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Three numerical methods have been used to solve the one-dimensional advection-diffusion equation with constant coefficients.
This partial differential equation is dissipative but not dispersive. We consider the Lax-Wendroff scheme which is explicit, the
Crank-Nicolson scheme which is implicit, and a nonstandard finite difference scheme (Mickens 1991). We solve a 1D numerical
experiment with specified initial and boundary conditions, for which the exact solution is known using all these three schemes
using some different values for the space and time step sizes denoted by h and k, respectively, for which the Reynolds number is 2 or
4. Some errors are computed, namely, the error rate with respect to the 𝐿

1
norm, dispersion, and dissipation errors. We have both

dissipative and dispersive errors, and this indicates that the methods generate artificial dispersion, though the partial differential
considered is not dispersive. It is seen that the Lax-Wendroff and NSFD are quite good methods to approximate the 1D advection-
diffusion equation at some values of k and h. Two optimisation techniques are then implemented to find the optimal values of k
when ℎ = 0.02 for the Lax-Wendroff and NSFD schemes, and this is validated by numerical experiments.

1. Introduction

The significant applications of advection-diffusion equation
lie in fluid dynamics [1], heat transfer [2], and mass transfer
[3]. The 3D advection-diffusion equation is given by
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The coefficient of diffusivity is denoted by 𝛼 and is
computed as 𝛼 = 𝐶

𝑇
/𝑝𝐷
𝑝
, where 𝑝, 𝐷

𝑝
, and 𝐶

𝑇
denote

the pressure, specific heat of the fluid at constant pressure,
and thermal conductivity, respectively. Also 𝐴, 𝐵, and 𝐶 are
the velocity components of the fluid in the directions of 𝑥,
𝑦, and 𝑧, respectively. Equation (1) is also referred to as the
convection-diffusion equation. The three terms 𝐴(𝜕𝑢/𝜕𝑥),
𝐵(𝜕𝑢/𝜕𝑦), and𝐶(𝜕𝑢/𝜕𝑧) are called the advective or convective
terms and the terms 𝛼(𝜕2𝑢/𝜕𝑥2), 𝛼(𝜕2𝑢/𝜕𝑦2), and 𝛼(𝜕2𝑢/𝜕𝑧2)
are called the diffusive or viscous terms.

In this paper, we consider the one-dimensional
convection-diffusion equation given by

𝜕𝑢

𝜕𝑡
+ 𝑎

𝜕𝑢

𝜕𝑥
= 𝛼

𝜕
2
𝑢

𝜕𝑥2
, (2)

with 𝑎 = 1, 𝛼 = 0.01, 0 ≤ 𝑥 ≤ 1, and 0 < 𝑡 ≤ 𝑇.
We denote the spatial and temporal step sizes by ℎ and 𝑘,

respectively. The cfl number, 𝑐, is computed as 𝑎𝑘/ℎ, and the
parameter, 𝑠, is obtained as 𝛼𝑘/ℎ2.

The initial condition is 𝑢(𝑥, 0) = 𝑓(𝑥), and boundary
conditions are

𝑢 (0, 𝑡) = 𝑔
0
(𝑡) , 0 < 𝑡 ≤ 𝑇,

𝑢 (1, 𝑡) = 𝑔
1
(𝑡) , 0 < 𝑡 ≤ 𝑇,

(3)

where 𝑓, 𝑔
0
, and 𝑔

1
are known functions.

There has been little progress in obtaining analytical
solution to the 1D advection-diffusion equation when initial
and boundary conditions are complicated, even with 𝛼 and 𝑎
being constant [4].This is the reason why numerical solution
of (2) is important.
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The paper is organised as follows. In Section 2, we
study the damping and dispersive characteristics of some
numerical methods for the 1D advection diffusion equation.
In Section 3, we show how to quantify the errors from the
numerical results into dissipation and dispersion errors by
using a technique devised by Takacs [5]. In Section 4, we
describe the numerical experiment that we have considered
and show how to choose the parameters 𝑘 and ℎ to run
the numerical experiments. Sections 5 and 6 describe some
explicit and implicit methods, and we study their dissipative
and dispersive properties. Also, we tabulate the errors when
the methods are used to solve the numerical experiment
described in Section 6. In Section 7, we present a nonstandard
finite difference (NSFD) scheme, analyse its spectral prop-
erties, and also use it to solve the numerical experiment. In
Section 8, we find the optimal value of 𝑘when ℎ = 0.02 for the
Lax-Wendroff and NSFD schemes and validate these using
the numerical experiment. Section 9 highlights the salient
features of the paper.

2. Dissipative and Dispersive Characteristics of
Numerical Methods

Dissipation is defined as the constant decrease with time of
the amplitude of plane waves, as they propagate in time. If
the modulus of the amplification factor, denoted by AFM
is equal to one, a disturbance neither grows nor damps [6].
The modulus of the amplification factor is also a measure of
the stability of a scheme. If this value is greater than one,
this creates instability, while damping is present whenever
the value is less than one [7]. When the modulus of the
amplification factor exceeds one, this indicates an unstable
mode [8].

Since our partial differential equation is 𝑢
𝑡
+ 𝑎𝑢
𝑥
= 𝛼𝑢
𝑥𝑥
,

we will have dissipation, this is caused because of the term
𝑢
𝑥𝑥
, and such dissipation is called implicit dissipation. We

can also have artificial dissipation which is caused due to the
numerical method.

We let the amplification factor of the scheme approximat-
ing (2) be

𝜉 = 𝜉
1
+ 𝐼𝜉
2
. (4)

Then the modulus of the amplification factor, denoted by
AFM, is computed as |𝜉|.We now showhow the relative phase
error (RPE) of a given numerical scheme approximating (2)
is obtained.

