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By using a fixed point theorem in a cone and the nonlocal third-order BVP’s Green function, the existence of at least one positive
solution for the third-order boundary-value problem with the integral boundary conditions 𝑥󸀠󸀠󸀠(𝑡) + 𝑓(𝑡, 𝑥(𝑡), 𝑥󸀠(𝑡)) = 0, 𝑡 ∈ 𝐽,
𝑥(0) = 0, 𝑥󸀠󸀠(0) = 0, and 𝑥(1) = ∫1

0
𝑔(𝑡)𝑥(𝑡)𝑑𝑡 is considered, where 𝑓 is a nonnegative continuous function, 𝐽 = [0, 1], and

𝑔 ∈ 𝐿[0, 1].The emphasis here is that 𝑓 depends on the first-order derivatives.

1. Introduction
Third-order boundary-value problems for differential equa-
tion play a very important role in a variety of different areas
of applied mathematics and physics. Recently, third-order
boundary-value problems have been many scholars’ research
object. For example, heat conduction, chemical engineer-
ing, underground water flow, thermoelasticity, and plasma
physics can produce boundary-value problems with integral
boundary conditions [1–3]. For more information about the
general theory of integral equations and their relation with
boundary-value problems, we refer readers to the books of
Corduneanu [4] and Agarwal and O’Regan [5].

Moreover, boundary-value problems with integral boun-
dary conditions constitute a very interesting and important
class of problems. They include two, three, multipoint, and
nonlocal boundary-value problems as special cases. Such
kind of BVPs in Banach space has been studied by some
researchers [6–8].

By the fixed point index theory in cones [9], Zhang
et al. [10] investigated the multiplicity of positive solutions
for a class of nonlinear boundary-value problems of fourth-
order differential equations with integral boundary condi-
tions in ordered Banach spaces. Feng et al. [11] investigated
the existence and multiplicity of positive solutions for a
class of nonlinear boundary-value problems of second-order

differential equations with integral boundary conditions in
ordered Banach spaces. Guo et al. [12] investigated the exis-
tence of positive solutions for the third-order boundary-value
problems with integral boundary conditions and dependence
on the second derivatives. In [13], by using the fixed point
theorem of cone expansion and compression of norm type,
Zhang and Ge proved the existence and multiplicity of
symmetric positive solutions for the fourth-order boundary-
value problems with integral boundary conditions. By using
Krasnoselskii’s fixed point theorem, Wang et al. [14] investi-
gated the existence and nonexistence of positive solutions for
a class of fourth-order nonlinear differential equation with
integral boundary conditions
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where the arguments are based on Krasnoselskii’s fixed point
theorem for operators on a cone.

However, Zhao et al. [15] investigated the following
third-order boundary-value problem with integral boundary
conditions:

𝑥
󸀠󸀠󸀠

(𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) = 𝜃, 𝑡 ∈ 𝐽,

𝑥 (0) = 𝜃, 𝑥
󸀠󸀠

(0) = 𝜃,

𝑥 (1) = ∫

1

0

𝑔 (𝑡) 𝑥 (𝑡) 𝑑𝑡,

(2)

under the assumptions

(1) 𝐽 = [0, 1], and 𝜃 is the zero element of 𝐸,
(2) 𝑓 : 𝐶([0, 1] × 𝑃, 𝑃), and 𝑔 ∈ 𝐿[0, 1] is nonnegative,

where 𝑃 is a cone in the real Banach 𝐸.
All the above works were done under the assumption that

the first-order derivative 𝑥󸀠 is not involved explicitly in the
nonlinear term 𝑓. In this paper, we are concerned with the
existence of positive solutions for the third-order boundary-
value problem with the integral boundary conditions

𝑥
󸀠󸀠󸀠

(𝑡) + 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥
󸀠

(𝑡)) = 0, 𝑡 ∈ 𝐽,

𝑥 (0) = 0, 𝑥
󸀠󸀠

(0) = 0,

𝑥 (1) = ∫

1

0

𝑔 (𝑡) 𝑥 (𝑡) 𝑑𝑡.

