtain 𝑉 and Σ1/2 is 𝑂(𝑚). Hence,
the SCMDS approach to computing the SVD is still linear.

Notice that there are some linear SVD methods for thin
matrix (𝑚 ≪ 𝑛 or 𝑚 ≫ 𝑛). Even in the case of big matrix
with small rank, the traditional SVD method, for example
the GR-SVD, can be implemented to be linear (because of
the dependency, many components of the matrix become
zero in the GR-SVD algorithm). However, if the rank of big
matrix is almost full and the numerical rank is small or the
matrix size is considerably huge that loading thewholematrix
is impossible, the SCMDS has the advantage in computing
speed. And we call this approach to obtaining 𝑉 and Σ1/2 by
the SCMDS to be SCPCA.

2.2. From the SCPCA to the SCSVD. The concepts of the SVD
and the PCA are very similar. Since the PCA starts from
decomposing the covariance matrix of a data set, it can be
considered as adjusting the center of mass of a row vector to
zero. On the other hand, the SVD operates directly on the

product matrix without shifting. If the mean of the matrix
rows is zero, the eigenvectors derived by the SVD are equal
to the eigenvectors derived by the PCA. We are looking for a
method which will give a fast approach to produce the SVD
result without recomputing the eigenvectors of the whole
data set, when the PCA result is given. The following is the
mathematical analysis for this process.

Let𝑋 be a columnmatrix of data set: 𝑋̃ = 𝑋−𝑋⋅1̇𝑇, where
𝑋 is the mean of columns of 𝑋. Hence, the row mean of 𝑋̃ is
zero. Assume that we have the PCA result of𝑋, that is, 𝑋̃𝑋̃𝑇 =
𝑈Σ
2
𝑈
𝑇. Then we have 𝑋̃ = 𝑈Σ𝑊

𝑇 for some orthogonal
matrix 𝑊. Assume that the rank of 𝑋̃ is 𝑟 and 𝑟 is much
smaller than the matrix size. We observe that rank(𝑋) = 𝑟
or rank(𝑋) = 𝑟 + 1, depending on whether 𝑋 is spanned by
columns of 𝑈. If𝑋 is spanned by 𝑈, then

𝑋 = 𝑋̃ + 𝑋 ⋅ 1̇

𝑇

= 𝑈Σ𝑊
𝑇
+ 𝑈 ⋅ 𝑐 ⋅ 1̇

𝑇

= 𝑈(Σ𝑊
𝑇
+ 𝑐 ⋅ 1̇

𝑇

) ,

(15)

where 𝑐 is the coefficient vector of𝑋 when represented by 𝑈,
that is,𝑋 = 𝑈 ⋅ 𝑐.

If the singular value decomposition of Σ𝑊𝑇 + 𝑐 ⋅ 1̇𝑇 is
𝑈
2
Σ
1
𝑉
𝑇

1
, we have

𝑋 = 𝑈(𝑈
2
Σ
1
𝑉
𝑇

1
) = (𝑈𝑈

2
) Σ
1
𝑉
𝑇

1
= 𝑈
1
Σ
1
𝑉
𝑇

1
. (16)

Because the matrix 𝑈
2
is unitary, 𝑈

1
= 𝑈𝑈

2
is automatically

an orthogonal matrix as well. Then we have the SVD of𝑋.
Checking the matrix size of Σ𝑊𝑇 + 𝑐 ⋅ 1̇𝑇, we can see that

to compute the SVD of Σ𝑊𝑇 + 𝑐 ⋅ 1̇𝑇 is not a big task. This
is because Σ𝑊𝑇 + 𝑐 ⋅ 1̇𝑇 is a 𝑟-by-𝑛 matrix, and under our
assumption, 𝑟 is much smaller than 𝑛, so we can apply the
economic SVD to obtain the decomposition of Σ𝑊𝑇 + 𝑐 ⋅ 1̇𝑇.

