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In the paper titled “Lattices generated by two orbits of subspaces under finite classical group” by Wang and Guo. The subspaces in the
lattices are characterized and the geometricity is classified. In this paper, the result above is generalized to singular symplectic space.
This paper characterizes the subspaces in these lattices, classifies their geometricity, and computes their characteristic polynomials.

1. Introduction

In the following we recall some definitions and facts on
ordered sets and lattices (see [1]).

Let P denote a finite set. A partial order on P is a binary
relation < on P such that

() a<aforanya € P.
(2)a<bandb < aimpliesa = b.

(3)a<bandb < cimpliesa < c.

By a partial ordered set (or poset for short), we mean a
pair (P, <), where P is a finite set and < is a partial order on
P. As usual, we write a < b whenever a < b and a#b. By
abusing notation, we will suppress reference to <, and just
write P instead of (P, <).

Let P be a poset and let R be a commutative ring with the
identical element. A binary function y(a, b) on P with values
in R is said to be the Mobius function of P if

Y Hac) =

a<c<b

@

1, ifa=b,
0, otherwise.
For any two elements a,b € P, we say a covers b, denoted
byb < -a,ifb < aand there existsnoc € Psuchthatb < ¢ < a.
An element m of P is said to be minimal, (resp., maximal)
whenever there is no element a € P such that a < m, (resp.,
a > m). If P has a unique minimal, (resp., maximal) element,
then we denote it by 0, (resp., 1) and say that P is a poset

with 0, (resp., 1). Let P be a finite poset with 0. By a rank
function on P, we mean a function r from P to the set of all
the nonnegative integers such that

1) r(0) =0,
(2) r(a) = r(b) + 1, whenever b < -a.

Let P be a finite poset with 0 and 1. The polynomial

X(Px) = ) p(0,a)x"7, D)

aeP

is called the characteristic polynomial of P, where r is the rank
function of P.

A poset P is said to be a lattice if both a v b := sup{a, b}
and aAb := inf{a, b} exist for any two elements a, b € P.Let P
be a finite lattice with 0. By an atom in P, we mean an element
in P covering 0. We say P is atomic lattice if any element in
P\ {0} is a union of atoms. A finite atomic lattice P is said to
be a geometric lattice if P admits a rank function r satisfying

r(anb)y+r(avb)<r(a)+r®), Va,beP. (3)

In this section we will introduce the concepts of subspaces
of type (m, s, k) in singular symplectic spaces. Notation and
terminologies will be adopted from Wan’s book [2].

We always assume that

0 I(V)
= -1 o ) (4)
o®



Let F, be a finite field with g elements, where g is a prime

power, and let E denote the subspace of F;ZV”) generated

by €5141> €242 - - - » 214> Where e; is the row vector in Féz"”)

whose ith coordinate is 1 and all other coordinates are 0.
The singular symplectic group of degree 2v + [ over F,,
denoted by Sp,,,.,,,(F,), consists of all (2v + 1) x (2v + ?)

nonsingular matrices T over F, satisfying TK,T' = K. The

row vector space F*"*) together with the right multiplication

action of 8p,,,,,,(F,) is called the (2v + I)-dimensional sin-
gular symplectic space over F,. An m-dimensional subspace
Pin the (2v+I)-dimensional singular symplectic space is said
to be of type (m,s, k), if PK,P" is of rank 2s and dim(P N
E) = k. In particular, subspaces of type (m,0,0) are called
m-dimensional totally isotropic subspaces. Clearly, singular

symplectic group Sp,,.;,,(F,) is transitive on the set of all

subspaces of the same type in F‘gzv”), see [2, Theorems 3.22].

The results on the lattices generated by one orbit of
subspaces under finite classical groups may be found in Gao
and You [3], Huo et al. [4-6], Huo and Wan [7], Orlik and
Solomon [8], Wang and Feng [9], Wang and Guo [10], and
Wang and Li [11].