(3)

Throughout, we assume

(𝐻
1
) 𝐽 = [0, 1], 𝑓 : [0, 1] × 𝑅2 → 𝑅

+ is continuous, 𝑔 ∈
𝐿[0, 1], 𝑔(𝑡) ≥ 0, and 𝜎 ∈ [0, 1), where 𝜎 = ∫1

0
𝑠𝑔(𝑠)𝑑𝑠.

To show the existence of positive solutions for (3), we
define two positive continuous convex functionals. Then, by
using the fixed point theorem [16] in a cone and the nonlocal
third-order BVP’s Green function, we give some new criteria
for the existence of positive solutions for (3).

2. Preliminaries

Let 𝑌 = 𝐶[0, 1] be the Banach space equipped with the norm
‖𝑥‖
0
= max

𝑡∈[0,1]
|𝑥(𝑡)|.

Lemma 1 (see [15]). Suppose (𝐻
1
) holds. Then for any 𝑦(𝑡) ∈

𝐶[0, 1], the problem

𝑥
󸀠󸀠󸀠

(𝑡) + 𝑦 (𝑡) = 0, 𝑡 ∈ 𝐽,
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󸀠󸀠

(0) = 0,
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0
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(4)

has a unique solution
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1
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2
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(6)

Lemma 2 (see [15]). For 𝑡, 𝑠 ∈ [0, 1], one has 0 ≤ 𝐺(𝑡, 𝑠) ≤
max
0≤𝑡,𝑠≤1

𝐺(𝑡, 𝑠) ≤ 1/8.

Remark 3. When 𝑡, 𝑠 ∈ (0, 1), it is easy to check that 𝐺(𝑡, 𝑠) >
0.

In addition, for 0 ≤ 𝑠 ≤ 𝑡 ≤ 1, the maximum of 𝐺(𝑡, 𝑠)
occurs at 𝑡 = (1 + 𝑠2)/2.

Lemma 4 (see [15]). Choose 𝛿 ∈ (0, 1/2) and 𝐽
𝛿
= [𝛿, 1 − 𝛿];

then for all 𝑡 ∈ 𝐽
𝛿
, V, 𝑠 ∈ [0, 1], one has

𝐺 (𝑡, 𝑠) ≥ 𝜌𝐺 (V, 𝑠) , (7)

where 𝜌 = 4𝛿2(1 − 𝛿).

Remark 5. For 0 ≤ 𝑠 ≤ 𝑡 ≤ 1, denote 𝐺(𝑡, 𝑠) = 𝐺
1
(𝑡, 𝑠). Notice

that 𝐺
1
(𝑡, 𝑠) is concave with respect to 𝑡; we have

min
𝑡∈𝐽𝛿,0≤𝑠≤𝑡

𝐺
1
(𝑡, 𝑠) = min {𝐺

1
(𝛿, 𝑠) , 𝐺

1
(1 − 𝛿, 𝑠)}

=

1

2

𝛿
2

(1 − 𝛿) .

(8)

Lemma 6 (see [15]). Assume that (𝐻
1
) holds; then

(i) 𝐻(𝑡, 𝑠) ≤ (1/2)𝛾, 𝑡 ∈ [0, 1],
(ii) 𝐻(𝑡, 𝑠) ≥ 𝜌𝐻(V, 𝑠), 𝑡 ∈ 𝐽

𝛿
, V, 𝑠 ∈ [0, 1],

where 𝛾 = (1 + ∫1
0
(1 − 𝑠)𝑔(𝑠)𝑑𝑠)/(1 − 𝜎).

Lemma 7. If 𝑦 ∈ 𝐶[0, 1], 𝑦(𝑡) ≥ 0, then the unique solution
𝑥(𝑡) of problem (4) satisfies

min
𝑡∈𝐽𝛿

𝑥 (𝑡) ≥ 𝜌‖𝑥‖
0
. (9)

Proof. By Lemmas 4 and 6 and (5), we get

min
𝑡∈𝐽𝛿

𝑥 (𝑡) = min
𝑡∈𝐽𝛿

∫

1

0

𝐻(𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠

≥ 𝜌∫

1

0

𝐻(V, 𝑠) 𝑦 (𝑠) 𝑑𝑠

≥ 𝜌𝑥 (V) .