A perturbation for 𝑢 is obtained by substituting 𝑢 by
exp(𝐼(𝑤

1
𝑡 − 𝜃𝑥)) where 𝑡 and 𝑥 represent time and space,

respectively, 𝜃 is the wavenumber, and 𝑤
1
is the dispersion

relation [9].
We then obtain
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2
= 0, (5)

where 𝐼 = √−1, which on simplification gives

𝑤
1
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2
𝐼. (6)

Hence, the dispersion relation is given by

𝑤
1
= 𝑎𝜃 + 𝛼𝜃

2
𝐼. (7)

The exact phase velocity is computed as R(𝑤
1
)/𝜃 which

simplifies as 𝜃. We next obtain the numerical phase velocity.
From (4), we have 𝜉 = 𝜉

1
+ 𝐼𝜉
2
. We can express 𝜉 as

exp(−𝑏𝑘) [9] where 𝑏 is the exponential growth rate.
Therefore, we have exp(−𝑏𝑘) = 𝜉

1
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2
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) . (8)

The numerical phase velocity is computed as I(𝑏)/𝜃 and is
equal to

−
1

𝑘𝜃
tan−1 (𝜉2

𝜉
1

) . (9)

The phase angle, 𝑤, is computed as 𝑤 = 𝜃ℎ where 𝜃 is
the wavenumber and ℎ is the spatial step. The relative phase
error (RPE) is a measure of the dispersive character of a
scheme. This quantity is a ratio and measures the velocity of
the computed waves to that of the physical waves. Hence, we
have

RPE = − 1

𝑘𝜃𝑎
tan−1 (I (𝜉)

R (𝜉)
) . (10)

Since 𝑤 = 𝜃ℎ and 𝑐 = 𝑎𝑘/ℎ, we can express (10) as

RPE = − 1

𝑐𝑤
tan−1 (I (𝜉)

R (𝜉)
) . (11)

If the RPE is greater than one, the computedwaves appear
tomove faster than the physical waves [10] thus causing phase
lead. A ratio less than one implies that the computed waves
will move slower than the physical waves, causing phase lag.

3. Quantification of Errors from Numerical
Results [5, 11, 12]

In this section, we describe how Takacs [5] quantifies errors
fromnumerical results into dispersion and dissipation errors.

The Total Mean Square Error is calculated as
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where 𝑢
𝑖
represents the analytical solution and V

𝑖
represents

the numerical (discrete) solution at a given grid point, 𝑖.
The Total Mean Square Error can be expressed as
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The Total Mean Square Error can be further expressed as
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The expression in (15) can be rewritten as
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where 𝜎
2
(𝑢) and 𝜎

2
(V) denote the variance of 𝑢 and V,

respectively, 𝑢 and V denote the mean values of 𝑢 and V,
respectively.

Thus, the Total Mean Square Error is given by
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which on further simplification yields
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Thus, we have
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But the correlation coefficient, 𝜌, is given by
Cov(𝑢, V)/𝜎(𝑢)𝜎(V). Hence, the Total Mean Square Error can
be written as
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which simplifies to
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On putting 𝜌 = 1, we get 2(1 − 𝜌)𝜎(𝑢)𝜎(V) = 0. Thus, we
define (2(1−𝜌)𝜎(𝑢)𝜎(V)) as the dispersion error as correlation
coefficient in statistics is analogous with phase lag or phase
lead in Computational Fluid Dynamics.

Consequently, (𝜎(𝑢) − 𝜎(V))
2
+ (𝑢 − V)

2 measures the
dissipation error.

We also obtain values of the error rate with respect to the
𝐿
1
norm which is calculated as

𝐸num =
1
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󵄨󵄨󵄨󵄨 ,
(22)

where 𝑢
𝑖
and V

𝑖
are the exact and computed values, respec-

tively, and𝑁 is the number of spatial grid points.

4. Choice of the Parameters ℎ and 𝑘

We refer to [4] where three explicit methods are used to solve
the partial differential equation

𝑢
𝑡
+ 0.8𝑢

𝑥
= 0.008𝑢

𝑥𝑥
, (23)

where

𝑢 (𝑥, 𝑡 = 0) = exp(−(𝑥 − 2)
2

8
) ,

𝑔
0
(𝑡) = √

20

20 + 𝑡
exp[− (5 + 4𝑡)

2

10 (𝑡 + 20)
] ,

𝑔
1
(𝑡) = √

20

20 + 𝑡
exp[−2(5 + 2𝑡)

2

5 (𝑡 + 20)
] .

(24)

Tests were carried out for three values of the cell Reynolds
number, 𝑅

Δ
= 𝑐/𝑠, namely, 𝑅

Δ
= 2, 4, 8 [4].

Since 𝑐 = 0.8𝑘/ℎ and 𝑠 = 0.008𝑘/ℎ2, we can express 𝑅
Δ
in

terms of ℎ, in that case we have 𝑅
Δ
= 100ℎ. Thus, for 𝑅

Δ
=

2, 4, 8, the corresponding values of ℎ are 0.02, 0.04, and 0.08,
respectively.

Since 𝑐 = 0.8𝑘/ℎ and ℎ = 0.02, 0.04, 0.08, we have the
following relationships between 𝑐 and 𝑘, namely, 𝑐 = 40𝑘, 𝑐 =
20𝑘, and 𝑐 = 10𝑘.

Then three values of 𝑐were chosen as 0.16, 0.32, and 0.64,
and then the corresponding values of 𝑘 determined as 0.004,
0.008, 0.016, 0.032, 0.064. For these values of 𝑘, the number of
time steps,𝑀, are calculated as𝑀 = 1/𝑘, and hence𝑀 take
the following values, namely, 250, 125, 62.5, 31.25, and 16.625,
respectively. However, we note that𝑀 can only be an integer.
Hence, an improvement can be made when choosing 𝑐 and 𝑘
while keeping 𝑅

Δ
= 2, 4, 8 and ℎ = 0.02, 0.04, 0.08.

