
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 716768, 9 pages
http://dx.doi.org/10.1155/2013/716768

Research Article
Oscillatory Singularity Behaviors Near Interface Crack Tip for
Mode II of Orthotropic Bimaterial

Xiaomei Yang, Weiyang Yang, Junlin Li, and Xuexia Zhang

School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China

Correspondence should be addressed to Xiaomei Yang; yxm001 1@126.com

Received 20 December 2012; Revised 18 May 2013; Accepted 22 May 2013

Academic Editor: Ray K. L. Su

Copyright © 2013 Xiaomei Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The fracture behaviors near the interface crack tip for mode II of orthotropic bimaterial are discussed. The oscillatory singularity
fields are researched. The stress functions are chosen which contain twelve undetermined coefficients and an unknown singularity
exponent. Based on the boundary conditions and linear independence, the system of twelve nonhomogeneous linear equations
is derived. According to the condition for the system of nonhomogeneous linear equations which has a solution, the singularity
exponent is determined. Total coefficients are found by means of successive elimination of the unknowns.The theoretical formulae
of stress intensity factors and analytic solutions of stress field near the interface crack tip are obtained. The crack tip field is shown
by figures.

1. Introduction

Many researchers have studied the singularity behavior near
interface crack tip for isotropic, orthotropic, or anisotropic
bimaterial. The method of eigenfunction expansions is used
by Williams [1]. The complex function method is developed
by Rice and Sih [2]. Erdogan [3] and England [4], present and
research various interface crack problems. These academic
authorities play a leading role in fracture mechanics for inter-
face crack, and they have made the tremendous contribution.
The subsequent papers are published one after another over
several decades [5–16]. In this paper, the solution method is
proposed to research the singularity behavior near interface
crack tip for mode II of orthotropic bimaterial.

It can be seen that the following differences exist between
this method and previous methods by comparison.

(1) The stress function contains twelve undetermined
coefficients, rather than eight.

(2) The system of twelve nonhomogeneous linear equa-
tions is deduced based on the boundary conditions,
rather than the system of eight homogeneous linear
equations.

(3) The characteristic equation is found by using the
condition for the system of nonhomogeneous linear

equations that possess a solution, rather than being
based on the condition for the system of homoge-
neous linear equations which has a nontrivial solu-
tion.

(4) In order to determine total coefficients, we only need
to solve the system of nonhomogeneous linear equa-
tions, rather than to solve the system of homogeneous
linear equations first, and then use the load conditions
at infinity.

(5) The stress intensity factors are defined by right-hand
limit and left-hand limit rather than by limit.

(6) The oscillatory singularity fields near interface crack
tip of three orthotropic bimaterial are illustrated by
the help of two tables and seven figures.

2. Mechanical Model

The plane 𝑦 > 0 is the upper orthotropic material (𝑗 = 1),
and its elastic constants are 𝐸

11
, 𝐸
12
, ]
11

and 𝜇
1
. The plane

𝑦 < 0 is the lower orthotropic material (𝑗 = 2), and its elastic
constants are 𝐸

21
, 𝐸
22
, ]
21
, and 𝜇

2
. 𝑦 = 0, |𝑥| < 𝑎 is the crack

surfaces, and 𝑦 = 0, |𝑥| > 𝑎 is the bonded interface of two
dissimilar materials.
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Figure 1: Interface crack for mode II of orthotropic bimaterial.

The stress functions 𝑈
𝑗
(𝑥, 𝑦), (𝑗 = 1, 2) satisfy the

governing equations [16–20]:

(𝑏
22
)
𝑗

𝜕
4
𝑈
𝑗

𝜕𝑥4
+ [2(𝑏

12
)
𝑗
+ (𝑏
66
)
𝑗
]

𝜕
4
𝑈
𝑗

𝜕𝑥2𝜕𝑦2

+ (𝑏
11
)
𝑗

𝜕
4
𝑈
𝑗

𝜕𝑦4
= 0, (𝑗 = 1, 2) .

(1)

The boundary conditions of the interface crack for mode
II are as follows:

𝑦 = 0, |𝑥| < 𝑎 : (𝜎
𝑦
)
1
= (𝜎
𝑦
)
2
= 0,

(𝜏
𝑥𝑦
)
1
= (𝜏
𝑥𝑦
)
2
= 0,

𝑦 = 0, |𝑥| > 𝑎 : (𝜎
𝑦
)
1
= (𝜎
𝑦
)
2
, (𝜏

𝑥𝑦
)
1
= (𝜏
𝑥𝑦
)
2
,

(2)

(𝑢)
1
= (𝑢)
2
, (V)

1
= (V)
2
, (3)

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 󳨀→ +∞ : (𝜎

𝑦
)
1
= (𝜎
𝑦
)
2
= 0, (𝜏

𝑥𝑦
)
1
= (𝜏
𝑥𝑦
)
2
= 𝜏.

(4)

The geometric and load conditions for the investigated
problem are given as shown in Figure 1.