(10)

For V ∈ [0, 1], we have

min
𝑡∈𝐽𝛿

𝑥 (𝑡) ≥ 𝜌𝑥 (V) . (11)

So,

min
𝑡∈𝐽𝛿

𝑥 (𝑡) ≥ 𝜌max
V∈[0,1]

𝑥 (V) = 𝜌max
V∈[0,1]

|𝑥 (V)| = 𝜌‖𝑥‖
0
. (12)

The proof is completed.
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Let𝑋 be a Banach space and𝐾 ⊂ 𝑋 a cone. Suppose 𝛼, 𝛽 :
𝑋 → 𝑅

+ are two continuous convex functionals satisfying
𝛼(𝜆𝑥) = |𝜆|𝛼(𝑥), 𝛽(𝜆𝑥) = |𝜆|𝛽(𝑥), for 𝑥 ∈ 𝑋, 𝜆 ∈ 𝑅, ‖𝑥‖ ≤
𝑀max{𝛼(𝑥), 𝛽(𝑥)}, for 𝑥 ∈ 𝑋, and 𝛼(𝑥) ≤ 𝛼(𝑦) for 𝑥, 𝑦 ∈ 𝐾,
𝑥 ≤ 𝑦, where𝑀 > 0 is a constant.

Theorem 8 (see [16]). Let 𝑟
2
> 𝑟
1
> 0, 𝐿 > 0 be constants and

Ω
𝑖
= {𝑥 ∈ 𝑋 : 𝛼 (𝑥) < 𝑟

𝑖
, 𝛽 (𝑥) < 𝐿} , 𝑖 = 1, 2, (13)

two bounded open sets in𝑋. Set

𝐷
𝑖
= {𝑥 ∈ 𝑋 : 𝛼 (𝑥) = 𝑟

𝑖
} , 𝑖 = 1, 2. (14)

Assume 𝑇 : 𝐾 → 𝐾 is a completely continuous operator
satisfying

(𝐴
1
) 𝛼(𝑇𝑥) < 𝑟

1
, 𝑥 ∈ 𝐷

1
∩ 𝐾; 𝛼(𝑇𝑥) > 𝑟

2
, 𝑥 ∈ 𝐷

2
∩ 𝐾;

(𝐴
2
) 𝛽(𝑇𝑥) < 𝐿, 𝑥 ∈ 𝐾;

(𝐴
3
) there is a 𝑝 ∈ (Ω

2
∩ 𝐾) \ {0} such that 𝛼(𝑝) ̸= 0 and

𝛼(𝑥 + 𝜆𝑝) ≥ 𝛼(𝑥), for all 𝑥 ∈ 𝐾 and 𝜆 ≥ 0.

Then 𝑇 has at least one fixed point in (Ω
2
\ Ω
1
) ∩ 𝐾.

3. Main Results

Let𝑋 = 𝐶1[0, 1] be the Banach space equippedwith the norm
‖𝑥‖ = max

𝑡∈[0,1]
|𝑥(𝑡)| + max

𝑡∈[0,1]
|𝑥
󸀠
(𝑡)|, and 𝐾 = {𝑥 ∈ 𝑋 :

𝑥(𝑡) ≥ 0, min
𝑡∈𝐽𝛿
𝑥(𝑡) ≥ 𝜌‖𝑥‖

0
} is a cone in𝑋.

Define two continuous convex functionals 𝛼(𝑥) =

max
𝑡∈[0,1]

|𝑥(𝑡)| and 𝛽(𝑥) = max
𝑡∈[0,1]

|𝑥
󸀠
(𝑡)|, for each 𝑥 ∈ 𝑋;

then ‖𝑥‖ ≤ 2 max{𝛼(𝑥), 𝛽(𝑥)} and 𝛼(𝜆𝑥) = |𝜆|𝛼(𝑥), 𝛽(𝜆𝑥) =
|𝜆|𝛽(𝑥), for 𝑥 ∈ 𝑋, 𝜆 ∈ 𝑅; 𝛼(𝑥) ≤ 𝛼(𝑦) for 𝑥, 𝑦 ∈ 𝐾, 𝑥 ≤ 𝑦.