Forl < my <m, <2v-1,0 < k; <k, <1, let
L,(my, sy, ky;2v +1,v), (resp., L,(m,, s,,k,; 2v +1,v)) denote
the set of all subspaces which are sums (resp. intersections) of
subspaces in M (m,, s;, k;;2v +1,v), (resp., M(m,, s, kp; 2v +
I,v)) such that M(m,,s,, ky;2v + I,v) € Ly(my, sy, ky32v +
I,v), (resp., M(my, s;, ki;2v+1,v) € Ly(m,, 5,5, k3 2v +1,v)).
Suppose L(m,, s, ki3 my, 55, ky32v+1,v) denotes the intersec-
tion of L,(m,, s;, ky;2v+1,v) and L,(m,, s,, k,; 2v+1,v) con-
taining 0 and Féz"”). By ordering L(m,, sy, k3 M, 55, ky3 2V +
I,v) by ordinary or reverse inclusion, two families of atomic
lattices are obtained, denoted by L 5(m,, s,, k315, S5, ky3 2v +
I,v) or Lp(my, s;, ky3m,, 55, k,32v + 1, v), respectively. Wang
and Guo [12] discussed the geometricity of the two lattices
when I = 0. In this paper, we generalized their result to
general case, characterizes the subspaces in these lattices
in Section 2, classify their geometricity in Section 3, and
computes their characteristic polynomials in Section 4.

2. Characterization of Subspaces Contained in
L(my,s,,k 3m,,8,,ky;2v+1,v)

Lemmal. Let2v+1>0,0<k <L 2s<m-k <v+sand
m—k > 1. For any subspace P of type (m+1, s,k + 1), there are
two subspaces P, and P, of type (m, s, k) such that P = P, + P,.

Proof. Assume that

k, 2s
PK,P" = 0 m+l-(k+1)=2s. (5
0 k+1
Py, \ k-
Write P = (73 32 )™ 6 where Py, = ( Z > %1. Then
2v i
Py P Py P 1-(k+1)
P = ( 0 P, ) and P, = < 0 P2'2> "t are subspace of
0 z 0 z, 1

type (m, s, k), such that P = P, + P,. O
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Lemma2. Let2v+1>0,0<k<[2s<m-k<v+sand
m+ 2v+1. For any subspace P of type (m+ 1, s+ 1, k), there are
two subspaces P, and P, of type (m, s, k) such that P = P, + P,.

T By Py T
Proof. Assume that PK, P = x | K, [ x -
v N v P4l

ks 2s P, P 1-k
0, | mHeZsk2 0 write P :( 0 pz)mk ., where
! 0 k w
I 1-k-2
Py, :(x? >m+ Lo and y, are the (m + 1 — (k + 1))-th and
N
(m — k + 1)-th row vectors of P,;, respectively.

U
Ry m+1-k-2

P, = x ,x; and y{ arethe m + 1 — (k + 1))-th

Y1
and (m — k + 1)-th row vectors of P,,, respectively.
Then

Py Pp\ m+1-k-2
P =1 x, x; 1
, (6)
Py By\ m+1-k-2
PB=|n »n 1
0 P, k
are subspace of type (m, s, k), such that P = P, + P,. O

Theorem 3. Let 2v + 1 > 0, assume that (m, s, k), (m;, s1, k;)
satisfy0 <k <L, 2s<m-k<v+s,0<k, <,2s<m, -k, <
v + s. For any subspace P of type (m, s, k), there are subspace
P,P,,..., P oftype (my,s,, k,) such that P = P, + P, +---+ P,
if and only if

(i) s=s, =, 0<k <k<l, 7)

(ii) s < v, ky=k=1,
(8)

m-m; >2s—s 20,
(iii) s < v, 0<k <k<],
9)

(m—k)—(m; —k;)>s—s; >0.