On the other hand, if𝑋 is not spanned by 𝑈, the analysis
becomes

𝑋 = 𝑋̃ + 𝑋̃ ⋅ 1̇

𝑇

= [𝑈 | 𝑢
𝑟+1
] ([

Σ 0

0 0
] [
𝑉
𝑇

0

] + 𝑐 ⋅ 1̇

𝑇

) , (17)

where 𝑢
𝑟+1

is a unit vector defined by

𝑢
𝑟+1
=

(𝐼 − 𝑈𝑈
𝑇
)𝑋

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐼 − 𝑈𝑈

𝑇
)𝑋

󵄩
󵄩
󵄩
󵄩
󵄩

. (18)

Using the same concept of diagonalization in the case when
𝑋 is spanned by columns of 𝑈, we find the SVD of

([

Σ 0

0 0
] [
𝑉
𝑇

0

] + 𝑐 ⋅ 1̇

𝑇

) = 𝑈
2
Σ
1
𝑉
𝑇

1
. (19)

Then 𝑋 = [𝑈 | 𝑢
𝑟+1
]𝑈
2
Σ
1
𝑉
𝑇

1
= 𝑈
1
Σ
1
𝑉
𝑇

1
, where 𝑈

1
= [𝑈 |

𝑢
𝑟+1
]𝑈
2
is another orthogonal matrix, and hence the SVD of

𝑋 is completed.

Proposition 3. Let 𝐴 ∈ 𝑀
𝑚,𝑛
(R) be a big size matrix and let

its rank 𝑟 be much smaller than min{𝑚, 𝑛}. Then the SCSVD
or the SCPCA has linear computational complexity.
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From the above analysis, we can have a fast PCA approach
by computing the SCMDSfirst and then adapt theMDS result
to obtain the PCA. We named this approach SCPCA. Sim-
ilarly, the fast SVD approach, which computes the SCMDS
first, then adapts the MDS result to obtain the PCA, and
finally adapts the PCA result to the SVD, is called the SCSVD.
These two new approaches work when the rank of 𝑋 is
much smaller than the number of samples and the number
of variables. To obtain the exact solution, the parameter
𝑛
𝐼
must be greater than the rank of 𝑋. In the SCPCA or

SCMDS method, if 𝑛
𝐼
≤ 𝑟, we only get the approximated

solutions of the PCA and the SVD. Under the necessary
criterion, we can reduce the computational complexity from
min{𝑂(𝑟𝑚𝑛), 𝑂(𝑚𝑛2), 𝑂(𝑛𝑚2} to min{𝑂(𝑟𝑚), 𝑂(𝑟𝑛)}. If the
numerical rank is not small, for example, 𝑟 ≈ min(√𝑚,√𝑛),
the computational complexity becomes almost the same as
the original PCA and SVD. Our approach has no advantage
in the latter case.

3. SVD for Continuously Growing Data

In this section, we look for the solution when the data is
updated constantly and we need to compute the SVD contin-
uously. Instead of scanning all the data again, we try to use the
previous result of the SCSVD together with the new updated
data to compute the next SVD. Before introducing our
updating method, we review the general updating methods
first.

Let 𝐴 be an 𝑚-by-𝑛 matrix, where 𝑚 is the number of
variables and 𝑛 is the number of samples. Andwe assume that
both 𝑚 and 𝑛 are huge. When new data comes in, we collect
these new data to form a column matrix which is denoted by
𝐸. Assume that we have the singular value decomposition of
𝐴, that is,

𝐴 = 𝑈Σ𝑉
𝑇
, (20)

where 𝑈 ∈ 𝑀
𝑚,𝑟
(R), 𝑉 ∈ 𝑀

𝑛,𝑟
(R) are orthogonal and

Σ ∈ 𝑀
𝑟
(R) is a diagonal. Since the data gets updated, the

data matrix becomes

𝐴
1
= [𝐴 | 𝐸] . (21)

To compute the singular value decomposition of𝐴
1
, we need

to compute the eigenvalue and eigenvector of 𝐴
1
𝐴
𝑇

1
.