In the following, we denote

𝜂
0
=

1

8

+ ∫

1

0

[

1

1 − 𝜎

∫

1

0

𝐺 (𝜏, 𝑠) 𝑔 (𝜏) 𝑑𝜏] 𝑑𝑠,

𝜂
1
= max

V∈[0,1]
∫

1−𝛿

𝛿

𝐻(V, 𝑠) 𝑑𝑠,

𝜂
2
=

2

3

+ ∫

1

0

[

1

1 − 𝜎

∫

1

0

𝐺 (𝜏, 𝑠) 𝑔 (𝜏) 𝑑𝜏] 𝑑𝑠.

(15)

We will suppose that there are 𝐿 > 𝑏 > 𝜌𝑏 > 𝑐 > 0 such
that 𝑓(𝑡, 𝑥, 𝑦) satisfies the following growth conditions:

(𝐻
2
) 𝑓(𝑡, 𝑥, 𝑦) < 𝑐/𝜂

0
, for (𝑡, 𝑥, 𝑦) ∈ [0, 1] × [0, 𝑐] × [−𝐿, 𝐿],

(𝐻
3
) 𝑓(𝑡, 𝑥, 𝑦) ≥ 𝑏/𝜌𝜂

1
, for (𝑡, 𝑥, 𝑦) ∈ [𝛿, 1 − 𝛿] × [𝜌𝑏, 𝑏] ×

[−𝐿, 𝐿],

(𝐻
4
) 𝑓(𝑡, 𝑥, 𝑦) < 𝐿/𝜂

2
, for (𝑡, 𝑥, 𝑦) ∈ [0, 1]×[0, 𝑏]×[−𝐿, 𝐿].

Let

𝑓
∗
(𝑡, 𝑥, 𝑦)

= {

𝑓 (𝑡, 𝑥, 𝑦) , (𝑡, 𝑥, 𝑦) ∈ [0, 1] × [0, 𝑏] × (−∞,∞) ,

𝑓 (𝑡, 𝑏, 𝑦) , (𝑡, 𝑥, 𝑦) ∈ [0, 1] × (𝑏,∞) × (−∞,∞) ,

𝑓
1
(𝑡, 𝑥, 𝑦)

=

{
{

{
{

{

𝑓
∗
(𝑡, 𝑥, 𝑦) , (𝑡, 𝑥, 𝑦) ∈ [0, 1] × [0,∞) × [−𝐿, 𝐿] ,

𝑓
∗
(𝑡, 𝑥, −𝐿) , (𝑡, 𝑥, 𝑦)∈[0, 1] × [0,∞) × (−∞, −𝐿] ,

𝑓
∗
(𝑡, 𝑥, 𝐿) , (𝑡, 𝑥, 𝑦) ∈ [0, 1] × [0,∞) × [𝐿,∞) .

(16)

We denote

(𝑇𝑥) (𝑡) = ∫

1

0

𝐻(𝑡, 𝑠) 𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠,

(𝑇𝑥)
󸀠

(𝑡) = ∫

1

0

𝜕𝐻 (𝑡, 𝑠)

𝜕𝑡

𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠.

(17)

Lemma 9. Suppose (𝐻
1
) holds. Then 𝑇 : 𝐾 → 𝐾 is comple-

tely continuous.

Proof. For 𝑥 ∈ 𝐾, by Lemmas 2 and 4, it is obviously that
𝑇𝑥 ≥ 0.

By Lemma 7, we have

min
𝑡∈𝐽𝛿

𝑇𝑥 (𝑡) ≥ 𝜌‖𝑇𝑥‖
0
. (18)

So, we can get 𝑇(𝐾) ⊂ 𝐾.
In the following, we will show that 𝑇 : 𝐾 → 𝐾 is

completely continuous.
At first we show that 𝑇 : 𝐾 → 𝐾 is continuous.
Let 𝑥
𝑛
, 𝑥∗ ∈ 𝐾, it satisfies ‖𝑥

𝑛
− 𝑥
∗
‖ → 0, (𝑛 → ∞),

and then there is a constant 𝑀
0
> 0, such that max

𝑡∈[0,1]