We next refer to [13] where both explicit and implicit
methods have been used for numerical solution of the
one-dimensional advection-diffusion equation in a region
bounded by 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑡 ≤ 1 [3], with 𝑎 = 1, 𝛼 = 0.01
and with the following initial and boundary conditions:

𝑢 (𝑥, 0) = exp(−(𝑥 + 0.5)
2

0.00125
) ,

𝑢 (0, 𝑡) =
0.025

√0.000625 + 0.02𝑡
exp(− (0.5 − 𝑡)

2

(0.00125 + 0.04𝑡)
) ,

𝑢 (1, 𝑡) =
0.025

√0.000625 + 0.02𝑡
exp(− (1.5 − 𝑡)

2

(0.00125 + 0.04𝑡)
) .

(25)
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The exact solution is given by

𝑢 (𝑥, 𝑡) =
0.025

√0.000625 + 0.02𝑡
exp(− (𝑥 + 0.5 − 𝑡)

2

(0.00125 + 0.04𝑡)
) .

(26)

The values of ℎ and 𝑘 used were 0.02 and 0.004, respec-
tively, for all the numerical methods considered in [13].

In our work, we consider both implicit and explicit
schemes to solve

𝑢
𝑡
+ 1.0𝑢

𝑥
= 0.01𝑢

𝑥𝑥
, (27)

subject to boundary conditions given by (25).
We consider two values for 𝑅

Δ
, say 2 and 4.Thus, we have

𝑅
Δ
= 100ℎ as 𝑎 = 1 and 𝛼 = 0.01. For 𝑅

Δ
= 2 and 4, we

have ℎ = 0.02 and 0.04, respectively. Hence, 𝑐 = 𝑘/0.02 and
𝑐 = 𝑘/0.04, and therefore we have 𝑐 = 50𝑘 and 𝑐 = 25𝑘.

We consider the case when 𝑐 = 50𝑘. If we choose 𝑐 = 0.25,
0.50, and 1.0, then the values taken by 𝑘 are 0.01, 0.02, and
0.04, respectively.

Next we consider 𝑐 = 25𝑘. If we choose 𝑐 = 0.25, 0.5, and
1.0, we have 𝑘 = 0.01, 0.02, and 0.04, respectively.

Hence, for ℎ = 0.02, the values taken by 𝑘 are 0.005, 0.01,
and 0.02. For ℎ = 0.04, 𝑘 can take the values 0.01, 0.02, and
0.04. Some of these possibilities might give rise to an unstable
scheme and must be ignored.

However, for implicit methods, all the 6 combinations of
𝑘 and ℎ are possible, and we can also consider the case when
𝑐 = 2.0 instead of only the three cases, namely, 𝑐 = 0.25, 0.5,
and 1.0.

5. Construction of Explicit and Implicit Finite
Difference Methods

We can approximate 𝜕𝑢/𝜕𝑥 as
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𝑛
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𝑛
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𝑖
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ℎ
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Hence, an approximation for 𝜕𝑢/𝜕𝑥 is
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(1 − 𝛾) (𝑢

𝑛

𝑖
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𝑖
)

ℎ
] ,

(30)

where ℎ represents the spatial step size, 𝜙 and 𝛾 are the
temporal and spatial weighting factors, respectively.

An approximation for 𝜕2𝑢/𝜕𝑥2 is

𝑢
𝑛

𝑖+1
− 2𝑢
𝑛

𝑖
+ 𝑢
𝑛

𝑖−1

ℎ2
, (31)
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𝑛+1

𝑖+1
− 2𝑢
𝑛+1

𝑖
+ 𝑢
𝑛+1
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ℎ2
. (32)

Hence, a discretization for 𝜕2𝑢/𝜕𝑥2 is
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𝑢
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] .

(33)

On plugging approximations for 𝜕𝑢/𝜕𝑥 and 𝜕2𝑢/𝜕𝑥2 as
given by (30) and (33) into (2), we obtain a family of explicit
and implicit numerical schemes given by

𝑢
𝑛+1

𝑖
=

1

𝐴
0

× (𝐴
1
𝑢
𝑛
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5
𝑢
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) ,

(34)

where

𝐴
0
= 1 − 𝜙 [𝑐 (2𝛾 − 1) − 2𝑠] ,

𝐴
1
= (𝜙 − 1) [𝑐 (𝛾 − 1) − 𝑠] ,

𝐴
2
= 1 + (𝜙 − 1) [𝑐 (1 − 2𝛾) + 2𝑠] ,

𝐴
3
= (1 − 𝜙) [𝑠 − 𝑐𝛾] ,

𝐴
4
= 𝜙 [𝑠 + 𝑐 (1 − 𝛾)] ,

𝐴
5
= 𝜙 [𝑠 − 𝛾𝑐] ,

(35)

where 𝑐 = 𝑎𝑘/ℎ and 𝑠 = 𝛼𝑘/ℎ2.

6. Standard Schemes

6.1. Lax-Wendroff Scheme. TheLax-Wendroff scheme is given
by

𝑢
𝑛+1

𝑖
=
1

2
(2𝑠 + 𝑐 + 𝑐

2
) 𝑢
𝑛

𝑖−1
+ (1 − 2𝑠 − 𝑐

2
) 𝑢
𝑛

𝑖

+
1

2
(2𝑠 − 𝑐 + 𝑐

2
) 𝑢
𝑛

𝑖+1
,

(36)

and is obtained on replacing 𝜙 by zero and 𝛾 by (1 − 𝑐)/2, in
(34).