3. Stress Function

The relationships between the stresses and the stress func-
tions can be obtained as

(𝜎
𝑥
)
𝑗
=

𝜕
2
𝑈
𝑗

𝜕𝑦2

=

2

∑

𝑘=1

Re {[(𝐴
𝑗𝑘,𝜆

+ 𝑖𝐶
𝑗𝑘,𝜆

) − 𝑖 (𝐵
𝑗𝑘,𝜆

+ 𝑖𝐶
𝑗𝑘,𝜆

)]

× (−𝛽
2

𝑗𝑘
)𝑈
𝑗𝑘,𝜆

(𝑧
𝑗𝑘
)} ,

(5a)

(𝜎
𝑦
)
𝑗
=

𝜕
2
𝑈
𝑗

𝜕𝑥2

=

2

∑

𝑘=1

Re {[(𝐴
𝑗𝑘,𝜆

+ 𝑖𝐶
𝑗𝑘,𝜆

)

−𝑖 (𝐵
𝑗𝑘,𝜆

+ 𝑖𝐶
𝑗𝑘,𝜆

)] 𝑈
𝑗𝑘,𝜆

(𝑧
𝑗𝑘
)} ,

(5b)

(𝜏
𝑥𝑦
)
𝑗
= −

𝜕
2
𝑈
𝑗

𝜕𝑥𝜕𝑦

= −

2

∑

𝑘=1

Re {[(𝐴
𝑗𝑘,𝜆

+ 𝑖𝐶
𝑗𝑘,𝜆

) − 𝑖 (𝐵
𝑗𝑘,𝜆

+ 𝑖𝐶
𝑗𝑘,𝜆

)]

× (𝑖𝛽
𝑗𝑘
)𝑈
𝑗𝑘,𝜆

(𝑧
𝑗𝑘
)} , (𝑗 = 1, 2)

(5c)
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in which the stress functions 𝑈
𝑗
of right side of (5a)–(5c)

contain twelve undetermined coefficients 𝐴
𝑗𝑘,𝜆

, 𝐵
𝑗𝑘,𝜆

, 𝐶
𝑗𝑘,𝜆

(𝑗, 𝑘 = 1, 2) and an unknown singularity exponent 𝜆.
Considering the boundary conditions (2), (3), and (4), the

functions 𝑈
𝑗𝑘,𝜆

(𝑧
𝑗𝑘
) of right side of (5a)–(5c) can be chosen

as

𝑈
𝑗𝑘,𝜆

(𝑧
𝑗𝑘
) = 𝜏(1 −

𝑎
2

𝑧2
𝑗𝑘

)

𝜆

= 𝜏

𝑧
−2𝜆

𝑗𝑘

(𝑧2
𝑗𝑘

− 𝑎2)
−𝜆

, (𝑗, 𝑘 = 1, 2) .

(6)

in which

𝑧
𝑗𝑘

= 𝑥 + 𝑠
𝑗𝑘
𝑦 = 𝑥 + 𝑖𝛽

𝑗𝑘
𝑦, (𝑗, 𝑘 = 1, 2) (7)

𝑧
𝑗𝑘

− 𝑎 = 𝑥 − 𝑎 + 𝑖𝛽
𝑗𝑘
𝑦 = 𝑟 (cos 𝜃 + 𝑖𝛽

𝑗𝑘
sin 𝜃) ,

(𝑗, 𝑘 = 1, 2) .

(8)

From (5a)–(5c) and (6), an unknown number 𝜆 is
called singularity exponent, and sometimes it is also called
eigenvalue.

4. Singularity Exponent

If the singularity exponent𝜆 is the complex number, the stress
near the interface crack tip shows oscillatory singularity. We
let [1–16]

𝜆 = −
1

2
+ 𝑖𝜀. (9)

Substituting (9) into (6), it can be found as

𝑈
𝑗𝑘,𝜀

(𝑧
𝑗𝑘
) = 𝜏(1 −

𝑎
2

𝑧2
𝑗𝑘

)

−(1/2)+𝑖𝜀

= 𝜏

𝑧
1−𝑖2𝜀

𝑗𝑘

(𝑧2
𝑗𝑘

− 𝑎2)
(1/2)−𝑖𝜀

, (𝑗, 𝑘 = 1, 2) .

(10)

Equations (7) and (8) are substituted into (10), and we
have

𝑈
𝑗𝑘,𝜀

(𝑧
𝑗𝑘
)
󵄨󵄨󵄨󵄨󵄨𝑦=0,|𝑥|<𝑎

= 𝑒
(−1)
𝑗
𝜀𝜋 𝜏𝑥

√𝑎2 − 𝑥2
(−1)
𝑗−1

× [sin(2𝜀 ln
√𝑎2 − 𝑥2

𝑥
)

−𝑖 cos(2𝜀 ln
√𝑎2 − 𝑥2

𝑥
)] .