{|𝑥
𝑛
(𝑡)|, |𝑥

∗
(𝑡)|, |𝑥

󸀠

𝑛
(𝑡)|, |𝑥

∗
󸀠

(𝑡)|} ≤ 𝑀
0
; then

󵄨
󵄨
󵄨
󵄨
(𝑇𝑥
𝑛
) (𝑡) − (𝑇𝑥

∗
) (𝑡)
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

0

𝐻(𝑡, 𝑠) 𝑓
1
(𝑠, 𝑥
𝑛
, 𝑥
󸀠

𝑛
) 𝑑𝑠

−∫

1

0

𝐻(𝑡, 𝑠) 𝑓
1
(𝑠, 𝑥
∗
, 𝑥
∗
󸀠

) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

1

0

𝐻(𝑡, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
1
(𝑠, 𝑥
𝑛
, 𝑥
󸀠

𝑛
) − 𝑓
1
(𝑠, 𝑥
∗
, 𝑥
∗
󸀠

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠,

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑇𝑥
𝑛
)
󸀠

(𝑡) − (𝑇𝑥
∗
)
󸀠

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

0

𝜕𝐻 (𝑡, 𝑠)

𝜕𝑡

𝑓
1
(𝑠, 𝑥, 𝑥

󸀠

𝑛
) 𝑑𝑠

−∫

1

0

𝜕𝐻 (𝑡, 𝑠)

𝜕𝑡

𝑓
1
(𝑠, 𝑥
∗
, 𝑥
∗
󸀠

) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
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≤ ∫

1

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕𝐻 (𝑡, 𝑠)

𝜕𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
1
(𝑠, 𝑥, 𝑥

󸀠

𝑛
) − 𝑓
1
(𝑠, 𝑥
∗
, 𝑥
∗
󸀠

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠

< ∫

1

0

[

1

2

(1 − 𝑠)
2
+ (1 − 𝑠)]

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
1
(𝑠, 𝑥, 𝑥

󸀠

𝑛
) − 𝑓
1
(𝑠, 𝑥
∗
, 𝑥
∗
󸀠

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠

+ ∫

1

0

[

1

1 − 𝜎

∫

1

0

𝐺 (𝜏, 𝑠) 𝑔 (𝜏) 𝑑𝜏]

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
1
(𝑠, 𝑥, 𝑥

󸀠

𝑛
) − 𝑓
1
(𝑠, 𝑥
∗
, 𝑥
∗
󸀠

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠.

(19)

By 𝑓 which is uniformly continuous on [0, 1] × [−𝑀
0
,

𝑀
0
] × [−𝑀

0
,𝑀
0
], we get

󵄩
󵄩
󵄩
󵄩
𝑇𝑥
𝑛
− 𝑇𝑥
∗󵄩
󵄩
󵄩
󵄩
󳨀→ 0, (𝑛 󳨀→ ∞) . (20)

Next we show that 𝑇 : 𝐾 → 𝐾 is compact.
Let 𝐵 ⊂ 𝐾 be bounded; then there is𝑀 > 0, such that

‖𝑥‖ ≤ 𝑀. For 𝑥 ∈ 𝐵, we have

|(𝑇𝑥) (𝑡)| =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

0

𝐻(𝑡, 𝑠) 𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

1

0

1

2

𝛾𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

=

1

2

∫

1

0

1 + ∫

1

0
(1 − 𝑠) 𝑔 (𝑠) 𝑑𝑠

1 − 𝜎

𝑑𝑠 × 𝐶
∗
,

(21)

where 𝐶∗ = max{|𝑓
1
(𝑡, 𝑥, 𝑥

󸀠
)|; 𝑡 ∈ [0, 1], 𝑥 ∈ 𝐵}.

Consider
󵄨
󵄨
󵄨
󵄨
󵄨
(𝑇𝑥)
󸀠

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

0

𝜕𝐻 (𝑡, 𝑠)

𝜕𝑡

𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

0

[

𝜕𝐺 (𝑡, 𝑠)

𝜕𝑡

+

1

1 − 𝜎

∫

1

0

𝐺 (𝜏, 𝑠) 𝑔 (𝜏) 𝑑𝜏]

× 𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

<

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

0

[

1

2

(1 − 𝑠)
2
+ (1 − 𝑠)] 𝑑𝑠

+∫

1

0

[

1

1 − 𝜎

∫

1

0

𝐺 (𝜏, 𝑠) 𝑔 (𝜏) 𝑑𝜏] 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

× 𝐶
∗

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

3

+ ∫

1

0

[

1

1 − 𝜎

∫

1

0

𝐺 (𝜏, 𝑠) 𝑔 (𝜏) 𝑑𝜏] 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

× 𝐶
∗
.

