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A Hamilton-Poisson realization and some stability problems for a dynamical system arisen from Chua system are presented. The
stability and dynamics of a linearized smooth version of the Chua system are analyzed using the Hamilton-Poisson formalism.This
geometrical approach allows to deduce the nonlinear stabilization near different equilibria.

1. Introduction

The Chua system was proposed by Chua as a model of a
nonlinear electrical circuit for the generation of chaotic oscil-
lations. For some parameter values it has chaotic behavior.
In this work we apply the geometric methods underlying
the Hamilton-Poisson approach to analyze the characteristic
features of the system. This geometrical approach makes it
possible to find new properties that facilitate the dynamics
description of the system, as well as its stability analysis. The
work is divided as follows: the first part presents a short
overview of the Chua’s system and its Hamilton-Poisson
realization. The Casimir function can be found only for a
specific relation between the system’s parameters. Finding the
Casimir for the general case remains an open problem. The
stability problem is discussed in the last section. Applying
a control about 𝑂𝑦 axis we stabilized the only one equilib-
rium state of our dynamics. The nonlinear stability of the
equilibrium state is studied via energy-Casimirmethod. For a
specific case of the system’s parameters, the equilibrium point
admits periodic orbits, presented in the last paragraph, too.

2. The Poisson Geometry Associated to a
Smooth Linear Version of Chua System

The original Chua system of differential equations on 𝑅
3 has

the following form (see [1] for details):

𝑥̇ = 𝛼 (𝑦 − ℎ (𝑥)) ,

𝑦̇ = 𝑥 − 𝑦 + 𝑧,

𝑧̇ = −𝛽𝑦,

(1)

where the characteristic function ℎ is a piecewise linear
function, with 𝛼, 𝛽 being real parameters. First of all let us
take as a characteristic function in system (1) the function
ℎ(𝑥) = 0 so the system (1) becomes

𝑥̇ = 𝛼𝑦,

𝑦̇ = 𝑥 − 𝑦 + 𝑧,

𝑧̇ = −𝛽𝑦.

(2)

The goal of this section is to try to find a Hamilton-
Poisson structure for the system (2). In order to do this, let us
recall very briefly the definitions of general Poissonmanifolds
and the Hamilton-Poisson systems.

Definition 1 (see [2, 3]). Let 𝑀 be a smooth manifold and let
𝐶
∞
(𝑀) denote the set of the smooth real functions on 𝑀. A

Poisson bracket on𝑀 is a bilinearmap from𝐶
∞
(𝑀)×𝐶

∞
(𝑀)

into 𝐶
∞
(𝑀), denoted as

(𝐹, 𝐺) 󳨃󳨀→ {𝐹, 𝐺} ∈ 𝐶
∞

(𝑀) , 𝐹, 𝐺 ∈ 𝐶
∞

(𝑀) (3)

which verifies the following properties:
(i) skew-symmetry:

{𝐹, 𝐺} = − {𝐺, 𝐹} ; (4)
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(ii) jacobi identity:

{𝐹, {𝐺,𝐻}} + {𝐺, {𝐻, 𝐹}} + {𝐻, {𝐹, 𝐺}} = 0; (5)

(iii) leibniz rule:

{𝐹, 𝐺 ⋅ 𝐻} = {𝐹, 𝐺} ⋅ 𝐻 + 𝐺 ⋅ {𝐹,𝐻} . (6)

Proposition 2 (see [2, 3]). Let {⋅, ⋅} be a Poisson structure on
𝑅
𝑛. Then for any 𝑓, 𝑔 ∈ 𝐶

∞
(𝑅
𝑛
, 𝑅) the following relation holds:

{𝑓, 𝑔} =

𝑛

∑

𝑖,𝑗=1

{𝑥
𝑖
, 𝑥
𝑗
}

𝜕𝑓

𝜕𝑥
𝑖

𝜕𝑔

𝜕𝑥
𝑗

. (7)

Let the matrix given by

Π = [{𝑥
𝑖
, 𝑥
𝑗
}] . (8)

Proposition 3 (see [2, 3]). Any Poisson structure {⋅, ⋅} on 𝑅
𝑛 is

completely determined by the matrix Π via the relation:

{𝑓, 𝑔} = (∇𝑓)
𝑡
Π(∇𝑔) . (9)

Definition 4 (see [2, 3]). A Hamilton-Poisson system on 𝑅
𝑛

is the triple (𝑅
𝑛
, {⋅, ⋅}, 𝐻), where {⋅, ⋅} is a Poisson bracket on

𝑅
𝑛 and 𝐻 ∈ 𝐶

∞
(𝑅
𝑛
, 𝑅) is the energy (Hamiltonian). Its

dynamics is described by the following differential equations
system:

𝑥̇ = Π ⋅ ∇𝐻, (10)

where 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑡.