(11)

at the crack surfaces.
Substituting (11), (5b), and (5c) into the boundary condi-

tion (2), by the help of the functions cos(2𝜀 ln((√𝑎2 − 𝑥2)/𝑥))

and sin(2𝜀 ln((√𝑎2 − 𝑥2)/𝑥))which are linearly independent,
the four homogeneous linear equations can be deduced as

𝐴
11,𝜀

+ 𝐴
12,𝜀

− 𝐵
11,𝜀

− 𝐵
12,𝜀

+ 2𝐶
11,𝜀

+ 2𝐶
12,𝜀

= 0, (12a)

−𝐴
21,𝜀

− 𝐴
22,𝜀

+ 𝐵
21,𝜀

+ 𝐵
22,𝜀

− 2𝐶
21,𝜀

− 2𝐶
22,𝜀

= 0, (12b)

−𝛽
11
𝐴
11,𝜀

− 𝛽
12
𝐴
12,𝜀

− 𝛽
11
𝐵
11,𝜀

− 𝛽
12
𝐵
12,𝜀

= 0, (12c)

𝛽
21
𝐴
21,𝜀

+ 𝛽
22
𝐴
22,𝜀

+ 𝛽
21
𝐵
21,𝜀

+ 𝛽
22
𝐵
22,𝜀

= 0. (12d)

Similarly, we can find other eight linear equations (12e)
to (12l) which are omitted here. By (𝜏

𝑥𝑦
)
1

= (𝜏
𝑥𝑦
)
2

= 𝜏

in condition (4), two nonhomogeneous linear equations are
contained in the eight linear equations.

The system of nonhomogeneous linear equations (12a)
to (12l) is solved by eliminating the unknowns. To let the
rank of the coefficient matrix 𝐴

𝜆
for the system (12a)–(12l)

and the rank of the augmented matrix 𝐴
𝜆

= (𝐴
𝜆
, 𝑏II) be

equal, the rank must be 8; that is, rank(𝐴
𝜆
) = rank(𝐴

𝜆
) = 8.

For this reason [21], the number 𝜀 must satisfy the following
characteristic equation:

(𝑒
12

− 𝑓
12
) 𝑓
12

− 4𝑔
12
ℎ
12
𝜀
2
= 0 (13)

in which bimaterial parameters are given as

𝑒
12

=
1

𝜇
1

−
1

𝜇
2

, 𝑓
12

=
𝛽
11
𝛽
12

− ]
11

𝐸
11

−
𝛽
21
𝛽
22

− ]
21

𝐸
21

,

(14a)

𝑔
12

=
𝛽
11

+ 𝛽
12

𝐸
11

+
𝛽
21

+ 𝛽
22

𝐸
21

,

ℎ
12

=
𝛽
11

+ 𝛽
12

𝐸
11

𝛽
11
𝛽
12

+
𝛽
21

+ 𝛽
22

𝐸
21

𝛽
21
𝛽
22
.

(14b)

The singularity exponent 𝜆 of (9) is a complex number,
so 𝜀 ̸= 0 in (13), and 𝑒

12
̸= 0, 𝑓
12

̸= 0, 𝑔
12

> 0, ℎ
12

> 0 in (14a)
and (14b) for determinate bimaterial. To the equation (13) has
a solution, the discrimination rule can be deduced as

(∗) D
12
: if 𝑒
12
and 𝑓
12
in (14a) satisfy 𝑒

12
> 0 and 𝑓

12
> 0,

then the negative root of (13) is the bielastic constant
𝜀.

Substituting 𝜀 solved by (13) into (9), the complex singularity
exponent 𝜆 can be obtained.

The system of eight equations which remained through
sequence elimination is solved by means of the inverse
sequence backsubstitution. We found all coefficients as fol-
lows:

𝐴
𝑗𝑘,𝜀

+ 𝐶
𝑗𝑘,𝜀

= (−1)
𝑘
𝑓
12

+ 2𝛽
𝑗𝑘
∗𝑔
12
𝜀

(𝛽
𝑗2

− 𝛽
𝑗1
) 𝑓
12

, (15a)

𝐵
𝑗𝑘,𝜀

− 𝐶
𝑗𝑘,𝜀

= (−1)
𝑘−1

𝑓
12

− 2𝛽
𝑗𝑘
∗𝑔
12
𝜀

(𝛽
𝑗2

− 𝛽
𝑗1
) 𝑓
12

, (𝑗, 𝑘 = 1, 2) .

(15b)

in which 𝑘 = 1, 𝑘∗ = 2; 𝑘 = 2, 𝑘∗ = 1. By (15a) and (15b),
the stress functions 𝑈

𝑗
of the right side of (5a)–(5c) contain

practically eight coefficients.
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5. Stress Intensity Factors

Considering the stress expressions (5b) and (5c) and also the
load condition in (4), the stress intensity factors are defined
as

(𝑘
+

2
)
𝑗
= −

2

∑

𝑘=1

lim
𝑧𝑗𝑘→𝑎

+
Re {(2𝜋 󵄨󵄨󵄨󵄨󵄨

𝑧
𝑗𝑘

− 𝑎
󵄨󵄨󵄨󵄨󵄨
)
(1/2)−𝑖𝜀

× [(𝐴
𝑗𝑘,𝜀

+ 𝐶
𝑗𝑘,𝜀

)

−𝑖 (𝐵
𝑗𝑘,𝜀

− 𝐶
𝑗𝑘,𝜀

)]

× (𝑖𝛽
𝑗𝑘
)𝑈
𝑗𝑘,𝜀

(𝑧
𝑗𝑘
) } ,

(16a)