Proof. Suppose that (m, s, k) and (m;, 51, k,) satisfy condition
(7). Let k — k; = h(h = 0),sinces = s, = v,m = 2v +
k,m;, = 2v+k,m-m =k—-k, = h, By Lemma 1 the
desired result follows. Suppose (m, s, k) and (m,, s,, k; ) satisfy
condition (8). Let s —s, = t,m—m; = t+t(t,t = 0).
By Lemma 1, any subspace of type (m,s,]) is the sum some
subspaces of type (m — t,s,1). By Lemma 2, any subspace of
type (m —t, s,1) is the sum some subspaces of type (m,, s;,1).
Hence the desired result follows.

Suppose (m,s, k) and (m,,s;,k;) satisfy condition (9).
Let s —s; = ttk—-k; = hm-m = t+h+
t' (t,t',h > 0), By Lemma 1, we have any subspace of type
(m, s, k) is the sum some subspace of type (m — s, k). By
Lemma 2, we have any subspace of type (m — t', s,k) is the
sum some subspace of type (m — t' — t,s,,k). By Lemma 1,
we have any subspace of type (m — t' — t,5,,k) is the sum
some subspace of type (m;, s;, k,). Hence the desired result
follows.

Conversely, If s, = v,thens = v, k; < . Let Q €
M(m,v,k;2v + 1,v), there exists P € M(m,,v,k;2v + [, v),
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such that P ¢ Q,hence PNE c QNE, k; = dim(PNE) <
dim(Q N E) = k. Therefore,s = s; = v,0 < k; < k <[,
condition (7) hold.

If s, <v,let P e M(my,v,k;32v+1,v),Q € M(m, v,k :
2v+1,v),suchthat P ¢ Q, then PNE c QNE,and k; =
dim(PNE) <dim(QNE) = k. Ifk, =, thenk =landm, >,
Assume Q = (QO“ 8;;)”‘1’1 where rank Q;; = m — [, rank

2v 1
Q,, =land Q;;KQ" = M(m~-1,s). Since PNE ¢ QNE, there
exists a I x| matrix P,, with rank P,, = [, such that P,,Q,, isa
matrix representation of subspace PN E. Thus we can assume
P = (Pg)1 P ) ™1 where P}, is a matrix with rank m, — L.

22 1
2v 1

Because P is a subspaces of type (m,,s;,l), we can assume
P M(m~-1,5)P;, = M(m, —1,s). Then Q;; can be considered
as a subspace of type (m; — I, s,) in singular symplectic space
FRstm=2D) ‘Hencem, —1—s—s, < m—2s -1, condition (8)
hold. Similarly we also can prove condition (9) hold. O]

Theorem 4. Let 2v + I > 0, assume that (m,s, k) and
(my, sy, k,) satisfy0 <k <L, 2s<m-k<v+s0<k, <l
2s, < m, —k, < v+ s. For any subspace P of type (m, s, k),
there are subspace P,, PZ, s P of type (m,, s,, k,) such that
P=P NP,N---NP;ifand only if
(i)s=s,=v,0<k, <k<]
(i) s<wky=k=landm,-m>s,—s >0,

(iii) s< v,k <k, <land (m, —k,) —(m—k) >s,—s > 0.
Proof. By [3], it is directed. O

Theorem 5. For 1 < m; < m, < 2v + I, L(my, s, k;;
My, Sy, K332V + 1, v) consist of {0}, F;Z"”) and all subspaces of
type (m, s, k) in Féz‘”l) such that

()s=s,=5=v0<k <k, <k<]

(ii)s <v,ky=k=k,=landm-m, >s—-s, >0,
m,—mz>=s,—s20,

(iii) s < v, ky < k <k, < land (my, —k,) —(m-k) >
=520, (m—k)—(my—k;)>s-s, >0.

