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The problemof analyzing and controlling epileptiform spikes in a class of neuralmassmodels is concernedwith. Since themeasured
signals are always contaminated by measurement noise, an algebraic estimation method is utilized to observe the state from the
noisy measurement. The feedback control is constructed via the estimated state. The feasibility of using such a strategy to control
epileptiform spikes in a regular network of coupled neural populations is demonstrated by simulations. In addition, the influence
of the type of the controlled populations, the number of the controlled populations, and the control gain is investigated in details.

1. Introduction

Since the 1970s, the use of neural mass models has been the
preferred approach to model magnetoencephalography
(MEG) and electroencephalography (EEG) signals. These
models consist of macrocolumns or even cortical areas,
describing the average activity of the whole population with
a small number of state variables, which summarize the
behavior of millions of interacting neurons [1]. The original
idea is put forward by Lopes Da Silva et al. [2] to use these
models for alpha rhythms generation. Starting from Lopes
Da Silva’s model, Jansen et al. design a computer model that
generates spontaneous EEG and evoked potentials [3]. Sub-
sequently, they extend the model in order to produce EEG
and visual evoked potentials from two coupled populations
of neurons in the visual cortex [4]. Based on Jansen’s model,
neural mass models with different forms are developed to
account for more complex transient and oscillatory behavior
[1, 5, 6], to investigate effective connectivity from EEG or
fMRI data [7], and to study the relations between brain
rhythm changes and the connectivity among the regions of
interest (ROIs) [8, 9], or how event-related dynamics depend
on extrinsic connectivity [10]. Recently, dynamical causal
modeling (DCM) [11–13] has been developed for the analysis
of event-related [14, 15] and steady-state responses [16].

A substantial progress in the use of Jansen’s model is to
simulate the dynamics of real EEG signals measured in the
hippocampus during the transition from interictal to fast ictal
activity of epilepsy seizures [17]. An epileptic neural mass
exhibits features of excitability which is reflected in its use to
produce interictal spiking activities in a single population in
response to random input [17]. Studies also show that spiking
activity can be propagated between populations in networks
of two and three coupled neural populations [17]. An
extended neural mass model containing two explicitly mod-
eling time scales of inhibition is provided byGoodfellow et al.
to produce slow spike wave discharges (SWD) as well as sinu-
soidal background oscillations, thus providing the method
for a parameter-driven transition to epilepsy seizure [18].The
effect of local functional heterogeneitieswhich are considered
crucial for the mechanisms of epilepsy [19] is investigated in
a spatially extended neural mass formulation with local exci-
tatory and inhibitory circuits [20]. These investigations play
important roles in understanding themechanisms of epilepsy
seizures. However, until now, clinical electrotherapy for
seizures relies heavily on empirical tuning of parameters and
protocols [21, 22], the effects of which are usually not optimal.
Recently, it has been reported that the closed-loop control
via feedback can optimize the entire seizure control process
including efficacy of treatment, minimization of side effects,
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improvement of response by providing intermittent or min-
imal stimulation, reduction of damage, and minimization
of power consumption [23]. In closed-loop control strategy,
control effects are evidently state specific. Thus, the devel-
opment of feedback algorithms requires precise metric of
system state. The control tools developed and implemented
in modern control engineering, such as modern aeronautics,
robotics, andmanufacturing plants, can be used to predict the
state of neural systems and control epilepsy seizures [24].

Neural activity is alwaysmeasured through observing just
a single variable such as voltage. A combination of noise in
neurons and amplifiers as well as uncertainties in recording
equipment such as electrode resistance and capacitance
results in uncertainty of the measurement. In this study, the
feedback closed-loop control based on algebraic estimation is
utilized to control epileptiform spikes in Jansen’s neural mass
models.The algorithm of algebraic estimation [25–27] plays a
role of filtering, which observes the system state. Comparing
with other filtering methods, the attraction of algebraic esti-
mation is its simplicity and real time of implementation and
may be model-free. For a network of coupled neural popula-
tions, it is possible to change dynamical behaviors by impos-
ing the control action on different populations. Our goal here
is to establish rules for proper control of suppressing epilepti-
form spikes from a regular network of coupled neural popula-
tions using the proposed control strategy. The key point is to
find themore appropriate populations over which the control
action should be imposed.Thus, the rules might be related to
the type and the number of populations that are selected to
receive the function of feedback control. These relations are
investigated and reported here by using plentiful numerical
simulations.