Definition 5 (see [2, 3]). Let {⋅, ⋅} be a Poisson structure on𝑅
𝑛.

ACasimir of the configuration (𝑅
𝑛
, {⋅, ⋅}) is a smooth function

𝐶 ∈ 𝐶
∞
(𝑅
𝑛
, 𝑅) which satisfies

{𝑓, 𝐶} = 0, ∀𝑓 ∈ 𝐶
∞

(𝑅
𝑛
, 𝑅) . (11)

Now, following the above results, we are able to prove the
following.

Proposition 6. The system (2) has the Hamilton-Poisson
realization:

(𝑅
3
, Π := [Π

𝑖𝑗
] ,𝐻) , (12)

where

Π =

[
[
[
[
[
[

[

0
1

𝛼 − 𝛽
(𝑥 − 𝑦 + 𝑧) 𝑦

−
1

𝛼 − 𝛽
(𝑥 − 𝑦 + 𝑧) 0

1

𝛼 − 𝛽
(𝑥 − 𝑦 + 𝑧)

−𝑦 −
1

𝛼 − 𝛽
(𝑥 − 𝑦 + 𝑧) 0

]
]
]
]
]
]

]

,

𝐻 (𝑥, 𝑦, 𝑧) = 𝛽𝑥 + 𝛼𝑧, 𝛼, 𝛽 ∈ 𝑅, 𝛼 ̸= 𝛽.

(13)

The next step is to try to find the Casimir functions
of the configuration described by Proposition 1. Since the
Poisson structure is degenerate, we can try to obtain Casimir
functions. The defining equation for the Casimir functions,
denoted by 𝐶, is Π𝑖𝑗𝜕

𝑗
𝐶 = 0. The determination of a Casimir

in a finite dimensional Hamilton-Poisson system could be
done via the algebraic method of Hernández-Bermejo and
Fairén (see [4]).

Let us observe that the rank of Π is constant and equal
to 2. Then, there exists only one functionally independent
Casimir associated to our structure. Following the method
described in [4], the Casimir function is the solution of

𝑑𝑧 = −𝑑𝑥 −
𝑦 (𝛽 − 𝛼)

𝑥 − 𝑦 + 𝑧
𝑑𝑦. (14)

For the integrability of this Pfaifian system, one needs an
integrant factor to transform it into an equivalent one such
that the above form is exact. The existence of such an
integrant factor is guaranteed by the Frobenius theorem. If
𝛽 − 𝛼 = −2, an integrant factor is 𝜑(𝑥, 𝑦, 𝑧) := 𝑥 + 𝑦 + 𝑧

and one obtains a Casimir of our configuration given by the
following expression:

𝐶 (𝑥, 𝑦, 𝑧) =
1

3
𝑥
3
−

2

3
𝑦
3

+
1

3
𝑧
3
+ 𝑥
2
𝑧 − 𝑥𝑦

2
+ 𝑥𝑧
2
− 𝑦
2
𝑧.

(15)

Consequently we have derived the following result.

Proposition 7. If 𝛽 − 𝛼 = −2 then the real smooth function
𝐶 : 𝑅
3

→ 𝑅,

𝐶 (𝑥, 𝑦, 𝑧) =
1

3
𝑥
3
−

2

3
𝑦
3

+
1

3
𝑧
3
+ 𝑥
2
𝑧 − 𝑥𝑦

2
+ 𝑥𝑧
2
− 𝑦
2
𝑧,

(16)

is the only one functionally independent Casimir of the
Hamilton-Poisson realization of the system (2).



Journal of Applied Mathematics 3

3. Stability and Stabilization by One
Linear Control

Let us pass now to discuss the stability problem (see [3]
for details) of the system (2). It is not hard to see that the
equilibrium states of our dynamics are

𝑒
𝑀

= (𝑀, 0, −𝑀) , 𝑀 ∈ 𝑅. (17)

Let 𝐴 be the matrix of the linear part of our system. The
characteristic roots of 𝐴(𝑒

𝑀
) are given by

𝜆
1
= 0, 𝜆

2,3
=

1

2
(−1 ± √1 + 4 (𝛼 − 𝛽)) . (18)

If 𝛼 ≤ 𝛽 then the equilibrium states 𝑒𝑀, 𝑀 ∈ 𝑅, are spectrally
stable. Moreover, the equilibrium states 𝑒

𝑀
, 𝑀 ∈ 𝑅, are

unstable.