Proof. By Theorems 3 and 4, it is directed. O

3. The Geometricity of Lattices
Lo(my,s,,k 5my,8,,ky;2v + 1,v) and
L p(my,s, .k 3m,,s,,ky32v + Lv)

Lemma 6 (see [3]). If0 < k <1, then

(i) Lr2v+k, v, k; 2v+1,v) = Lg(k, ), Lo2v+k, v, k; 2v+
I,v) = Lo(k, 1),

(ii) Ly(k,0,k;2v + 1,v) = Lp(k,1), Lo(k,0,k;2v + [, v) =
Lok, D).

Lemma 7 (see [3]). If0<s<vand2s<m-—I1<v+s, then

(i) Lp(m, s, ;2v+1,v) = Ly(m—1,s;2v), Lo(m, s, 2v +
L,v) = Lo(m—1,s2v),

(ii) Lr(m,s,0;2v + I,v) = Lyp(m,s;2v), Lo(m,s,0;2v +
I,v) = Lo(m, s; 2v).

Theorem 8. Let 2v + I > 0. Assume that (my,s;, k),
(my, 5, k,) satisfies 0 < ky < I, 2s) < my —k; < v+,
0<k,<L2s,<my—ky<v+s,andl <m; <m, <2v+1
Then

(i) Lotk +1,0,k;2v — 1 + k,v — 1,k; 2v + [, v) is a finite
geometric lattice if and only if k = 0,1,

(ii) Lo(k, 0,k;2v + k,v,k;2v + 1,v) is a finite geometric
lattice if and only if k = 1,1 - 1,

(iii) Lo(my, sy, ky3my, 55, ky32v + 1, v) is not a geometric
lattice when2 < m; —k; <m, —k, <2v-2.

Proof. For any X € Ly(my, s, ki3 my, s, k,32v +1,v), define
0, if X =0,

if X = Pq‘”*’) . (10)
otherwise.

ro(X) = 1m, —m; +2,

dim X —my + 1,

Then rg, is the rank function of L5(m,, s;, ky;m,, 85, ky;2v +
Lv).

(i) For lattice Lo(k + 1,0, k;2v — 1+ k,v — 1, k; 2v + L, v).

Ifk =0,byLemma7,L,(1,0,0;2v—-1L,v—-1,0;2v+1,v) =
Lo(1,0,2v—-1,v—1;2v),by [12], Lo(k+1,0,k;2v—1+k,v—
1,k;2v + I, v) is a finite geometric lattice.

Ifk=1byLemma7, Lo(I+1,0,;2v-I+L,v-1,52v+
I,v) = L5(1,0,2v — 1,v — 1;2v), by [12], Lo(k + 1,0, k; 2v —
1+k,v—1,k;2v +1,v) is a finite geometric lattice.

If0 < k < L. Let U = (e}, €315+ --r€p4) a0d W =
(€y41>€2v425 - - - » €2sks1)> then U and W both are of type (k +
1,0,k), (U, W) is of type (k + 3,1,k + 1), (U,W) € Lok +
L,0,ks2v — 1 + k,v — Lk;2v + Lv), U N W is of type
(k= 1,0,k — 1), hence ro(U AW) = 0, 7o(UV W) = 3,
ro(U) = ro(W) = 1. We have

roUAW) +15(UVW) =35> 1o (U) + 15 (W) = 2. (11)

Thatis Lo(k + 1,0,k;2v = 1 + k,v — 1,k; 2v + [,v) is not a
geometric lattice when 0 < k < .

(ii) For lattice Ly(k,0,k;2v + k,v,k;2v + L,v), by
Lemma 6 L5(k, 0,k;2v + k, v, k; 2v + I, v) = Lo(k, ).

Ifk=1,1-1,Lo(1,1) and L 5(I-1,1) is a geometric lattice.

If2 < k < 1-2,]letwv,v,,...,u, be a basis of Fél).
Since 2 < k < I -2, wecan take U = (v},05,...,0),
W = (U3,U4...,Uppp) € Lo(k,D). Hence U A W = {0},
UVW = (UW), rgUAW) = 0, r5(UV W) = 3,
ro(U) = ro(W) = 1. We have

rTo(UAW)+ro(UVW)=3>r5U)+ro(W)=2. (12)

Thatis Ly(k, 0, k; 2v+k, v, k; 2v+1, v) is not a geometric lattice
when2 <k <[-2.