(𝑘
−

2
)
𝑗
= −

2

∑

𝑘=1

lim
𝑧𝑗𝑘→𝑎

−
Re {(2𝜋 󵄨󵄨󵄨󵄨󵄨

𝑧
𝑗𝑘

− 𝑎
󵄨󵄨󵄨󵄨󵄨
)
(1/2)−𝑖𝜀

× [(𝐴
𝑗𝑘,𝜀

+ 𝐶
𝑗𝑘,𝜀

)

−𝑖 (𝐵
𝑗𝑘,𝜀

− 𝐶
𝑗𝑘,𝜀

)]

× (−1)
𝑗−1

(2𝜀 − 𝑖) (𝑖𝛽
𝑗𝑘
)

× 𝑈
𝑗𝑘,𝜀

(𝑧
𝑗𝑘
) } , (𝑗 = 1, 2) ,

(16b)

𝑘
2
=

𝑘
+

2
− 𝑘
−

2

2
=

1

2

2

∑

𝑗=1

(𝑘
+

2
)
𝑗

2
−

1

2

2

∑

𝑗=1

(𝑘
−

2
)
𝑗

2
, (16c)

(𝑘
+

1
)
𝑗
=

2

∑

𝑘=1

lim
𝑧𝑗𝑘→𝑎

+
Re {(2𝜋 󵄨󵄨󵄨󵄨󵄨

𝑧
𝑗𝑘

− 𝑎
󵄨󵄨󵄨󵄨󵄨
)
(1/2)−𝑖𝜀

× [(𝐴
𝑗𝑘,𝜀

+ 𝐶
𝑗𝑘,𝜀

)− 𝑖 (𝐵
𝑗𝑘,𝜀

− 𝐶
𝑗𝑘,𝜀

)]

× 𝑈
𝑗𝑘,𝜀

(𝑧
𝑗𝑘
) } ,

(17a)

(𝑘
−

1
)
𝑗
=

2

∑

𝑘=1

lim
𝑧𝑗𝑘→𝑎

−
Re {(2𝜋 󵄨󵄨󵄨󵄨󵄨

𝑧
𝑗𝑘

− 𝑎
󵄨󵄨󵄨󵄨󵄨
)
(1/2)−𝑖𝜀

× [(𝐴
𝑗𝑘,𝜀

+ 𝐶
𝑗𝑘,𝜀

)− 𝑖 (𝐵
𝑗𝑘,𝜀

− 𝐶
𝑗𝑘,𝜀

)]

×(−1)
𝑗−1

(2𝜀 − 𝑖) 𝑈
𝑗𝑘,𝜀

(𝑧
𝑗𝑘
) } ,

(𝑗 = 1, 2) ,

(17b)

𝑘
1
=

𝑘
+

1
+ 𝑘
−

1

2
=

1

2

2

∑

𝑗=1

(𝑘
+

1
)
𝑗

2
+

1

2

2

∑

𝑗=1

(𝑘
−

1
)
𝑗

2
, (17c)

𝑘 = 𝑘
2
+ 𝑖𝑘
1
. (18)

In order to express the change process of 𝑧
𝑗𝑘

→ 𝑎
−

completely, it is necessary that the factor of
(11): 𝑒

(−1)
𝑗
𝜀𝜋
(−1)
𝑗−1

[sin(2𝜀 ln((√𝑎2 − 𝑥2)/𝑥)) −

𝑖 cos(2𝜀 ln((√𝑎2 − 𝑥2)/𝑥))] = (−1)
𝑗−1

(2𝜀 − 𝑖), (𝜀 → 0) is
substituted into the expressions (16b) and (17b). At the same
time, the minus is used in (16c) because the load condition is
given in (4).

Substituting (10), (7), (8), (15a), and (15b) into (16a)–(16c),
(17a)–(17c), and (18), the stress intensity factors of interface
crack for mode II can be deduced as

𝑘
2
= 𝜏(𝜋𝑎)

1/2
𝑝 (𝜀) , 𝑘

1
= −𝜏(𝜋𝑎)

1/2 2𝑔12𝜀

𝑓
12

𝑞 (𝜀) ,

𝑘 = 𝑘
2
+ 𝑖𝑘
1

(19)

in which

𝑝 (𝜀) =
1

2
{[1 + (1 + 2𝜀) 𝑐ℎ𝜀𝜋] cos (𝜀 ln𝜋𝑎)

− [1 + (1 − 2𝜀) 𝑐ℎ𝜀𝜋] sin (𝜀 ln𝜋𝑎)} ,

(20a)

𝑞 (𝜀) =
1

2
{[1 − (1 + 2𝜀) 𝑐ℎ𝜀𝜋] cos (𝜀 ln𝜋𝑎)

− [1 − (1 − 2𝜀) 𝑐ℎ𝜀𝜋] sin (𝜀 ln𝜋𝑎)} .