(22)

It is clear that 𝑇(𝐵) is a bounded set in𝐾, because𝐻(𝑡, 𝑠)
is uniformly continuous on [0, 1] × [0, 1], for 𝜀 > 0, there
exists 𝛿 ∈ (0, 𝜀), such that |𝐻(𝑡

1
, 𝑠) − 𝐻(𝑡

2
, 𝑠)| < 𝜀, and for 𝑡

1
,

𝑡
2
∈ [0, 1], |𝑡

1
− 𝑡
2
| < 𝛿.

For 𝑥 ∈ 𝐵, we have

󵄨
󵄨
󵄨
󵄨
(𝑇𝑥) (𝑡

1
) − (𝑇𝑥) (𝑡

2
)
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

0

𝐻(𝑡
1
, 𝑠) 𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

−∫

1

0

𝐻(𝑡
2
, 𝑠) 𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

1

0

󵄨
󵄨
󵄨
󵄨
𝐻 (𝑡
1
, 𝑠) − 𝐻 (𝑡

2
, 𝑠)
󵄨
󵄨
󵄨
󵄨
𝑑𝑠 × 𝐶

∗
≤ 𝜀𝐶
∗
,

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑇𝑥)
󸀠
(𝑡
1
) − (𝑇𝑥)

󸀠
(𝑡
2
)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

0

𝜕𝐻 (𝑡, 𝑠)

𝜕𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑡=𝑡1

𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

−∫

1

0

𝜕𝐻 (𝑡, 𝑠)

𝜕𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑡=𝑡2

𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

0

𝜕𝐺 (𝑡, 𝑠)

𝜕𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑡=𝑡1

𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

−∫

1

0

𝜕𝐺 (𝑡, 𝑠)

𝜕𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑡=𝑡2

𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡1

0

(𝑠 − 𝑡
1
) 𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

+∫

𝑡2

0

(𝑡
2
− 𝑠) 𝑓

1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

2

󵄨
󵄨
󵄨
󵄨
(𝑡
1
− 𝑡
2
) (𝑡
1
+ 𝑡
2
)
󵄨
󵄨
󵄨
󵄨
× 𝐶
∗
≤ 𝜀𝐶
∗
.

(23)

Therefore 𝑇(𝐵) is equicontinuous. Using the Arzela-
Ascoli theorem, a standard proof yields 𝑇 : 𝐾 → 𝐾 which is
completely continuous.

Theorem 10. Suppose (𝐻
1
)–(𝐻
4
) hold. Then BVP (3) has at

least one positive solution 𝑥(𝑡) satisfying

𝑐 < 𝛼 (𝑥) < 𝑏, 𝛽 (𝑥) < 𝐿. (24)

Proof. Take

Ω
1
= {𝑥 ∈ 𝑋 : |𝑥 (𝑡)| < 𝑐,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥(𝑡)
󸀠󵄨󵄨
󵄨
󵄨
󵄨
< 𝐿} ,

Ω
2
= {𝑥 ∈ 𝑋 : |𝑥 (𝑡)| < 𝑏,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥(𝑡)
󸀠󵄨󵄨
󵄨
󵄨
󵄨
< 𝐿} ,

(25)

two bounded open sets in𝑋, and

𝐷
1
= {𝑥 ∈ 𝑋 : 𝛼 (𝑥) = 𝑐} , 𝐷

2
= {𝑥 ∈ 𝑋 : 𝛼 (𝑥) = 𝑏} .

(26)

By Lemma 9, 𝑇 : 𝐾 → 𝐾 is completely continuous, and
there is a 𝑝 ∈ (Ω

2
∩𝐾)\{0} such that 𝛼(𝑝) ̸= 0 and 𝛼(𝑥+𝜆𝑝) ≥

𝛼(𝑥) for all 𝑢 ∈ 𝐾 and 𝜆 ≥ 0.