Let us consider now the case 𝛼 ≤ 𝛽. We shall prove that
the equilibrium states

𝑒
𝑀

= (𝑀, 0, −𝑀) , 𝑀 ∈ 𝑅, (19)

of the system (2) may be nonlinear stabilized by a particular
linear control applied to the axis 𝑂𝑦.

The system (2) with one control about the axis 𝑂𝑦 can be
written in the following form:

𝑥̇ = 𝛼𝑦,

𝑦̇ = 𝑥 − 𝑦 + 𝑧 + 𝑢,

𝑧̇ = −𝛽𝑦,

(20)

where 𝑢 ∈ 𝐶
∞
(𝑅
3
, 𝑅). In all that follows we shall employ the

feedback:

𝑢 = 𝑘𝑦, 𝑘 ∈ 𝑅. (21)

Proposition 8. The controlled system (20)-(21) is a Hamilton-
Poisson mechanical system with the phase space 𝑃 = 𝑅

3, the
Poisson structure

Π :=

[
[
[
[
[
[

[

0
1

𝛼 − 𝛽
(𝑥 + (𝑘 − 1) 𝑦 + 𝑧) 𝑦

−
1

𝛼 − 𝛽
(𝑥 + (𝑘 − 1) 𝑦 + 𝑧) 0

1

𝛼 − 𝛽
(𝑥 + (𝑘 − 1) 𝑦 + 𝑧)

−𝑦 −
1

𝛼 − 𝛽
(𝑥 + (𝑘 − 1) 𝑦 + 𝑧) 0

]
]
]
]
]
]

]

, (22)

and the Hamiltonian 𝐻 given by

𝐻 = 𝛽𝑥 + 𝛼𝑧, (23)

where 𝛼, 𝛽 ∈ 𝑅, 𝛼 ̸= 𝛽.

Remark 9. If 𝑘 = 1 then the function𝐶 ∈ 𝐶
∞
(𝑅
3
, 𝑅) given by

𝐶 (𝑥, 𝑦, 𝑧) = 𝑥
2
+ 2𝑥𝑧 − (𝛼 − 𝛽) 𝑦

2
+ 𝑧
2 (24)

is a Casimir of the configuration from Proposition 8.
If 𝑘 ̸= 1 finding the Casimir of the structure remains an

open problem.

The phase curves of the dynamics (20)-(21) are the
intersections of the surfaces: 𝐻 = const. and 𝐶 = const. see
Figure 1.

Proposition 10. If 𝑘 = 1 then the system (20)-(21) may be
realized as a Hamilton-Poisson system in an infinite number of
different ways; that is, there exists infinitely many different (in
general nonisomorphic) Poisson structures on 𝑅

3 such that the
system (20)-(21) is induced by an appropriate Hamiltonian.

Proof. The triples:

(𝑅
3
{⋅, ⋅}
𝑎𝑏
, 𝐻
𝑐𝑑
) , (25)

where

{𝑓, 𝑔}
𝑎𝑏

= ∇𝐶 ⋅ (∇𝑓 × ∇𝑔) , ∀𝑓, 𝑔 ∈ 𝐶
∞

(𝑅
3
, 𝑅) ,

𝐶
𝑎𝑏

= 𝑎𝐶 + 𝑏𝐻, 𝐻
𝑐𝑑

= 𝑐𝐶 + 𝑑𝐻,

𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑅, 𝑎𝑑 − 𝑏𝑐 = 1,

𝐻 =
1

𝛼 − 𝛽
(𝛽𝑥 + 𝛼𝑧) ,

𝐶 =
1

2
(𝑥
2
− (𝛼 − 𝛽) 𝑦

2
+ 2𝑥𝑧 + 𝑧

2
) ,

(26)

define Hamilton-Poisson realizations of the dynamics (20)-
(21).

Using now the energy-Casimir method we can prove the
following.

Proposition 11. If 𝛼 < 𝛽 then the controlled system (20)-(21)
may be nonlinear stabilized about the equilibrium states 𝑒𝑀 =

(𝑀, 0, −𝑀), 𝑀 ∈ 𝑅 for 𝑘 = 1.

Proof. Let

𝐻
𝜑
= 𝐶 + 𝜑 (𝐻) = 𝑥

2
+ 2𝑥𝑧 − (𝛼 − 𝛽) 𝑦

2
+ 𝑧
2
+ 𝜑 (𝛽𝑥 + 𝛼𝑧)

(27)
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Figure 1: The phase curves of the system (20)-(21) for 𝑎 = −20, 𝑏 = 2 and 𝑎 = 20, 𝑏 = −20, respectively.

be the energy-Casimir function, where 𝜑 : 𝑅 → 𝑅 is a
smooth real valued function defined on 𝑅.