2. Methods

2.1. SystemDescription. Thebasic idea of Jansen’s neuralmass
model is to make excitatory and inhibitory populations inter-
act such that oscillations emerge. A cortical area is under-
stood as the constituent of three different populations of
neurons, that is, excitatory pyramidal cells, excitatory stellate
cells, and inhibitory interneurons. The excitatory pyramidal
cells receive inhibitory and excitatory feedback from intrinsic
interneurons and excitatory input from extrinsic areas. Any
extrinsic input is characterized by a pulse density 𝑝(𝑡) which
is relevant to time 𝑡.The evolution of the population dynamics
relies on two operators. The first one transforms the average
pulse density of action potentials into an average postsynaptic
membrane potential with the impulse response function
given by

ℎ
𝑒
(𝑡) = 𝑤 (𝑡) ⋅ 𝐴𝑎𝑡𝑒

−𝑎𝑡 (1)

for excitatory case and

ℎ
𝑖
(𝑡) = 𝑤 (𝑡) ⋅ 𝐵𝑏𝑡𝑒

−𝑏𝑡 (2)

for inhibitory case, where 𝑤(𝑡) is the Heaviside function, 𝐴
and 𝐵 are average excitatory and inhibitory synaptic gains
which determine the maximal amplitude of the postsynaptic

potentials, and 𝑎 and 𝑏 are connected to both the membrane
average time constant and the average distributed time delays
in the dendritic tree. If time constants 1/𝑎 and 1/𝑏 are fixed,𝐴
and𝐵 can be applied to adjust the sensitivity of excitatory and
inhibitory synaptic, respectively. Equations (1) and (2) can be
represented by second-order ordinary differential equations

𝑧̈ (𝑡) = 𝐴𝑎𝑥 (𝑡) − 2𝑎𝑧̇ (𝑡) − 𝑎
2

𝑧 (𝑡) ,

𝑧̈ (𝑡) = 𝐵𝑏𝑥 (𝑡) − 2𝑏𝑧̇ (𝑡) − 𝑏
2

𝑧 (𝑡) ,

(3)

where 𝑥(𝑡), 𝑧(𝑡) are the input and output signals. By introduc-
ing a new variable 𝑧

1
(𝑡) and letting 𝑧̇(𝑡) = 𝑧

1
(𝑡), (3) can also

be written as follows:

𝑧̇ (𝑡) = 𝑧
1
(𝑡) ,

𝑧̇
1
(𝑡) = 𝐴𝑎𝑥 (𝑡) − 2𝑎𝑧

1
(𝑡) − 𝑎

2

𝑧 (𝑡) ,

(4)

𝑧̇ (𝑡) = 𝑧
1
(𝑡) ,

𝑧̇
1
(𝑡) = 𝐵𝑏𝑥 (𝑡) − 2𝑏𝑧

1
(𝑡) − 𝑏

2

𝑧 (𝑡) .

(5)

The second operator transforms the average membrane
potential of the population into an average pulse density of
potentials fired by the neurons, which is described by the
nonlinear sigmoid function

𝑆 (V) =
2𝑒
0

1 + 𝑒𝑟(V0−V)
, (6)

where 2𝑒
0
is the maximum firing rate, V

0
is the postsynaptic

potential corresponding to a firing rate 𝑒
0
, and 𝑟 is the steep-

ness of the sigmoid. Interactions between pyramidal cells and
interneurons are summarized by four connectivity constants
𝐶
1
− 𝐶
4
, which account for the intrinsic circuitry and the

average number of synaptic contacts. The above description
is related to single neural population and summarized in
dashed block in Figure 1.

It should be noted that the single neural populationmodel
concentrates on the brain’s dynamical behaviors of a separate
area. The spatial characters of EEG signals cannot be sim-
ulated by this model. Multiple coupled neural populations
model (Figure 2) is appropriate to model the spatial char-
acters of EEG because it takes into account the interaction
between two or more cortical areas through introducing
parameters related to the ways of populations connected
and the delays associated with these connections [1, 17]. In
Figure 2, population 𝑙 is described concretely by Figure 1. As
is observed in Figures 1 and 2, a gain constant 𝐾

𝑙𝑗
is intro-

duced to define the strength of coupling between popula-
tion 𝑙 and population 𝑗, while a filter with an impulse
response ℎ