The modified equation is given by [14]

𝑢
𝑡
+ 𝑎𝑢
𝑥
− 𝛼𝑢
𝑥𝑥
+
1

6
𝑎ℎ
2
(1 − 𝑐

2
− 6𝑠) 𝑢

𝑥𝑥𝑥
+ ⋅ ⋅ ⋅ = 0, (37)

and this indicates that the leading error terms are dispersive
in nature.

The amplification factor and the relative phase error are
obtained as

𝜉 = 1 + (2𝑠 + 𝑐
2
) (cos (𝑤) − 1) − 𝐼𝑐 sin (𝑤) ,

RPE = 1

𝑐𝑤
tan−1 ( 𝑐 sin (𝑤)

1 + (2𝑠 + 𝑐2) (cos (𝑤) − 1)
) .

(38)
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Figure 1: Plot of AFM and RPE versus phase angle for the Lax-Wendroff scheme.
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Figure 2: Comparison of numerical results with exact results using Lax-Wendroff scheme at some values of 𝑘 and ℎ.

The region of stability is 0 < 𝑠 ≤ (1 − 𝑐
2
)/2 [14]. Plots of

the AFM and RPE, both versus the phase angle, 𝑤, for four
combinations of values of 𝑘 and ℎ are shown in Figures 1(a)
and 1(b). The combination 𝑘 = 0.01, ℎ = 0.04 is the least
dissipative one. The scheme is not dispersive when 𝑘 = 0.01,
ℎ = 0.04. Phase lag behaviour is observed when 𝑘 = 0.005,
ℎ = 0.02 and 𝑘 = 0.01, ℎ = 0.02. Phase lead phenomenon
occurs when 𝑘 = 0.02 and ℎ = 0.04.

The results of our numerical experiment for the four
combination of values of ℎ and 𝑘 are shown in Figures 2(a)
and 2(b). We tabulate the errors in Table 1. The errors are the
least when 𝑘 = 0.005 and ℎ = 0.02 and greatest when 𝑘 = 0.01
and ℎ = 0.04.

6.2. Crank-Nicolson Scheme. The Crank-Nicolson method is
obtained if we plug 𝛾 = 1/2 and 𝜙 = 1/2 into (34). A single
expression for the scheme is

𝑢
𝑛+1

𝑖
=

1

4 (1 + 𝑠)

× ( (𝑐 + 2𝑠) 𝑢
𝑛+1

𝑖−1
− (𝑐 − 2𝑠) 𝑢

𝑛+1

𝑖+1
+ (𝑐 + 2𝑠) 𝑢

𝑛

𝑖−1

− (𝑐 − 2𝑠) 𝑢
𝑛

𝑖+1
+ (4 − 4𝑠) 𝑢

𝑛

𝑖
) .

(39)

The modified equation is given by

𝑢
𝑡
+ 𝑎𝑢
𝑥
− 𝛼𝑢
𝑥𝑥
+
1

12
𝑎ℎ
2
(2 + 𝑐

2
) 𝑢
𝑥𝑥𝑥

+ ⋅ ⋅ ⋅ = 0, (40)
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Table 1: Errors for Lax-Wendroff scheme.

𝑘 ℎ cfl 𝐸num max |𝑢
𝑒
− 𝑢
𝑐
| Error at (0.5, 1.0) Diss. error Disp. error

0.005 0.02 0.25 1.8166 × 10
−4

5.8157 × 10
−4

1.6348 × 10
−4

6.3582 × 10
−9

5.4502 × 10
−8

0.01 0.02 0.50 7.3296 × 10
−4 0.0024 1.6348 × 10

−4
9.1960 × 10

−8
8.9741 × 10

−7

0.01 0.04 0.25 0.0021 0.0065 0.0011 9.1500 × 10
−7

7.1622 × 10
−6

0.02 0.04 0.50 1.2252 × 10
−4

3.7946 × 10
−4

3.7946 × 10
−4

4.0896 × 10
−9

2.4477 × 10
−8
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Figure 3: Plot of AFM versus phase angle for the Crank-Nicolson scheme.

and this indicates that the leading error terms are dispersive
in nature.

The amplification factor is given by

𝜉 = (
𝐵
2
𝐷
2
− 𝐶
2

2

𝐵
2

2
+ 𝐶
2

2

) − 𝐼(
𝐵
2
𝐶
2
+ 𝐶
2
𝐷
2

𝐵
2

2
+ 𝐶
2

2

) , (41)

and the RPE is computed as

1

𝑐𝑤
tan−1 (𝐵2𝐶2 + 𝐶2𝐷2

𝐵
2
𝐷
2
− 𝐶
2

2

) , (42)

where 𝐵
2
= 1 + 𝑠 − 𝑠 cos(𝑤), 𝐶

2
= 2𝑐 sin(𝑤), and 𝐷

2
= 4 +

4𝑠 cos(𝑤) − 4𝑠.
The scheme is unconditionally stable. We next plot the

variation of the AFM versus phase angle for some values of 𝑘
and ℎ in Figures 3(a) and 3(b). Plots of the RPE versus phase
angle are depicted in Figures 4(a) and 4(b).

In the case of Crank-Nicolson, the scheme is less dissipa-
tive at ℎ = 0.04 as compared to ℎ = 0.02 for all the four values
of 𝑘, namely, 0.005, 0.01, 0.02, and 0.04. The combination
ℎ = 0.04, 𝑘 = 0.005 is the least dissipative one. Based
on Figure 4(b), we can observe that dispersion character is
slightly affected by the value of 𝑘 used when ℎ = 0.04.
However, if we choose ℎ = 0.02, the dispersion character is
much affected by the value of 𝑘. In general for ℎ = 0.02, the
case 𝑘 = 0.02 is in general the least dispersive one.

We tabulate the errors for the eight combinations of ℎ
and 𝑘 in Table 2, and we observe that the errors are the least

when 𝑘 = 0.005 and ℎ = 0.02. The results of the numerical
experiment are shown in Figures 5(a) and 5(b).