(20b)

6. Stress

From (10), (8), and (7), it can be found as follows that

lim
𝑧𝑗𝑘→𝑎

{[2𝜋 (𝑧
𝑗𝑘

− 𝑎)]
(1/2)−𝑖𝜀

𝑈
𝑗𝑘,𝜀

(𝑧
𝑗𝑘
)} = 𝜏(𝜋𝑎)

(1/2)−𝑖𝜀
,

(𝑗, 𝑘 = 1, 2)

(21)

in the vicinity of the crack tip.
By (21), it can be known that

𝑈
𝑗𝑘,𝜀

(𝑧
𝑗𝑘
) =

𝜏(𝜋𝑎)
(1/2)−𝑖𝜀

(2𝜋)
(1/2)−𝑖𝜀

1

(𝑧
𝑗𝑘

− 𝑎)
(1/2)−𝑖𝜀

,

(𝑧
𝑗𝑘

󳨀→ 𝑎; 𝑗, 𝑘 = 1, 2) .

(22)

Substituting (22), (15a), (15b), (19), and (8) into (5a)–(5c),
the stresses in the vicinity of the interface crack tip (𝑧

𝑗𝑘
→

𝑎, 𝑟 → 0; 𝑗, 𝑘 = 1, 2) for mode II of orthotropic bimaterial
can be expressed as follows:

(𝜎
𝑥
)
𝑗
=

𝑘
2

(2𝜋𝑟)
1/2

√2

(𝛽
𝑗2

− 𝛽
𝑗1
) 𝑝 (𝜀)

×
{

{

{

[cos(𝜋

4
− 𝜀 ln𝜋𝑎) ⋅ cos (𝜀 ln 2𝜋𝑟)

− sin(
𝜋

4
− 𝜀 ln𝜋𝑎) sin (𝜀 ln 2𝜋𝑟)]
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⋅ [

[

Re
𝛽
2

𝑗1

(cos 𝜃 + 𝑖𝛽
𝑗1
sin 𝜃)

(1/2)−𝑖𝜀

−Re
𝛽
2

𝑗2

(cos 𝜃 + 𝑖𝛽
𝑗2
sin 𝜃)

(1/2)−𝑖𝜀

]

]

− [cos(𝜋

4
+ 𝜀 ln𝜋𝑎) cos (𝜀 ln 2𝜋𝑟)

+ sin(
𝜋

4
+ 𝜀 ln𝜋𝑎) sin (𝜀 ln 2𝜋𝑟)]

⋅ [

[

Im
𝛽
2

𝑗1

(cos 𝜃 + 𝑖𝛽
𝑗1
sin 𝜃)

(1/2)−𝑖𝜀

− Im
𝛽
2

𝑗2

(cos 𝜃 + 𝑖𝛽
𝑗2
sin 𝜃)

(1/2)−𝑖𝜀

]

]

}

}

}

+
𝑘
1

(2𝜋𝑟)
1/2

√2𝛽
𝑗1
𝛽
𝑗2

(𝛽
𝑗2

− 𝛽
𝑗1
) 𝑞 (𝜀)

×
{

{

{

[cos(𝜋

4
+ 𝜀 ln𝜋𝑎) ⋅ cos (𝜀 ln 2𝜋𝑟)

+ sin(
𝜋

4
+ 𝜀 ln𝜋𝑎) sin (𝜀 ln 2𝜋𝑟)]

⋅ [

[

Re
𝛽
𝑗2

(cos 𝜃 + 𝑖𝛽
𝑗2
sin 𝜃)

(1/2)−𝑖𝜀

−Re
𝛽
𝑗1

(cos 𝜃 + 𝑖𝛽
𝑗1
sin 𝜃)

(1/2)−𝑖𝜀

]

]

+ [cos(𝜋

4
− 𝜀 ln𝜋𝑎) cos (𝜀 ln 2𝜋𝑟)

− sin(
𝜋

4
− 𝜀 ln𝜋𝑎) sin (𝜀 ln 2𝜋𝑟)]

⋅ [

[

Im
𝛽
𝑗2

(cos 𝜃 + 𝑖𝛽
𝑗2
sin 𝜃)

(1/2)−𝑖𝜀

− Im
𝛽
𝑗1

(cos 𝜃 + 𝑖𝛽
𝑗1
sin 𝜃)

(1/2)−𝑖𝜀

]

]

}

}

}

,

(23a)

(𝜎
𝑦
)
𝑗
=

𝑘
2

(2𝜋𝑟)
1/2

√2

(𝛽
𝑗2

− 𝛽
𝑗1
) 𝑝 (𝜀)

×
{

{

{

[cos(𝜋

4
− 𝜀 ln𝜋𝑎) ⋅ cos (𝜀 ln 2𝜋𝑟)

− sin(
𝜋

4
− 𝜀 ln𝜋𝑎) sin (𝜀 ln 2𝜋𝑟)]

⋅ [

[

Re 1

(cos 𝜃 + 𝑖𝛽
𝑗2
sin 𝜃)

(1/2)−𝑖𝜀

−Re 1

(cos 𝜃 + 𝑖𝛽
𝑗1
sin 𝜃)

(1/2)−𝑖𝜀

]

]

− [cos(𝜋

4
+ 𝜀 ln𝜋𝑎) cos (𝜀 ln 2𝜋𝑟)

+ sin(
𝜋

4
+ 𝜀 ln𝜋𝑎) sin (𝜀 ln 2𝜋𝑟)]

⋅ [

[

Im 1

(cos 𝜃 + 𝑖𝛽
𝑗2
sin 𝜃)