(iii) For lattice L5(m,, sy, k3 ™y, S5, ky3 2v+1,v), when 2 <
my —ky <my, —k, <2v-2.



Case (a). k; <k, <.
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(a;) s, > 0, Let

[0 0 0 0 0 0 0 o
0 0 0 0 1) 0 0 0 o0
U= 0 0 [Mmk) 0 0 0 0 o 0 ),
0 o 0 0 0 0 0 1) 0
$5=1 1 my—k, =25, vis,—my+k, s, my—k,—2s, vis,—my+k, k, -k (13)
0 O 0 1 0 0 0 0 0 0
w=1\0 o0 0 0 0 0 0 0 1% o).
S5=1 1 my—k,~-2s, 1 vts,—-my+k, s, my—k,—2s, v+s,-m,+k, k, I-k,
Then U is a of type (m, — 1,5, — 1,k,), W is a of type to(UVW)+1ro(UAW) > 15 U) +1ro(W). (14)

(k, +1,0,k,), (U, W) isaof type (m,,s, — 1, k), ro(UVW) =
ro(Flgz‘”l)) =my —m +2,15(UAW) = k, —m; + 1,
roU) =my—1-m;+1 =my—m;,ro(W) =k, +1-m;+1 =
ky—my +2,ro(UVW) +1ro(UAW) =m, —2m; +k, + 3,
roU) + ro(W) = m, — 2m, + k, + 2. We have

I 0 0 0
0 0 0 0
u=| o 1R g 0
0 0] 0 0
Sy my—k,—25,—-1 1 v+s,—-m,+k,
0 0 0
W=\0 0 0

S5 1 v=s,-13s 1 v-s,-1

Then U is a of type (m, — 1,s,,k,), W is a of type (k, +

1,0,k,), (U, W) is a of type (m,, s, + 1, k,), clearly, we have
rto(UVW)+1ro(UAW) >roU) +15(W). (16)

Hence, L(my, sy, k;3m,, 8,5, k,32v + 1,v) is not a geometric
lattice when (a,).

Case (b). k; =k, =1

In this case Ly(my, sy, my, 85, 52v + L,v) = Lo(m; —
Ls;smy, — 1,55;2v), Lo(my, sy, lsmy, $5,12v + 1,v) is not a
geometric lattice.

Hence L (my, sy, ky3m,, 55, ky; 2v+1, v) is not a geometric
lattice when 2 < m; —k; <m, —k, <2v-2. O

Theorem 9. Let 2v + I > 0. Assume that (my,s;, k),
(my, 5,5, k,) satisfies 0 < ky < I, 2s) < m; —k; < v+sy,
0<k,<L2s,<my—k,<v+s,andl <m; <m, <2v+1
Then

(i) Ltk + 1,0,k2v =1 + k,v — 1,k; 2v + I, v) is a finite
geometric lattice if and only ifk = 0,1,

(ii) Lgx(k,0,k;2v + k,v,k; 2v + 1, v) is a finite geometric
lattice if and only if k = 1,1 - 1,

Hence, Lo(my, sy, ky3m,, 85, ky32v + 1,v) is not a geometric
lattice when (a,).
(a,) s, >0,m, —k, =v+s,ors, =0.
Whens, = 0, we havem,—k,—-2s, > 1,whens, > 0,m,-k, =
v+sy, wehavev-22>s,,m,-k,-2s,-1=v-s,-12>1.
Let

0 0 0 0 0 o
1 0 0 0 0 0
0 0 0 0 o 0 |,
0 0 0 0 % 0
s, mMy—ky—25,—1 1 vis,—my+k, k, 1=k, (15)
10 0 0 0
oo o 1% 0> .
k, =k,

(iii) Lg(my, sy, ki3 my, 55, k532v + 1,v) is not a geometric
lattice when2 <m, —k; <m, —k, <2v-2.