7. Nonstandard Finite Difference Scheme

In this section, we describe how a nonstandard finite
difference scheme (NSFD) is constructed [15] for the 1D
convection-diffusion equation.

The equation 𝑢
𝑡
+ 𝑢
𝑥
= 𝛼𝑢
𝑥𝑥

has three subequations [16]
which are given by

𝑢
𝑡
+ 𝑢
𝑥
= 0, (43)

𝑢
𝑥
= 𝛼𝑢
𝑥𝑥
, (44)

𝑢
𝑡
= 𝛼𝑢
𝑥𝑥
. (45)

Equations (43) and (44) have known exact finite differ-
ence scheme which are

𝑢
𝑛+1

𝑖
− 𝑢
𝑛

𝑖

𝑘
+
𝑢
𝑛

𝑖
− 𝑢
𝑛

𝑖−1

ℎ
= 0, (46)

with 𝑘 = ℎ and

𝑢
𝑖
− 𝑢
𝑖−1

ℎ
= 𝛼(

𝑢
𝑖+1

− 2𝑢
𝑖
+ 𝑢
𝑖−1

𝛼ℎ (exp (ℎ/𝛼) − 1)
) , (47)

respectively.
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Figure 4: Plot of RPE versus phase angle for the Crank-Nicolson scheme.
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Figure 5: Comparison of numerical results with exact results using Crank-Nicolson scheme at some values of 𝑘 and ℎ.

A finite difference scheme that englobes the features of
the two equations, namely, (43) and (44) is

𝑢
𝑛+1

𝑖
− 𝑢
𝑛

𝑖

𝑘
+
𝑢
𝑛

𝑖
− 𝑢
𝑛

𝑖−1

ℎ
= 𝛼(

𝑢
𝑛

𝑖+1
− 2𝑢
𝑛

𝑖
+ 𝑢
𝑛

𝑖−1

𝛼ℎ (exp (ℎ/𝛼) − 1)
) . (48)

On rearranging the terms in (48), we get the NSFD
method which is [15, 16]

𝑢
𝑛+1

𝑖
= 𝛽𝑢
𝑛

𝑖+1
+ (1 − 𝛼

1
− 2𝛽
1
) 𝑢
𝑛

𝑖
+ (𝛼
1
+ 𝛽
1
) 𝑢
𝑛

𝑖−1
, (49)

where
𝛼
1
=
𝑘

ℎ
,

𝛽
1
=

𝛼
1

exp (ℎ/𝛼) − 1
.

(50)

The square of the modulus of the amplification factor is
given by
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

2

= ((1 − 𝛼
1
− 2𝛽
1
) + (𝛼

1
+ 2𝛽
1
) cos (𝑤))2 + (𝛼

1
sin (𝑤))2.

(51)
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Figure 6: Plot of AFM and RPE versus phase angle for the NSFD scheme.

For stability, 0 < |𝜉| ≤ 1 and this implies that 0 < |𝜉|2 ≤ 1.
We now obtain the region of stability by using the approach
used by Hindmarsh et al. [17] and Sousa [18].

We consider the case when 𝑤 = 𝜋. The square of the
modulus of the amplification factor is given by

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

2

= (1 − 2𝛼
1
− 4𝛽
1
)
2

. (52)

We thus need,

(1 − 2𝛼
1
− 4𝛽
1
)
2

≤ 1, (53)

which implies that
󵄨󵄨󵄨󵄨1 − 2𝛼1 − 4𝛽1

󵄨󵄨󵄨󵄨 ≤ 1. (54)

Thus, for stability, we have the following inequality:

−1 ≤ 1 − 2𝛼
1
− 4𝛽
1
≤ 1, (55)

Which was simplified to

0 ≤ 𝛼
1
+ 2𝛽
1
≤ 1. (56)

Since 𝛼
1
and 𝛽

1
are positive, 𝛼

1
+ 2𝛽
1
≥ 0 is the trivial

inequality. Hence, we consider the inequality

𝛼
1
+ 2𝛽
1
≤ 1. (57)

Since, 𝛼
1
= 𝑘/ℎ and 𝛽

1
= 𝛼
1
/(exp(ℎ/𝛼) − 1), we have

𝑘

ℎ
+

2𝑘

ℎ (exp (ℎ/𝛼) − 1)
≤ 1. (58)

For stability, we need the following condition:

𝑘 ≤ (
exp (ℎ/𝛼) − 1
exp (ℎ/𝛼) + 1

) ℎ. (59)

However, the stability condition in (59) is difficult to
achieve. We use a Maclaurin’s series for exp(ℎ/𝛼), and
therefore (59) reduces to

𝑘

ℎ
+ 2𝛼

𝑘

ℎ2
≤ 1. (60)

We next consider the case when 𝑤 → 0. When 𝑤 → 0,
cos(𝑤) ≈ 1 − (1/2)𝑤2 and sin(𝑤) ≈ 𝑤.

Thus, (51) reduces to
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

2

≈ 1 + (−2𝛽
1
+ 𝛼
2

1
− 𝛼
1
)𝑤
2
. (61)

We thus require

−2𝛽
1
+ 𝛼
2

1
− 𝛼
1
≤ 0. (62)

Using (50), (62) becomes

−2𝑘ℎ + 𝑘 (𝑘 − ℎ) (exp (ℎ/𝛼) − 1)
ℎ2 (exp (ℎ/𝛼) − 1)

≤ 0. (63)

From (63), we deduce −2𝑘ℎ + (𝑘
2
− 𝑘ℎ)(exp(ℎ/𝛼) − 1) ≤

0, which on expansion and simplification gives (exp(ℎ/𝛼) −
1) (𝑘 − ℎ) ≤ 0.