If 𝐸 is spanned by the column space of 𝑈, we can
represent the column matrix 𝐸 by 𝐸 = 𝑈𝐶, where 𝐶 is the
coefficient matrix of 𝑈 with columns of 𝑆 as the basis. Since
𝑈 is orthogonal, the coefficient matrix 𝐶 can be computed
easily by 𝐶 = 𝑈𝑇𝐸. Then we have

𝐴
1
𝐴
𝑇

1
= [𝐴 | 𝑈𝐶] [𝐴 | 𝑈𝐶]

𝑇

= 𝐴𝐴
𝑇
+ 𝑈𝐶(𝑈𝐶)

𝑇

= 𝑈 (Σ
2
+ 𝐶𝐶
𝑇
)𝑈
𝑇

= 𝑈𝑄Σ
2

1
𝑄
𝑇
𝑈
𝑇

= 𝑈
1
Σ
2

1
𝑈
𝑇

1
.

(22)

Note that the matrix Σ2 + 𝐶𝐶𝑇 is positive symmetric and
it is a small size matrix. Using the spectrum theorem, we can
decompose this matrix into 𝑄Σ2

1
𝑄
𝑇. Because the matrix 𝑄 is

unitary, 𝑈
1
is 𝑈 rotated by 𝑄. In this case, the computational

cost is dominated by the rotation from 𝑈 to 𝑈
1
, and it is

𝑂(𝑚𝑟
2
).

In general, the extended matrix 𝐸 is not spanned by the
column space of𝑈 and the decomposition of𝐴

1
𝐴
𝑇

1
should be

modified by

𝐴
1
𝐴
𝑇

1
= [𝐴 | 𝑈𝐶 + 𝐸

1
] [𝐴 | 𝑈𝐶 + 𝐸

1
]
𝑇

= 𝐴𝐴
𝑇
+ (𝑈𝐶 + 𝐸

1
) (𝑈𝐶 + 𝐸

1
)
𝑇

= [𝑈 | 𝑄
1
]
[

[

Σ
2
+ 𝐶𝐶
𝑇
𝐶𝑅
𝑇

1

𝑅
1
𝐶
𝑇

𝑅
1
𝑅
𝑇

1

]

]

[

[

𝑈
𝑇

𝑄
𝑇

1

]

]

= [𝑈 | 𝑄
1
] 𝑄
2
Σ
2

1
𝑄
𝑇

2
[

[

𝑈
𝑇

𝑄
𝑇

1

]

]

= 𝑈
1
Σ
2

1
𝑈
𝑇

1
,

(23)

where 𝐸 = 𝑈𝐶 + 𝐸
1
, 𝑈
1
= [𝑈 | 𝑄

1
]𝑄
2
and 𝐸

1
= 𝑄
1
𝑅
1
is

the QR decomposition of 𝐸
1
. The cost to obtain 𝐶 and 𝐸

1
is

𝑂(𝑚𝑘𝑟), the computational cost of QR decomposition of 𝐸
1

is 𝑂(𝑚𝑘2), the cost to obtain Σ2
1
is 𝑂((𝑟 + 𝑘)3), and the cost

of rotation 𝑈 to 𝑈
1
is 𝑂(𝑚(𝑟 + 𝑘)2). When 𝑚 ≫ 𝑟, 𝑘 the cost

of update process is linear 𝑂(𝑚). However, if the rank is not
small (𝑟 ≈ 𝑚 or 𝑟 ≈ 𝑛), the computational cost is dominated
by 𝑂((𝑟 + 𝑘)3).