(1/2)−𝑖𝜀

− Im 1

(cos 𝜃 + 𝑖𝛽
𝑗1
sin 𝜃)

(1/2)−𝑖𝜀

]

]

}

}

}

+
𝑘
1

(2𝜋𝑟)
1/2

√2

(𝛽
𝑗2

− 𝛽
𝑗1
) 𝑞 (𝜀)

×
{

{

{

[cos(𝜋

4
+ 𝜀 ln𝜋𝑎) ⋅ cos (𝜀 ln 2𝜋𝑟)

+ sin(
𝜋

4
+ 𝜀 ln𝜋𝑎) sin (𝜀 ln 2𝜋𝑟)]

⋅ [

[

Re
𝛽
𝑗2

(cos 𝜃 + 𝑖𝛽
𝑗1
sin 𝜃)

(1/2)−𝑖𝜀

−Re
𝛽
𝑗1

(cos 𝜃 + 𝑖𝛽
𝑗2
sin 𝜃)

(1/2)−𝑖𝜀

]

]

+ [cos(𝜋

4
− 𝜀 ln𝜋𝑎) cos (𝜀 ln 2𝜋𝑟)

− sin(
𝜋

4
− 𝜀 ln𝜋𝑎) sin (𝜀 ln 2𝜋𝑟)]

⋅ [

[

Im
𝛽
𝑗2

(cos 𝜃 + 𝑖𝛽
𝑗1
sin 𝜃)

(1/2)−𝑖𝜀

− Im
𝛽
𝑗1

(cos 𝜃 + 𝑖𝛽
𝑗2
sin 𝜃)

(1/2)−𝑖𝜀

]

]

}

}

}

,

(23b)

(𝜏
𝑥𝑦
)
𝑗
=

𝑘
2

(2𝜋𝑟)
1/2

√2

(𝛽
𝑗2

− 𝛽
𝑗1
) 𝑝 (𝜀)
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×
{

{

{

[cos(𝜋

4
+ 𝜀 ln𝜋𝑎) ⋅ cos (𝜀 ln 2𝜋𝑟)

+ sin(
𝜋

4
+ 𝜀 ln𝜋𝑎) sin (𝜀 ln 2𝜋𝑟)]

⋅ [

[

Re
𝛽
𝑗2

(cos 𝜃 + 𝑖𝛽
𝑗2
sin 𝜃)

(1/2)−𝑖𝜀

−Re
𝛽
𝑗1

(cos 𝜃 + 𝑖𝛽
𝑗1
sin 𝜃)

(1/2)−𝑖𝜀

]

]

+ [cos(𝜋

4
− 𝜀 ln𝜋𝑎) cos (𝜀 ln 2𝜋𝑟)

− sin(
𝜋

4
− 𝜀 ln𝜋𝑎) sin (𝜀 ln 2𝜋𝑟)]

⋅ [

[

Im
𝛽
𝑗2

(cos 𝜃 + 𝑖𝛽
𝑗2
sin 𝜃)

(1/2)−𝑖𝜀

− Im
𝛽
𝑗1

(cos 𝜃 + 𝑖𝛽
𝑗1
sin 𝜃)

(1/2)−𝑖𝜀

]

]

}

}

}

+
𝑘
1

(2𝜋𝑟)
1/2

√2𝛽
𝑗1
𝛽
𝑗2

(𝛽
𝑗2

− 𝛽
𝑗1
) 𝑞 (𝜀)

×
{

{

{

[cos(𝜋

4
− 𝜀 ln𝜋𝑎) ⋅ cos (𝜀 ln 2𝜋𝑟)

− sin(
𝜋

4
− 𝜀 ln𝜋𝑎) sin (𝜀 ln 2𝜋𝑟)]

⋅ [

[

Re 1

(cos 𝜃 + 𝑖𝛽
𝑗2
sin 𝜃)

(1/2)−𝑖𝜀

−Re 1

(cos 𝜃 + 𝑖𝛽
𝑗1
sin 𝜃)

(1/2)−𝑖𝜀

]

]

− [cos(𝜋

4
+ 𝜀 ln𝜋𝑎) cos (𝜀 ln 2𝜋𝑟)

+ sin(
𝜋

4
+ 𝜀 ln𝜋𝑎) sin (𝜀 ln 2𝜋𝑟)]

⋅ [

[

Im 1

(cos 𝜃 + 𝑖𝛽
𝑗2
sin 𝜃)

(1/2)−𝑖𝜀

− Im 1

(cos 𝜃 + 𝑖𝛽
𝑗1
sin 𝜃)

(1/2)−𝑖𝜀

]

]

}

}

}

(23c)

in which 𝑝(𝜀) and 𝑞(𝜀) are given by (20a) and (20b).

Table 1: Mechanical properties of each orthotropic material.