Since exp(ℎ/𝛼) − 1 ≥ 0, therefore,

𝑘 ≤ ℎ. (64)

Combining (60) and (64), we obtain (60), and therefore
the region of stability is described by

𝑘

ℎ
+ 2𝛼

𝑘

ℎ2
≤ 1. (65)

Case 1. For ℎ = 0.02 and 𝛼 = 0.01, using (60), we have 𝑘 ≤
0.01. Hence, for ℎ = 0.02 and 𝑐 = 0.25, we have 𝑘 = 0.005.
Also, for ℎ = 0.02 and 𝑐 = 0.5, we have 𝑘 = 0.010. However, if
ℎ = 0.02 and 𝑐 = 1.0, we have 𝑘 = 0.020, but this combination
will give rise to an unstable method.
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Table 2: Errors for Crank-Nicolson scheme.

𝑘 ℎ cfl 𝐸num max |𝑢
𝑒
− 𝑢
𝑐
| Error at (0.5, 1.0) Diss. error Disp. error

0.005 0.02 0.25 9.9859 × 10
−4 0.0032 7.3954 × 10

−4
1.4704 × 10

−7
1.6929 × 10

−6

0.01 0.02 0.50 0.0011 0.0035 7.3475 × 10
−4

1.6161 × 10
−7

2.0307 × 10
−6

0.02 0.02 1.0 0.0015 0.0046 7.4486 × 10
−4

2.2664 × 10
−7

3.7049 × 10
−6

0.04 0.02 2.0 0.0029 0.0092 0.0013 5.9447 × 10
−7

1.5389 × 10
−5

0.005 0.04 0.125 0.0037 0.0114 0.0020 2.2440 × 10
−6

2.3758 × 10
−5

0.01 0.04 0.25 0.0038 0.0116 0.0020 2.2981 × 10
−6

2.4852 × 10
−5

0.02 0.04 0.5 0.0042 0.0126 0.0021 2.5212 × 10
−6

2.9471 × 10
−5

0.04 0.04 1.0 0.0055 0.0162 0.0028 3.5178 × 10
−6

5.1581 × 10
−5

Table 3: Errors for NSFD scheme.

𝑘 ℎ cfl 𝐸num max |𝑢
𝑒
− 𝑢
𝑐
| Error at (0.5, 1.0) Diss. error Disp. error

0.005 0.02 0.25 8.7288 × 10
−4 0.0026 0.0026 8.0435 × 10

−7
5.5063 × 10

−7

0.01 0.02 0.50 0.0028 0.0085 −0.0084 8.3500 × 10
−6

5.8963 × 10
−6

0.01 0.04 0.25 0.0068 0.0194 0.0192 4.8616 × 10
−5

3.2639 × 10
−5

0.02 0.04 0.50 0.0010 0.0032 0.0032 8.7192 × 10
−7

1.0934 × 10
−6

Case 2. For ℎ = 0.04 and 𝛼 = 0.01, using (60), the region of
stability is given by 𝑘 ≤ 0.027. Therefore, for ℎ = 0.04, we
consider 𝑘 = 0.01 and 0.02.

Plots of the AFM and RPE versus phase angle are shown
in Figures 6(a) and 6(b), respectively.

The NSFD scheme considered is an explicit one, and we
have four combinations of 𝑘 and ℎ, namely,

(i) 𝑘 = 0.005, ℎ = 0.02;

(ii) 𝑘 = 0.01, ℎ = 0.02;

(iii) 𝑘 = 0.01, ℎ = 0.04;

(iv) 𝑘 = 0.02, ℎ = 0.04.

The scheme is least dissipative when 𝑘 = 0.01, ℎ = 0.04

and 𝑘 = 0.005, ℎ = 0.02. The scheme is least dispersive when
𝑘 = 0.02, ℎ = 0.04. The scheme experiences both phase lead
and phase lag behaviour, depending on the values of 𝑘 and ℎ.
The results of our numerical experiment are shown in Figures
7(a) and 7(b).

The modified equation is given by

𝑢
𝑡
+ 𝑢
𝑥
+
1

2
ℎ(𝑎𝑐 − 1 −

1

exp (ℎ/𝛼) − 1
) 𝑢
𝑥𝑥

+
1

6
ℎ
2
(1 − 𝑐

2
− 6𝑠) 𝑢

𝑥𝑥𝑥
+ ⋅ ⋅ ⋅ = 0,

(66)

and this indicates that the leading error terms are dissipative.
We tabulate the errors in Table 3, and we observe that the
errors are the least when 𝑘 = 0.005 and ℎ = 0.02 and the
greatest when 𝑘 = 0.02 and ℎ = 0.04.

Based on Tables 1, 2, and 3, we can see that the Lax-
Wendroff and the NSFD schemes are most effective when
𝑘 = 0.005 and ℎ = 0.02. The errors are smaller for the Lax-
Wendroff as compared to NSFD scheme when 𝑘 = 0.005 and
ℎ = 0.02.

8. Optimising Parameters in the Lax-Wendroff
and NSFD Schemes

Our aim in this section is to compute an optimal value of 𝑘
for a given value of ℎ, say ℎ = 0.02. By optimal, we mean a
value which reduces the errors. Since the partial differential
equation considered is slightly dissipative and not dispersive,
we aim to minimize the dispersion error of the scheme.

8.1. Proposed Techniques of Optimisation. Tam and Webb
[19], Bogey and Bailly [20] among others have implemented
techniques which enable coefficients to be determined in
numerical schemes specifically designed for Computational
Aeroacoustics. We develop these techniques into respective
equivalent forms [21] to determine the optimal values of 𝑘 for
the Lax-Wendroff and NSFD schemes.

We now describe briefly how Tam and Webb [19], Bogey
and Bailly [20] define their measures and consequently their
technique of optimisation in Computational Aeroacoustics.