𝑑
(𝑡) = 𝑤(𝑡) ⋅ 𝐴𝑎

𝑑
𝑡𝑒
−𝑎𝑑𝑡 is introduced to model

the delay of connections from population 𝑙, where 𝑎
𝑑
is the

average time delay on efferent connection from population 𝑙.
Appropriate setting of parameters 𝐾

𝑙𝑗
allows the populations

to be interconnected unidirectionally or bidirectionally. The
function ℎ

𝑑
(𝑡) is able to be rewritten as the formof (4).There-

fore, multiple coupled neural populations model is described
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Figure 1: Elementary model for a given population 𝑙.
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Figure 2: Model of multiple coupled neural populations.

by a set of eight first-order ordinary differential equations per
population

𝑥̇
1𝑙
(𝑡) = 𝑥

2𝑙
(𝑡) ,

𝑥̇
2𝑙
(𝑡) = 𝐴𝑎𝑆 [𝑥

3𝑙
(𝑡) − 𝑥

5𝑙
(𝑡)] − 2𝑎𝑥

2𝑙
(𝑡) − 𝑎

2

𝑥
1𝑙
(𝑡) ,

𝑥̇
3𝑙
(𝑡) = 𝑥

4𝑙
(𝑡) ,

𝑥̇
4𝑙
(𝑡) = 𝐴𝑎

{

{

{

𝑝
𝑙
(𝑡) + 𝐶

2
𝑆 [𝐶
1
𝑥
1𝑙
(𝑡)] +

𝑁

∑

𝑗=1,𝑗 ̸= 𝑙

𝐾
𝑙𝑗
𝑥
7𝑗
(𝑡)

}

}

}

− 2𝑎𝑥
4𝑙
(𝑡) − 𝑎

2

𝑥
3𝑙
(𝑡) ,

𝑥̇
5𝑙
(𝑡) = 𝑥

6𝑙
(𝑡) ,

𝑥̇
6𝑙
(𝑡) = 𝐵𝑏𝐶

4
𝑆 [𝐶
3
𝑥
1𝑙
(𝑡)] − 2𝑏𝑥

6𝑙
(𝑡) − 𝑏

2

𝑥
5𝑙
(𝑡) ,

𝑥̇
7𝑙
(𝑡) = 𝑥

8𝑙
(𝑡) ,

𝑥̇
8𝑙
(𝑡) = 𝐴𝑎

𝑑
𝑆 [𝑥
3𝑙
(𝑡) − 𝑥

5𝑙
(𝑡)] − 2𝑎

𝑑
𝑥
8𝑙
(𝑡) − 𝑎

2

𝑑
𝑥
7𝑙
(𝑡) ,

(7)

where the subscript 𝑙 (𝑙 = 1, 2, . . . , 𝑁) represents the pop-
ulation under consideration, population 𝑙 receives afferent
information from population 𝑗 (𝑗 = 1, 2, . . . , 𝑁, 𝑗 ̸= 𝑙) and the
neighborhood (i.e., the pulse density 𝑝

𝑙
(𝑡)), and the average

depolarization of pyramidal cells 𝑥
3𝑙
(𝑡) − 𝑥

5𝑙
(𝑡) is the output

of population 𝑙 and is assumed to model the EEG signal. The

standard value of the model parameters is given anatomically
as [4]

𝐴 = 3.25mV, 𝐵 = 22mV,

𝑎 = 100 s−1, 𝑏 = 50 s−1,

V
0
= 6mV, 𝑒

0
= 2.5 s−1,

𝑟 = 0.56 mV−1, 𝑎
𝑑
= 33 s−1,

𝐶
1
= 135, 𝐶

2
= 108,

𝐶
3
= 33.75, 𝐶

4
= 33.75.

(8)

As described by Jansen and Rit [4], each population in (7)
produces well-defined alpha activity under the standard
parameters. However, a modification of the parameters can
result in the generation of epileptiform spikes as shown in
simulation section.

2.2. Algebraic Estimation of Noisy Signals. The method of
algebraic estimation of noisy signals is addressed. The key
point of the method given here lies in solving a classical poly-
nomial approximation of the signal. Consider an analytic sig-
nal 𝑦(𝑡), which is not directly available but rather is observed
through a noisy measurement. In the sequel, 𝑦

𝑚
(𝑡) = 𝑦(𝑡) +

𝜔(𝑡) is set for the noisy observation, where 𝑦
𝑚
(𝑡) denotes the

noisy measurement, and 𝜔(𝑡) denotes some additive noise.
The aim is to estimate 𝑦(𝑡) and its derivative from 𝑦

𝑚
(𝑡).