Materials 𝐸
𝑗1
/

GPa
𝐸
𝑗2
/

GPa ]
𝑗

𝜇
𝑗
/

GPa Δ
𝑗

𝛽
𝑗1

𝛽
𝑗2

A 𝑗 = 1 12.45 11.56 0.33 4.35 0.54 0.85 1.21
𝑗 = 2 201 12.5 0.21 6.69 813.31 0.74 5.39

B 𝑗 = 1 181 10.3 0.28 7.17 539.01 0.86 4.89
𝑗 = 2 40.06 38.26 0.26 11.24 5.07 0.63 1.63

C 𝑗 = 1 18.3 15.51 0.32 5.87 1.42 0.80 1.35
𝑗 = 2 135 10.3 0.21 6.6 348.96 0.82 4.40

Table 2: Mechanical properties of three orthotropic bimaterials.

Bimaterial 𝑒
12

𝑓
12

𝑔
12

ℎ
12

𝜀 𝜆

A 0.0804 0.0379 0.1966 0.2948 −0.0834 −0.5

−0.0834𝑖

B 0.0505 0.0026 0.0881 0.1908 −0.0427 −0.5

−0.0427𝑖

C 0.0188 0.0166 0.1565 0.2681 −0.0149 −0.5

−0.0149𝑖

Note that (23a)–(23c) of the stress field contain the
following terms:

(

(𝜎
𝑥
)
𝑗

(𝜎
𝑦
)
𝑗

(𝜏
𝑥𝑦
)
𝑗

) ⊃
1

(2𝜋𝑟)
1/2

(
cos (𝜀 ln 2𝜋𝑟)

sin (𝜀 ln 2𝜋𝑟)
) . (24)

The right side of (24) tends to change the sign rapidly at the
crack tip (𝑟 → 0), and therefore the stresses possess an
oscillatory character.

7. Oscillatory Field

The test and calculus results [16, 22–24] for the mechanicals
properties of three orthotropic bimaterial are shown in Tables
1 and 2.

From (19), the normalized stress intensity factors 𝑘
2
/𝜏

and 𝑘
1
/𝜏 depend on the length of crack 𝑎 and the bielastic

constant 𝜀.The variations of the stress intensity factors versus
crack length are plotted in Figure 2. The variations of the
stress intensity factors with bielastic constant are illustrated
in Figure 3. The minute variations of factor 𝑘

1
/𝜏 can be

observed by the inner small figure of Figure 3. The factors
𝑘
2
/𝜏 and 𝑘

1
/𝜏 increase almost linearly when the length 𝑎 or

the constant 𝜀 increases as shown in Figures 2 and 3.
By (23a)–(23c), the normalized stresses 𝜎

𝑥
/𝜏, 𝜎

𝑦
/𝜏,

and 𝜏
𝑥𝑦
/𝜏 depend on the polar angle 𝜃 and the polar radius 𝑟.

The variations of the normalized stresses for the above
three bimaterials with respect to polar angle 𝜃 are plotted in
Figure 4. Figure 4 shows that three stresses have alternately
the increase and decrease with 𝜃 increase, their maximum
values can be always reached at both sides of the crack.

Figures 5 and 6 show the variations of the normalized
stresses for the above three bimaterials with respect to polar
radius 𝑟 for 𝜃 = ±45

∘ and 𝜃 = ±60
∘. Two figures mean

that the stresses 𝜎
𝑥
/𝜏, 𝜎
𝑦
/𝜏, and 𝜏

𝑥𝑦
/𝜏 are the monotonic

decreasing functions of 𝑟/𝑎 on the two half-planes.
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Figure 2: Normalized stress intensity factors as a function of 𝑎.
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Figure 3: Normalized stress intensity factors as a function of 𝜀when
𝑎 = 1.

Figures 7 and 8 show the variations of the normalized
logarithmic stresses with respect to the polar radius 𝑟 for 𝜃 =

±45
∘ and 𝜃 = ±60

∘. It can be found that the stress distribution
in Figures 7 and 8 is not straight line and does not parallel
to each other. Such distributions mean oscillatory singularity
state.

8. Conclusion

From the above derivation, the following results are very
significant.

(1) New stress functions are chosen.
(2) The system of twelve nonhomogeneous linear equa-

tions is derived.
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Figure 4: Normalized stresses versus 𝜃 for 𝑟/𝑎 = 0.0001.
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(3) The characteristic equation can be given.

(4) By the help of the distinction rule (∗), the complex
singularity exponent 𝜆 can be found.

(5) Total coefficients are determined.

(6) For the oscillatory field, the theoretical formulae
of stress intensity factors and the analytic solutions
for stresses near interface crack tip of mode II are
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Figure 7: Normalized stresses versus 𝑟 for 𝜃 = ±45
∘.

yielded, respectively. The stress intensity factors and
the stresses show mixed crack characteristics.

(7) The crack tip fields for oscillatory singularities are
illustrated in Figures 2 to 8.

Acknowledgment

This work was supported by the Natural Science Foundation
of Shanxi province (no. 2011011021-3), and the doctoral
fund of Taiyuan University of Science and Technology (no.
20102028).

2

3

4

5

6

7

8

9

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

A
B
C

−10 −9−9.5 −8.5

𝜃 = ±60∘𝜃 = ±60∘
𝜃 = ±60∘

log (r/a)

A
B
C

−10 −9−9.5 −8.5

log (r/a)

A
B
C

−10 −9−9.5 −8.5

log (r/a)

lo
g(
|𝜎

x
|/
𝜏
)

lo
g(
|𝜏
x
y
|/
𝜏
)

lo
g(
|𝜎

y
|/
𝜏
)

Figure 8: Normalized stresses versus 𝑟 for 𝜃 = ±60
∘.