The Dispersion-Relation-Preserving (DRP) scheme was
designed, so that the dispersion relation of the finite differ-
ence scheme is formally the same as that of the original partial
differential equations. The integrated error is defined as

𝐸 = ∫

𝜂

−𝜂

󵄨󵄨󵄨󵄨𝜃
∗
ℎ − 𝜃ℎ

󵄨󵄨󵄨󵄨

2

𝑑 (𝜃ℎ) , (67)

where the quantities 𝜃∗ℎ and 𝜃ℎ represent the numerical
and exact wavenumbers, respectively. The dispersion error
and dissipation error are calculated as |R(𝜃∗ℎ) − 𝜃ℎ| and
|𝐼𝑚(𝜃

∗
ℎ)|, respectively.

Tamand Shen [22] set 𝜂 as 1.1 and optimise the coefficients
in the numerical scheme, such that the integrated error is
minimised.



10 Journal of Applied Mathematics

Table 4: Errors for the Lax-Wendroff scheme for ℎ = 0.02.

𝑘 𝐸num max |𝑢
𝑒
− 𝑢
𝑐
| Error at (0.5, 1.0) Diss. error Disp. error

0.001 8.2049 × 10
−4 0.0026 6.3090 × 10

−4
1.0506 × 10

−7
1.1375 × 10

−6

0.002 6.6803 × 10
−4 0.0021 5.1728 × 10

−4
7.1763 × 10

−8
7.5203 × 10

−7

1/333 5.1018 × 10
−4 0.0016 4.0089 × 10

−4
4.3376 × 10

−8
4.3728 × 10

−7

0.004 3.4840 × 10
−4 0.0011 2.8318 × 10

−4
2.1247 × 10

−8
2.0307 × 10

−7

0.005 1.8166 × 10
−4

5.8157 × 10
−4

1.6348 × 10
−4

6.3582 × 10
−9

5.4502 × 10
−8

1/164 1.3952 × 10
−5

4.3926 × 10
−5

3.0697 × 10
−5

1.1388 × 10
−11

3.6197 × 10
−10

1/143 1.6764 × 10
−4

5.3721 × 10
−4

−7.8352 × 10
−5

3.8582 × 10
−9

4.7968 × 10
−8

1/125 3.5162 × 10
−4 0.0011 −2.0134 × 10

−4
1.9362 × 10

−8
2.0827 × 10

−7

1/111 5.4133 × 10
−4 0.0017 −3.2451 × 10

−4
4.8426 × 10

−8
4.9113 × 10

−7

0.01 0.0011 0.0035 −6.5674 × 10
−4

2.1234 × 10
−7

1.9665 × 10
−6

Table 5: Errors for NSFD scheme for ℎ = 0.02.

𝑘 𝐸num max |𝑢
𝑒
− 𝑢
𝑐
| Error at (0.5, 1.0) Diss. error Disp. error

0.001 0.0035 0.0100 0.0100 1.2802 × 10
−5

8.0987 × 10
−6

0.002 0.0028 0.0083 0.0083 8.6039 × 10
−6

5.5211 × 10
−6

1/333 0.0022 0.0064 0.0064 5.1527 × 10
−6

3.3593 × 10
−6

0.004 0.0015 0.0045 0.0045 2.5390 × 10
−6

1.6870 × 10
−6

0.005 8.7288 × 10
−4 0.0026 0.0026 8.0435 × 10

−7
5.5063 × 10

−7

1/164 1.1717 × 10
−4

3.5591 × 10
−4

3.4999 × 10
−4

1.2220 × 10
−8

1.2981 × 10
−8

1/143 5.2775 × 10
−4 0.0016 −0.0015 3.0107 × 10

−7
1.9762 × 10

−7

1/125 0.00126 0.0038 −0.0037 1.7163 × 10
−6

1.1639 × 10
−6

1/111 0.0020 0.0061 −0.0060 4.3904 × 10
−6

3.0429 × 10
−6

0.01 0.0028 0.0085 −0.0084 8.3500 × 10
−6

5.8963 × 10
−6

Bogey and Bailly [20] minimise the relative difference
between the exact wavenumber, 𝜃ℎ, the effective/numerical
wavenumber, 𝜃∗ℎ, and define their integrated errors as

𝐸 = ∫

(𝜃ℎ)ℎ

(𝜃ℎ)𝑙

󵄨󵄨󵄨󵄨𝜃
∗
ℎ − 𝜃ℎ

󵄨󵄨󵄨󵄨

𝜃ℎ
𝑑 (𝜃ℎ) , (68)

or

𝐸 = ∫

ln(𝜃ℎ)ℎ

ln(𝜃ℎ)𝑙

󵄨󵄨󵄨󵄨𝜃
∗
ℎ − 𝜃ℎ

󵄨󵄨󵄨󵄨 𝑑 (ln (𝜃ℎ)) . (69)

In Computational Fluid Dynamics for a particular
method under consideration, the dispersion error is calcu-
lated as

|1 − RPE| . (70)

We have modified the measures used by Tam and Webb,
Bogey and Bailly in a Computational Aeroacoustics frame-
work to suit them in a Computational Fluid Dynamics
framework [21], such that the optimal parameter can be
obtained. Thus, we define the following integrals: integrated
Error from Tam and Webb, (IETAM), integrated error from
Bogey and Bailly (IEBOGEY) as follows:

IETAM = ∫

𝑤1

0

|1 − RPE|2𝑑𝑤,

IEBOGEY = ∫

𝑤1

0

|1 − RPE| 𝑑𝑤.
(71)

8.2. Optimisation Procedure

Lax-Wendroff. We consider the Lax-Wendroff scheme given
by (36), with ℎ = 0.02. The amplification factor of the
resulting method is

𝜉LW = 1 − 50𝑘 − 2500𝑘
2
+ (50𝑘 + 2500𝑘

2
) cos (𝑤)

− 50𝑘 sin (𝑤) 𝐼,
(72)

and therefore the RPE is computed as

RPELW =
0.02

𝑘𝑤
tan−1 (

I (𝜉LW)

R (𝜉LW)
) . (73)

A plot of the exact RPE versus 𝑤 ∈ [0, 1.1] is shown in
Figure 8, and we do not have phase wrapping phenomenon.
We propose two measures, one adapted from Tam andWebb
[19] and the other from Bogey and Bailly [20].