Now, the first variation of𝐻
𝜑
is given by

𝛿𝐻
𝜑
= 2 (𝑥 + 𝑧) 𝛿𝑥 − 2 (𝛼 − 𝛽) 𝑦𝛿𝑦

+ 2 (𝑥 + 𝑧) 𝛿𝑧 + 𝜑̇ (𝛽𝑥 + 𝛼𝑧) (𝛽𝛿𝑥 + 𝛼𝛿𝑧) .

(28)

This equals zero at 𝑒𝑀 if and only if

𝜑̇ (𝛽𝑀 − 𝛼𝑀) = 0. (29)

The second variation of𝐻
𝜑
is given by

𝛿
2
𝐻
𝜑
= 2(𝛿𝑥)

2
− 2 (𝛼 − 𝛽) (𝛿𝑦)

2

+ 2(𝛿𝑧)
2
+ 4𝛿𝑥𝛿𝑧 + 𝜑̈ ⋅ (𝛽𝛿𝑥 + 𝛼𝛿𝑧)

2
.

(30)

If 𝛼 < 𝛽 and having chosen 𝜑 such that

𝜑̇ (𝛽𝑀 − 𝛼𝑀) = 0,

𝜑̈ (𝛽𝑀 − 𝛼𝑀) > 0,

(31)

we can conclude that the second variation of 𝐻
𝜑
(𝑒
𝑀
) is

positively defined and thus 𝑒𝑀 is nonlinearly stable.

Proposition 12. If

𝛽 > 0, 𝛼 < 0, 𝛽 = |𝛼| , (32)

then near to 𝑒
𝑀

= (𝑀, 0, −𝑀), 𝑀 ∈ 𝑅
∗, the reduced dynamics

has, for each sufficiently small value of the reduced energy, at
least 1 periodic solution whose period is close to 𝜋/√−2𝛼.

Proof. We will use Moser’s theorem for zero eigenvalue; see
[5] for details.

(i) The restriction of our dynamics (20)-(21) to the
coadjoint orbit:

𝑥 − 𝑧 = 2𝑀 (33)

gives rise to a classical Hamiltonian system.
(ii) Consider span

𝑅
(∇𝐻(𝑒

𝑀
)) = 𝑉

𝜆=0
= span

𝑅
([
1

0

−1
]),

where

𝑉
𝜆=0

=
{

{

{

[

[

𝑥

𝑦

𝑧

]

]

∈ 𝑅
3
| 𝐴 (𝑒

𝑀
)[

[

𝑥

𝑦

𝑧

]

]

= [

[

0

0

0

]

]

}

}

}

, (34)

with 𝐴(𝑒
𝑀
) being the matrix of the linear part of the system

(20)-(21) at the equilibrium of interest 𝑒𝑀.
(iii)Thematrix of the linear part of our reduced dynamics

to (20)-(21) has purely imaginary roots at the equilibrium of
interest:

𝜆
1
= 0, 𝜆

2,3
= ±𝑖√−2𝛼. (35)

(iv) The smooth function 𝐶 ∈ 𝐶
∞
(𝑅
3
, 𝑅) given by

𝐶 (𝑥, 𝑦, 𝑧) = 𝑥
2
+ 2𝑥𝑧 − 2𝛼𝑦

2
+ 𝑧
2 (36)

has the following properties.
(i) It is a constant of motion for the dynamics (20)-(21).
(ii) ∇𝐶(𝑒

𝑀
) = 0.

(iii) ∇
2
𝐶(𝑒
𝑀
)|
𝑊×𝑊

> 0,
where

𝑊:= ker 𝑑𝐻(𝑒
𝑀
) = span

𝑅
([

[

1

0

1

]

]

) . (37)
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The assertion follows via Moser’s theorem for zero eigenval-
ues.

4. Conclusion

The paper presents Hamilton-Poisson realizations of a
dynamical system which represents a smooth linear version
of Chua system [1]. As in many other examples (Toda Lattice
[6], Lü system [7], Kowalevski top dynamics [8], and battery
model [9]) the Poisson geometry offers us a different point of
view, unlike other old approaches, and specific tools to study
the dynamics. Due to its chaotic behavior, finding its exact
solutions is an open problem.This problem can be solved for
the parameter values for which it admits a Hamilton-Poisson
realization. In this case, the solution is given as an intersection
between two surfaces:𝐻 = const. and𝐶 = const. In addition,
we can apply energy-Casimir method to study the stability of
the equilibria and Moser’s theorem to find the period orbits
around this equilibria. Unfortunately, these methods cannot
be used for any parameters values but only for some specific
ones.
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