Journal of Applied Mathematics 5

By (𝐻
2
), for 𝑥 ∈ 𝐷

1
∩ 𝐾 and 𝛼(𝑥) = 𝑐, we get

𝛼 (𝑇𝑥) = max
𝑡∈[0,1]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

0

𝐻(𝑡, 𝑠) 𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= max
𝑡∈[0,1]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

0

[𝐺 (𝑡, 𝑠) +

𝑡

1 − 𝜎

∫

1

0

𝐺 (𝜏, 𝑠) 𝑔 (𝜏) 𝑑𝜏]

× 𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< ∫

1

0

[max
𝑡∈[0,1]

𝐺 (𝑡, 𝑠) +

𝑡

1 − 𝜎

∫

1

0

𝐺 (𝜏, 𝑠) 𝑔 (𝜏) 𝑑𝜏]

× 𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

< [∫

1

0

1

8

𝑑𝑠 + ∫

1

0

(

𝑡

1 − 𝜎

∫

1

0

𝐺 (𝜏, 𝑠) 𝑔 (𝜏) 𝑑𝜏) 𝑑𝑠]

×

𝑐

𝜂
0

= [

1

8

+ ∫

1

0

(

𝑡

1 − 𝜎

∫

1

0

𝐺 (𝜏, 𝑠) 𝑔 (𝜏) 𝑑𝜏) 𝑑𝑠]

×

𝑐

𝜂
0

= 𝑐.

(27)

By Lemma 7, for 𝑥 ∈ 𝐷
2
∩𝐾 and 𝛼(𝑥) = 𝑏, there is 𝑥(𝑡) ≥

𝜌𝛼(𝑥) = 𝜌𝑏, 𝑡 ∈ 𝐽
𝛿
.

So, by (𝐻
3
), we get

𝛼 (𝑇𝑥) = max
𝑡∈[0,1]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

0

𝐻(𝑡, 𝑠) 𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

> ∫

1−𝛿

𝛿

𝐻(𝑡, 𝑠) 𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

> 𝜌∫

1−𝛿

𝛿

𝐻(V, 𝑠) 𝑑𝑠 ×
𝑏

𝜌𝜂
1

.

(28)

For V ∈ [0, 1], we have

𝛼 (𝑇𝑥) > 𝜌∫

1−𝛿

𝛿

𝐻(V, 𝑠) 𝑑𝑠 ×
𝑏

𝜌𝜂
1

. (29)

So,

𝛼 (𝑇𝑥) > 𝜌max
V∈[0,1]

∫

1−𝛿

𝛿

𝐻(V, 𝑠) 𝑑𝑠 ×
𝑏

𝜌𝜂
1

= 𝑏. (30)

By (𝐻
4
), for 𝑥 ∈ 𝐾, we have

𝛽 (𝑇𝑥) = max
𝑡∈[0,1]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

0

𝜕𝐻 (𝑡, 𝑠)

𝜕𝑡

𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

<

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

1

0

[

𝜕𝐺 (𝑡, 𝑠)

𝜕𝑡

+

1

1 − 𝜎

∫

1

0

𝐺 (𝜏, 𝑠) 𝑔 (𝜏) 𝑑𝜏]

× 𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

0

(

1

2

(1 − 𝑠)
2
− (𝑡 − 𝑠))𝑓

1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

+ ∫

1

𝑡

1

2

(1 − 𝑠)
2
𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

+ ∫

1

0

[

1

1 − 𝜎

∫

1

0

𝐺 (𝜏, 𝑠) 𝑔 (𝜏) 𝑑𝜏]

×𝑓
1
(𝑠, 𝑥, 𝑥

󸀠
) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< [∫

1

0

(

1

2

(1 − 𝑠)
2
+ (1 − 𝑠)) 𝑑𝑠

+∫

1

0

(

1

1 − 𝜎

∫

1

0

𝐺 (𝜏, 𝑠) 𝑔 (𝜏) 𝑑𝜏) 𝑑𝑠] ×

𝐿

𝜂
2

= [

2

3

+ ∫

1

0

(

1

1 − 𝜎

∫

1

0

𝐺 (𝜏, 𝑠) 𝑔 (𝜏) 𝑑𝜏) 𝑑𝑠]

×

𝐿

𝜂
2

= 𝐿.