We compute the following:

IETAM = ∫

1.1

0

(RPELW − 1)
2

𝑑𝑤,

IEBOGEY = ∫

1.1

0

󵄨󵄨󵄨󵄨RPELW − 1
󵄨󵄨󵄨󵄨 𝑑𝑤.

(74)

We plot the integrated errors versus 𝑘 in Figures 9(a) and
9(b) and obtain the optimal value of 𝑘. We can also use the
function NLPSolve from Maple to determine the value of 𝑘
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Figure 7: Comparison of numerical results with exact results using
NSFD scheme at some values of 𝑘 and ℎ.

which minimise each of these two integrals. In the case of
IETAM, we obtain

𝑘 = 0.00615029705055891978 (75)

while in the case of IEBOGEY, we are out with

𝑘 = 0.006112886302132816582. (76)

We next validate whether this value of 𝑘 computed does
indeed minimise the errors by performing the numerical
experiment using Lax-Wendroff with ℎ = 0.02 at some
different values of 𝑘 ∈ (0, 0.01236) and then compare the
errors.The errors are tabulated in Table 4, and we can see that
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Figure 8: Plot of RPE versus 𝑘 versus 𝑤 for the Lax-Wendroff
scheme at ℎ = 0.02.

indeed for 𝑘 = 1/164 ≈ 0.00601, all the five types of errors are
least.

NSFD. We consider theNSFD scheme given by (49), with ℎ =
0.02. The amplification factor of the resulting method is

𝜉NSFD = 1 + 65.65176427𝑘 (cos (𝑤) − 1) − 50 (𝑘 sin (𝑤)) 𝐼,
(77)

and therefore the RPE is computed as

RPENSFD =
1

𝛼
1
𝑤
tan−1 (

I (𝜉NSFD)

R (𝜉NSFD)
) , (78)

where 𝛼
1
= 𝑘/ℎ.

A plot of the exact RPE versus 𝑒 ∈ [0, 1.1] is shown in
Figure 10, and we do not have phase wrapping phenomenon.
We propose two measures, one adapted from Tam andWebb
[19] and the other from Bogey and Bailly [20].

We compute the following:

IETAM = ∫

1.1

0

(RPENSFD − 1)
2

𝑑𝑤,

IEBOGEY = ∫

1.1

0

󵄨󵄨󵄨󵄨RPENSFD − 1
󵄨󵄨󵄨󵄨 𝑑𝑤.

(79)

We plot the integrated errors versus 𝑘 in Figures 11(a) and
11(b) and obtain the optimal value of 𝑘. We can also use the
function NLPSolve from Maple to determine the value of 𝑘
which minimise each of these two integrals. In the case of
IETAM, we obtain

𝑘 = 0.00611388415557632438 (80)
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Figure 9: Plots of IETAM versus 𝑘 and EBOGEY versus 𝑘 for the Lax-Wendroff scheme when ℎ = 0.02.
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Figure 10: Plot of RPE versus 𝑘 versus 𝑤 for the NSFD scheme at
ℎ = 0.02.

while in the case of IEBOGEY, we are out with

𝑘 = 0.00611348537281972832. (81)

We next validate whether this value of 𝑘 computed does
indeed minimise the errors by performing the numerical
experiment using NSFD with ℎ = 0.02 at some different

values of 𝑘 ∈ (0, 0.01] and then compare the errors. The
errors are tabulated in Table 5, and we can see that indeed
for 𝑘 = 1/164 ≈ 0.00601, all the five types of errors are least.

9. Conclusion

In this paper, three numerical methods have been used
to solve a 1D advection-diffusion equation with specified
initial and boundary conditions. Both explicit and implicit
finite difference methods as well as a nonstandard finite
difference scheme have been used. When the 1D linear
advection equation is approximated by a numerical method,
the amplification factor and relative phase error depend on
only the cfl number. However, in the case of the 1D advection-
diffusion equation the modulus of the amplification factor
and relative phase error depends on the spatial and temporal
step sizes. The results of our numerical experiment are much
affected by the choice of 𝑘 and ℎ. In general, we observe
that the Lax-Wendroff scheme is the most efficient method
followed by the nonstandard finite difference scheme. We
perform two optimisation procedures by computing the
optimal values of 𝑘 when ℎ = 0.02 for the Lax-Wendroff and
NSFD schemes. We observe that when 𝑘 ≈ 0.006, the errors
are reduced further for both methods.

This work can be extended to the case when 𝛼 is large.
Also, we can consider numerical solution of 1D nonlin-
ear as well as 2D linear and 2D nonlinear convection-
diffusion problems, and we can use appropriate optimisation
techniques to choose parameters ℎ and 𝑘 for minimal numer-
ical dispersion and numerical dissipation.
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Nomenclature

𝐼 = √(−1)

𝑘 : Time step
ℎ : Spatial step
𝑛 : Time level
𝑎 : Advection velocity
𝑐 : cfl/Courant number
𝑐 = 𝑎𝑘/ℎ

𝑠 = 𝛼𝑘/ℎ
2

𝑤 : Phase angle in 1D
𝑤 = 𝜃ℎ

RPE : Relative phase error per unit time step
AF : Amplification factor
AFM = |AF|
𝑢
𝑒
: Exact results

𝑢
𝑐
: Computed results

Diss. Error: Dissipation error
Disp. Error: Dispersion error.
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