References

[1] M. L. Williams, “The stresses around a fault or crack in dissim-
ilar media,” Bulletin of the Seismological Society of America, vol.
49, no. 2, pp. 199–204, 1959.

[2] J. R. Rice and G. C. Sih, “Plane problems of cracks in dissimilar
media,” Journal of AppliedMechanics, vol. 32, no. 3, pp. 418–423,
1965.

[3] F. Erdogan, “Stress distribution in bonded dissimilar materials
with cracks,” Journal of Applied Mechanics, vol. 32, no. 3, pp.
403–410, 1965.

[4] A. H. England, “A crack between dissimilar media,” Journal of
Applied Mechanics, vol. 32, no. 3, pp. 400–402, 1965.

[5] K. Y. Lin and J. W. Mar, “Finite element analysis of stress inten-
sity factors for cracks at a bi-material interface,” International
Journal of Fracture, vol. 12, no. 4, pp. 521–531, 1976.

[6] Z. Suo, “Singularities, interfaces and cracks in dissimilar
anisotropic media,” Proceedings of the Royal Society of London
Series A, vol. 427, no. 1873, pp. 331–358, 1990.

[7] J. Chang and J.-Q. Xu, “The singular stress field and stress
intensity factors of a crack terminating at a bimaterial interface,”
International Journal of Mechanical Sciences, vol. 49, no. 7, pp.
888–897, 2007.

[8] D. Ying and J. Xing, “Researches on stress singulality of interface
end and distributive law of interface stress,” Science in China, G
Series, vol. 37, no. 4, pp. 535–543, 2007 (Chinese).

[9] X. S. Zhang, “A central crack at the interface between two
different orthotropic media for the mode I and mode II,”
Engineering FractureMechanics, vol. 33, no. 3, pp. 327–333, 1989.

[10] Z. Suo and J. W. Hutchinson, “Interface crack between two
elastic layers,” International Journal of Fracture, vol. 43, no. 1,
pp. 1–18, 1990.

[11] H. Gao, M. Abbudi, and D. M. Barnett, “Interfacial crack-tip
field in anisotropic elastic solids,” Journal of the Mechanics and
Physics of Solids, vol. 40, no. 2, pp. 393–416, 1992.



Journal of Applied Mathematics 9

[12] F. Erdogan and B. Wu, “Interface crack problems in layered
orthotropic materials,” Journal of the Mechanics and Physics of
Solids, vol. 41, no. 5, pp. 889–917, 1993.

[13] K.-P. Ma and C.-T. Liu, “Semi-weight function method on
computation of stress intensity factors in dissimilar materials,”
Applied Mathematics and Mechanics, vol. 25, no. 11, pp. 1241–
1248, 2004.

[14] L. Marsavina and T. Sadowski, “Stress intensity factors for an
interface kinked crack in a bi-material plate loaded normal to
the interface,” International Journal of Fracture, vol. 145, no. 3,
pp. 237–243, 2007.

[15] Y. Chen, P. Z. Qiao, H. D. Jiang, and Q. W. Ren, “Review
on experimental methods and fracture models for bimaterial
interfaces,”Advances inMechanics, vol. 38, no. 1, pp. 53–61, 2008
(Chinese).

[16] G. C. Sih and E. P. Chen, Cracks in Composite Materials, vol.
6 of Mechanics of Fracture, Martinus Nijhoff, The Hague, The
Netherlands, 1981.

[17] G. C. Sih and H. Liebowitz, “Mathematical theories of brittle
fracture,” in Fracture, H. Liebowitz, Ed., vol. 2, pp. 89–131,
Academic Press, New York, NY, USA, 1971.

[18] H. T. Corten, “Fracture mechanics of composites,” in Fracture,
H. Liebowitz, Ed., vol. 7, pp. 695–703, Academic Press, New
York, NY, USA, 1972.

[19] S. G. Lekhnitskii, Theory of Elasticity of an Anisotropic Elastic
Body, Science Press, Beijing, China, 1963.

[20] W.-y. Yang, J.-l. Li, and X.-x. Zhang, Method of a Complex
variable for fracture in Composite Materials, Science Press,
Beijing, China, 2005.

[21] Department ofmathematics, BeijingUniversity,AdvancedAlge-
bra, Advanced Education Press, Beijing, China, 2002.

[22] S. Q. Zhang and W.-Y. Yang, “Prediction of mode I crack
propagation direction in carbon-fiber reinforced composite
plate,” Applied Mathematics and Mechanics, vol. 25, no. 6, pp.
714–722, 2004.

[23] J.-L. Li, G.-L. Feng, B.-B. Chen, and J. Zhang, “Application of
complex method in the fracture problem of bimaterial,” Journal
of North University of China, vol. 32, no. 1, pp. 104–107, 2011
(Chinese).

[24] J.-l. Li and X.-l. Wang, “Interface end stress field of antiplane of
orthotropic bimaterials,” Applied Mathematics and Mechanics,
vol. 30, no. 9, pp. 1153–1159, 2009.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