(31)

Theorem 8 implies there is 𝑥 ∈ (Ω
2
\ Ω
1
) ∩ 𝐾 such that

𝑥 = 𝑇𝑥. So, 𝑥(𝑡) is a positive solution for BVP (3) satisfying

𝑐 < 𝛼 (𝑥) < 𝑏, 𝛽 (𝑥) < 𝐿. (32)

Thus, Theorem 10 is completed.

4. Example

Example 1. Consider the following boundary-value problem

𝑥
󸀠󸀠󸀠

(𝑡) + 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥
󸀠

(𝑡)) = 0, 0 < 𝑡 < 1,

𝑥 (0) = 0, 𝑥
󸀠󸀠

(0) = 0,

𝑥 (1) = ∫

1

0

𝑥 (𝑡) 𝑑𝑡,

(33)

where
𝑓 (𝑡, 𝑥, 𝑦)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑡

3

𝑥 + 2𝑥 +
󵄨
󵄨
󵄨
󵄨
cos𝑦󵄨󵄨󵄨

󵄨
,

(𝑡, 𝑥, 𝑦) ∈ [0, 1] × [0, 0.5] × [−3667, 3667] ,

109𝑡

3

(𝑥 − 0.5) + 25742 (𝑥 − 0.5) +

𝑡

6

+ 1 +
󵄨
󵄨
󵄨
󵄨
cos𝑦󵄨󵄨󵄨

󵄨
,

(𝑡, 𝑥, 𝑦) ∈ [0, 1] × [0.5, 0.6] × [−3667, 3667] ,

𝑡

3

(11 − 𝑥) + 222 (𝑥 + 11) +
󵄨
󵄨
󵄨
󵄨
cos𝑦󵄨󵄨󵄨

󵄨
,

(𝑡, 𝑥, 𝑦) ∈ [0, 1] × [0.6, 11] × [−3667, 3667] .

(34)

In this problem, we know that 𝑔(𝑡) = 1; then we can get
𝜎 = ∫

1

0
𝑠𝑔(𝑠)𝑑𝑠 = 1/2. Choose 𝛿 = 1/8 ∈ (0, 1/2); then 𝜌 =

4𝛿
2
(1 − 𝛿) = 7/128.



6 Journal of Applied Mathematics

Furthermore, we obtain

𝜂
0
=

5

24

, 𝜌𝜂
1
=

35

8192

, 𝜂
2
=

3

4

. (35)

If we take 𝑐 = 0.5, 𝑏 = 11, and 𝐿 = 3667, then we get
𝜌𝑏 ≈ 0.601 > 0.6:

𝑓 (𝑡, 𝑥, 𝑦) =

𝑡

3

𝑥 + 2𝑥 +
󵄨
󵄨
󵄨
󵄨
cos𝑦󵄨󵄨󵄨

󵄨
≤ 2.17 <

𝑐

𝜂
0

≈ 2.4, (36)

for (𝑡, 𝑥, 𝑦) ∈ [0, 1] × [0, 0.5] × [−3667, 3667],

𝑓 (𝑡, 𝑥, 𝑦) =

𝑡

3

(11 − 𝑥) + 222 (𝑥 + 11)

+
󵄨
󵄨
󵄨
󵄨
cos𝑦󵄨󵄨󵄨

󵄨
≥ 2575.2 >

𝑏

𝜌𝜂
1

≈ 2574.1,

(37)

for (𝑡, 𝑥, 𝑦) ∈ [𝛿, 1 − 𝛿] × [𝛿𝑏, 11] × [−3667, 3667],

𝑓 (𝑡, 𝑥, 𝑦) ≤ 4888.8 <

𝐿

𝜂
2

≈ 4889.3, (38)

for (𝑡, 𝑥, 𝑦) ∈ [0, 1] × [0, 11] × [−3667, 3667].
Then all the conditions ofTheorem 10 are satisfied.There-

fore, by Theorem 10 we know that boundary-value problem
(33) has at least one positive solution 𝑥(𝑡) satisfying

0.5 < 𝛼 (𝑥) < 11, 𝛽 (𝑥) < 3667. (39)
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