Proof. (i) For X € Ly(my, s,k 3my, 55, ky32v +1,v), define

0, if X= F;@””)),
TRex) = 1My — My +2, if X =0, 17)
m,+1—-dimX, otherwise.

For lattice Lp(k +1,0,k;2v — 1+ k,v—1,k;2v + I, v).

Ifk = 0,by Lemma7, Lx(1,0,0;2v—-1,v—1,0;2v+1,v) =
Lp(1,0,2v—1,v—1;2v),by [12], Lg(k+ 1,0, k;2v—1+k,v —
1,k;2v + 1, v) is a finite geometric lattice.

Ifk=1byLemma7, Ly(l+1,0,;2v—-1+Lv—1L2v+
I,v) = Lp(1,0,2v — 1,v — 1;2v), by [12], Lp(k + 1,0, k; 2v —
1+k,v—1,k2v+1,v) is a finite geometric lattice.

If0o < k < LletU (€1 > €y 1> slr--e»
62v>62v+17 e ’ez’\/+k>’W = <62’ e ’ev’ ev+2’ e ’62v+1’ 62v+2’

.o»€.%)- Then U, W both are of type (2v — 1 + k,v — 1,k),

UAW = (U,W)isoftype 2v+1+k,v,k+1),UVW =UnW
is of type (2v — 3 + k, v, k). We have

rUAW)+r(UVW)=3>rU)+r(W)=2.

(18)
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Hence, Ly(k +1,0,k;2v — 1+ k,v — 1,k;2v + [, v) is not
a geometric lattice when 0 < k < [.

ORI 0 0
o O 0 0
o 1 0 0
U= 0 0 I(ml—kl—Zsl) 0
0 o 0 0
S 1 m =k —2s v+s—-m;+k—-1
o I9 0 0
0 0 0 0
0 0 0 0
W= 0 o [mk-2s) 0
0 o 0 0
1 s my—k -2, v+s-my+k—1

Then U,W are of type (m; + 1,s;,k;), U N W is of
type (my,s; — L k), (UW) is of type (m; + 1,s;,k;),
(U,W) € Lglmy, s, kysmy, sy kys2v + Lv), UNW ¢
Lp(my, sy, kismy, sy, ky32v + 1Lv).

Sorg(UVW) =my —m; +2,rg(UAW) =m, —m, — 1,
rrU) =m, +1—(m; + 1) = my —m; = rp(W). We have

rR UAW) +r, (UVW)

=2m, —2my +1

© 00 0 0
o 00O 0 0
0 10 0 0
U= o 01 0 0
0 00 [mH2 0
0 00 0 0
0 0o 0 0
5 1 1 my—k-2s v+s—-my+k
@ 00 0 0
o 00O 0 0
o 00O 0 0
01 0 0
W= 8 00 I(ml*rzsl) 0
0 00 0 0
0 0o 0 0
5 1 1 my—k-2s v+s—-my+k

Then U, W are of type (m; + 1,s; + Lk;), U N W is of
type (my,s; + 1, k), and (U, W) is of type (m; + 2,s; + 2,
k).

(ii)if k = 0,I-1,by Lemma 7 Ly(k,0,k;2v +k,v,k; 2v +

I,v) = Lp(k,l)whenk = 1,I-1, Lg(k, 0, k; 2v+k, v, k; 2v+1, v)
is a geometric lattice.

—~

I

0
0
1
0
0
1

If2 <k <1-2,by|[7], Lg(k,1) is not a geometric lattice.
(iil) Case (a). if m; —k; < v+s;, then v+s,—m; +k; -1 > 0.
Let

— o o oo o
o o oo o
o oo o
~
Fo oo o

my—k =28, v+s-my+k Kk
(19)
0

(s1)

S O O O

0
=28 v+s—my+k -1

o o o
SO o o0 o

my—

>rp (U) +1rg (W)

=2m, — 2my,.
(20)

Hence Ly(my, s, ky;my, s,,ky32v + 1,v) is not a geometric
lattice when (a).