Now, we discuss how to update the SVD in the SCSVD
approach. If the updated column vectors𝐸 are spanned by the
column vectors of some subgroup of the original data, say𝑋

𝑖
,

the dimension will not increase by the extendedmatrix𝐸. We
just reset the distance matrix𝐷

𝑖
in this subgroup by

𝐷
𝑖
= ([𝑋

𝑖
| 𝐸
𝑖
] −

1

𝑛
𝐺,𝑖
+ 𝑘

[𝑋
𝑖
| 𝐸
𝑖
] 1̇1̇

𝑇

)

𝑇

× ([𝑋
𝑖
| 𝐸
𝑖
] −

1

𝑛
𝑖
+ 𝑘

[𝑋
𝑖
| 𝐸
𝑖
] 1̇1̇

𝑇

) ,

(24)

where 𝑛
𝐺,𝑖

is the number of vectors in the original 𝑖-th sub-
group. To compute the MDS result of this updated subgroup,
it costs𝑂((𝑛

𝐺,𝑖
+𝑘)
3
).Then we will combine this 𝑛

𝐺,𝑖
+𝑘MDS

representation points with the remaining points. The cost of
obtaining the combination affinemapping is still𝑂((𝑛

𝐼
+𝑘)
3
)

which is increased by the new update. Combining this new
subgroup with the whole data set needs𝑂(𝑟2(𝑛

𝐺,𝑖
−𝑛
𝐼
)).Then

transfering the MDS result to the SVD needs 𝑂(𝑚𝑟2), which
is linear too.

If 𝐸 is not spanned by any subgroup of the previous
SCMDSprocess, thenwe have to update𝐸 to the largest group
of the subgroups. Because the dimension of this updated
group will increase, we have to make some modifications in
the combined approach. If the column matrix of the MDS
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configuration of the new updated group is 𝑋
1
∈ 𝑀
𝑟
1
,𝑘
1

and
the columnmatrix of the configuration of the other elements
is 𝑋
2
∈ 𝑀
𝑟,𝑘
2

, where 𝑟
1
> 𝑟, then we will extend the matrix

𝑋
2
to an 𝑟

1
-by-𝑘
2
matrix by filling zeros in the bottom of the

original𝑋
2
. After adjusting𝑋

1
and𝑋

2
to the same dimension

of rows, we perform the same combination step as before.
Here, the width of matrix 𝑋

2
is almost the number of whole

data, and this combination step takes 𝑂(𝑚𝑟2
1
).

There is one important difference between the general
approach and the SCSVD approach. To obtain the SVD from
the MDS result, we need the column mean vector of the
matrix. The column mean vector of the original matrix must
be computed, and then the column mean vector is updated
by the simple weighted average when the new data comes in.

Notice that no matter whether 𝐸 is spanned by 𝑈 or not,
the update method in the SCSVD has no advantage over the
general update method although the computational costs are
of the same order. This is because the true computational
cost of the SCSVD updating method is always more than
the general updating method, even though they are of the
same order. Thus, when we have to update the new data to
the matrix on which the SVD will be performed, the general
method is recommended. However, when the matrix size is
so huge that to expand Σ2 + 𝐶𝐶𝑇 becomes impossible, it is
better to recompute the SVD result. In this case and with the
condition that the true rank is much smaller than the matrix
size, the SCSVD approach is recommended.

4. Experimental Result

In this section, we show that our fast PCA and fast SVD
methods work well for big-sized matrices with small ranks.
The simulated matrix is created by the product of two slender
matrices and one small diagonal matrix, that is, 𝐴

𝑚,𝑟
× Λ
𝑟
×

𝐵
𝑟,𝑛
, where𝑚, 𝑛 ≫ 𝑟. The size of the first matrix is𝑚 × 𝑟, the

second matrix is 𝑟 × 𝑟, and the third matrix is 𝑟 × 𝑛. Then the
product of these three matrixes is of size𝑚×𝑛 and its rank is
smaller than 𝑟. The absolute values of the diagonal elements
of Λ are decreasing to simulate the situation as data normally
comes in.When𝑚 and 𝑛 are large and 𝑟 is much smaller than
𝑚 and 𝑛, the simulatedmatrix satisfies our SCSVD condition.
We pick𝑚 = 4000, 𝑛 = 4000, and 𝑟 = 50 as our first example.
Each element of the simulated matrix is generated from the
normal distributionN(0, 1) and then the diagonal terms ofΛ
are adjusted. The average elapsed time of the SCSVD is 3.98
seconds, while the economical SVD takes 16.14 seconds.Here,
each average value is derived from 100 repeats.

If we increase the matrix to𝑚 = 20000, 𝑛 = 20000 and fix
the same rank 𝑟 = 50, the elapsed time of the economical SVD
is 1209.92 seconds, but the SCSVD is only 195.85 seconds. We
observe that our SCSVD method demonstrates significant
improvement. Figure 1 shows the speed comparison between
the economical SVD (solid line) and the SCSVD (dashed line)
with the square matrix size from 500 to 4000 by fixed rank
50. We also use fixed parameter 𝑁

𝐼
= 51 and 𝑁

𝐺
= 2𝑁

𝐼
in

each simulation test. We can see that the computational cost
of the SVD follows the order 3 increase, compared with linear
increase of the SCSVD.

Note that when the estimated rank used in the SCSVD
is greater than the real rank of data matrix, there is almost
no error (except rounding error) between the economic SVD
and the SCSVD.The error between the economical SVD and
the SCSVD is computed by comparing the orthogonality.
Assume that 𝐴 = 𝑈Σ𝑉

𝑇 is derived by the SCSVD and
𝐴 = 𝑈

1
Σ
1
𝑉
𝑇

1
is derived from the economical SVD. Since the

output of the column vectors of 𝑈 and 𝑉 might reverse, the
error is defined by

󵄩
󵄩
󵄩
󵄩
󵄩
𝑈
𝑇

20
𝑈
1,20
− 𝐼
20

󵄩
󵄩
󵄩
󵄩
󵄩
, (25)

where 𝑈
20

is the first 20th column of 𝑈, 𝑈
1,20

is the first
20th column of 𝑈

1
, and 𝐼

20
is the identity matrix of size 20.

The error is about 10−13 only. The average error in the same
experiment in Figure 1 is 9.7430 × 10−13 and the standard
deviation is 5.2305 × 10−13. Thus, when the estimated rank
of the SCSVD is greater than the true rank, the accuracy of
the SCSVD is pretty much the same as the SVD in the case of
a small rank matrix.

We would like to explore what happens if the estimated
rank is smaller than the true rank. According to the experi-
ment of the SCMDS [13], if the estimated rank is smaller than
the true rank, the performance of the SCMDSwill deteriorate.
In our experiment, we set the true rank of the simulated
matrix to be 50 and then observe the estimated rank from 49
to 39. The relationship between the error and the estimated
rank with different matrix size is shown in Figure 2.

We can see that when the estimated rank decreases, the
error arises rapidly. Lines in Figure 2 from the bottom to
the top are the matrix size with 500 × 500 to 4000 × 4000,
respectively. The error increases slowly when the matrix size
increases.We observe that making the estimated rank greater
than the true dimension is essential for our method.

The purpose of the second simulation experiment is
to observe the approximation performance of applying the
SCPCA to a big full rank matrix. We generate a random
matrix with a fixed number of columns and rows, say 1000.
The square matrix is created by the form, 𝐴

1000,𝑟
× Λ ×

𝐵
𝑟,1000

+ 𝛼𝐸
1000,1000

, where 𝑟 = 50 is the essential rank, 𝐸
is the perturbation, and 𝛼 is a small coefficient for adjusting
the influence to the previous matrix. Such a matrix can be
considered as a big-sized matrix with a small rank added by a
full rank perturbation matrix. We will show that our method
works well for this type of matrices.