Case (b). m; —k; = v+ s, fromm; —k; = v+ s, and
2<my—k, <2v-2,wehavev—-22>s,m —k —2s, -2 =
v—-s5-220.

Let

00 0 0 0 o
00 0 0 0 0
00 0 0 0 0
00 0 0 0 0
00 0 0 0 0 ’
01 0 0 0 0
00 0 0 % 0

11 m—k-25 vis—-m+k k Ik

(21)

00 0 0 0 o

00 0 0 0 0

10 0 0 0 0

00 0 0 0 0

00 0 0 0 0

01 0 0 0 0

00 0 0 % 0

11 m—k-2s v+s—m+k Kk I-k

Sorg(UVW) =m, —m, rg(UAW) = my+1—(m, +2)
my —my — Lrg(UAW) +rg(UVW) =2m,-2m; +1>

rrU) + rx(W) = 2m, — 2my.



Hence L z(m,, s, k;;my, 55, ky3 2v+1, v) is not a geometric
lattice when (b).

Hence L z(m,, s, k;; my, 55, ky3 2v+1, v) is not a geometric
lattice when 2 <m; —k; <m, —k, <2v-2.

4. Characteristic Polynomial of Lattice
L p(my,s,,k 5m,,8,,k,52v+1v)

In this section we compute the characteristic polynomial of
the lattice L g(m1y, sy, k1315, 55, ky; 2V + 1, V).

Theorem 10. Let 2v + [ > 0, Assume that (m,s, k) satisfies
0<k<L2s<m-k<v+sand0<m<2v+1 Then
X (Lg (my, s, kismy, 55, ky32v +1Lv) ,t)

_ tmz—m1+2

k s my—(k—ky)+(s—s;)

D)

k=k, slem:mz—(kz—k)+(sz —s)+1

N (m,s,k;2v +1,v) g, (t)

ki si—1 v+s+k

+ Z Z Z N (m,s,k;2v +1,v) g,, (£)

k=0 s=0 m=2s+k
v vts+k

I
+Z z Z N (m,s,k;2v +1,v) g, (1),

k=k, s=s,+1 m=2s+k

(22)
where g,,(t) = TTI"5 (t — 4).
Proof. Define
0 if X = F2v
b q b
rr(X) = {my, —m; +2, it X ={0}, (23)

m, +1—dim (X), otherwise.

Then ry is the rank function on Lgz(my, s, ky;m,,s,,
ky32v + Lv). Let V. = FX, Lo = Lp@v+1Lv), L =
Lp(my, sy, ki3my, sy, k5 2v + [, v) we have

2v+l-1

x(Lot) =[] (t-4). (24)

For any P € L, define
I’ ={QeL|QcP}={QeL|Q=P},

(25)
1 ={QelolQcPl={Qely| Q= P}.
Clearly, LV = L, L” = L}, when P#{0}, P#V
X (L) = x L.ty = Y (0, PO ®
PeL
(26)
= Z” (0) P) tT(O)*T’(P).

PeL

By inversion to Mobius we have

XLty =x (LV,e) =¢mm2 = N 4 (Lhe),  (27)
PeLl\{V}

Journal of Applied Mathematics

by Theorem 5 we have
x (Lg (my,s1,ky3my, 85, k3 2v + 1,v) ,f)

_ tmz—m1+2

ky s, my—(k—ky)+(s—s;)

D)

k=ky =Stm=m,—(k,~k)+(s,—s)+1

N (m, s, k;2v+1,v) g, (t)

ki s;—1 vis+k

+ Z Z Z N (m,s,k2v +1,v) g, (t)

k=0 s=0 m=2s+k
v vts+k

I
+Z Z Z N (m,s,k;2v +1,v) g, (t).

k=k, s=s,+1 m=2s+k

(28)
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