Figure 3 shows the error versus estimated rank, where
the error is defined as (25), which is a comparison of the
orthogonality between𝑈 and𝑈

1
. All the elements ofmatrices

𝐴, 𝐵, 𝐸 are randomly generated from the normal distribution
N(0, 1) and Λ is a diagonal matrix in which the diagonal
terms decay by the order, where 𝛼 = 0.01 and the essential
rank 𝑟 = 50. We can see that when the estimated rank
increases, the composition error decreases. Especially when
the estimated rank is greater than the essential rank 𝑟, there
is almost no error. Thus, it is important to make sure that
the estimated rank is greater than the essential rank. In other
words, when the estimated rank of the SCSVD is smaller
than the essential rank, our SCSVD result can be used as the
approximated solution of the SVD.
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Figure 1: Comparison of the elapsed time between economical SVD
(the solid line) and SCSVD (the dashed line).
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Figure 2:The relationship between errors and estimated dimension
of matrix size from 500 to 4000 with step size 500. The true rank of
these matrices is 50. From the bottom to top is matrix of sizes 500,
1000, 1500,. . ., respectively.

In the last experimental result, we let the matrix be
growing and observe the performance between the general
and the SCSVD update approaches. We start from a matrix
that is formed by 𝐴

4000,50
× Λ
50
× 𝐵
50,4000

+ 0.01 ⋅ 𝐸
4000,4000

,
where Λ is a diagonal matrix such that the diagonal terms
are positive and decayed rapidly like natural data and each
element in 𝐴 and 𝐵 is a random number from the normal
distribution N(0, 1). Then we update a 100 × 4000 random
matrix into the matrix 10 times of the size. The element
of the updated matrix is also from the normal distribution
N(0, 1). When the matrix gets updated, we compute the
SVD decomposition to obtain the first 20 columns of 𝑈. The
updated result of the general approach is𝑈

1
×Σ
1
×𝑉
1
, and the

updated result of the SCMDS approach is 𝑈
2
× Σ
2
× 𝑉
2
. We

compute the error as (25) for 𝑈
1
and 𝑈

2
. The reason that we
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Figure 3: The effect of estimated rank to the error. The matrix size
is from 500-by-500 to 4000-by-4000 (from the bottom to the top,
resp.) and its essential rank is 50 (𝛼 = 0.01). When the estimated
rank is greater than 50, there is almost no composition error.
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Figure 4: Compare the update time for SCMDS approach (red line)
and the general approach (blue line).

concern ourselves only with the first 20 bases of the column
space is that it is rare to use such a high dimension in the
dimension reduction applications.

The computational time of the SCMDS is more than
the general approach; however, the difference is within one
second. The error of the SCMDS approach to update 100
rows compared with recomputing the SVD decomposition is
4.0151×10

−5 with standard deviation 3.5775×10−5.The error
of general approach is 1.4371×10−12 with standard deviation
1.5215 × 10

−12. The update time of the SCMDS and general
approach is shown in Figure 4. The red solid line is the time
for the SCMDS and the blue line is that for general approach.
We can see that the SCMDS approach is about 8 times of
general approach. Hence the SCSVD update approach is not
recommended for either saving time or controlling error.
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5. Conclusion

We proposed the fast PCA and fast SVD methods derived
from the technique of the SCMDS method. The new PCA
and the SVD have the same accuracy as the traditional PCA
and the SVD method when the rank of a matrix is much
smaller than the matrix size. The results of applying the
SCPCA and the SCSVD to a full rank matrix are also quite
reliable when the essential rank of matrix is much smaller
than the matrix size. Thus, we can use the SCSVD in a huge
data application to obtain a good approximated initial value.
The updating algorithm of the SCMDS approach is discussed
and compared with the general update approach.The perfor-
mances of the SCMDS approach both in the computational
time and error are worse than the general approach. Hence,
the SCSVDmethod is only recommended for computing the
SVD for a largematrix but is not recommended for the update
approach.
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