The convergent Taylor series expansion of 𝑦(𝑡) at 𝑡 = 0 is
as follows:

𝑦 (𝑡) =

∞

∑

𝑖=0

𝑦
(𝑖)

(0)

𝑖!
𝑡
𝑖

. (9)

The signal 𝑦(𝑡) and its derivative are approximated by the
truncated Taylor polynomial of order𝑁, that is,

𝑦
𝑁
(𝑡) =

𝑁

∑

𝑖=0

𝑦
(𝑖)

(0)

𝑖!
𝑡
𝑖

. (10)

Using elementary operational calculus, 𝑦
𝑁
(𝑡) is transformed

into

𝑌
𝑁
(𝑠) =

𝑁

∑

𝑖=0

𝑦
(𝑖)

(0)

𝑠𝑖+1
. (11)
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The key idea of algebraic estimation is to isolate the 𝑗th coef-
ficient 𝑦(𝑗)(0), 𝑗 = 0, 1, 2, . . . , 𝑁 by applying an appropriate
operator. As a matter of fact,

𝑦
(𝑗)

(0)

𝑠𝑁+𝑗+V+2
=

(−1)
−𝑗

𝑗! (𝑁 − 𝑗)!

×
1

𝑠𝑁+V+1

𝑑
𝑗

𝑑𝑠𝑗
(
1

𝑠

𝑑
𝑁−𝑗

𝑑𝑠𝑁−𝑗
(𝑠
𝑁+1

𝑌
𝑁
(𝑠))) , V ≥ 0.

(12)

In light of Leibniz’ formula for the differentiation of products,
(12) is turned into

𝑦
(𝑗)

(0)

𝑠𝑁+𝑗+V+2
=

(−1)
−𝑗

𝑗! (𝑁 − 𝑗)!

𝑁−𝑗

∑

𝑘1=0

𝑗

∑

𝑘2=0

(
𝑁 − 𝑗

𝑘
1

)(
𝑗

𝑘
2

)

×
(𝑁 + 1)!

(𝑁 − 𝑘
1
− 𝑘
2
)! (𝑁 − 𝑘

1
+ 1)

1

𝑠V+𝑘1+𝑘2+1

×
𝑑
𝑁−𝑘1−𝑘2𝑌

𝑁
(𝑠)

𝑑𝑠𝑁−𝑘1−𝑘2
,

(13)

where

(
𝑁 − 𝑗

𝑘
1

) =
(𝑁 − 𝑗)!

𝑘
1
! (𝑁 − 𝑗 − 𝑘

1
)!
,

(
𝑗

𝑘
2

) =
𝑗!

𝑘
2
! (𝑗 − 𝑘

2
)!
.

(14)

The right side expression of 𝑠 in (13)matches a respective con-
volutional integral. Hence, (13) is carried out to the backward
transform to the time domain

𝑦
(𝑗)

(0) = ∫

𝑇

0

Π
𝑗𝑁V (𝑇, 𝜏) 𝑦𝑁 (𝜏) 𝑑𝜏, (15)

where 𝑇 > 0 is the interval of integration,

Π
𝑗𝑁V (𝑇, 𝜏)

=
(𝑁 + 𝑗 + V + 1)! (𝑁 + 1)!(−1)

−𝑗

𝑇𝑁+𝑗+V+1

×

𝑁−𝑗

∑

𝑘1=0

𝑗

∑

𝑘2=0

1

𝑘
1
!𝑘
2
! (𝑁 − 𝑗 − 𝑘

1
)!

×
(𝑇 − 𝜏)

V+𝑘1+𝑘2(−𝜏)
𝑁−𝑘1−𝑘2

(𝑗 − 𝑘
2
)! (𝑁 − 𝑘

1
− 𝑘
2
)! (V + 𝑘

1
+ 𝑘
2
)! (𝑁 − 𝑘

1
+ 1)

.

(16)

The calculation of 𝑦𝑗(0) is derived from an integral over the
time interval [0, 𝑇] for a small 𝑇. According to (𝑑

𝑗

𝑦(𝑡 −

𝜏))/𝑑𝜏
𝑗

|
𝜏=0

= (−1)
𝑗

𝑦
(𝑗)

(𝜏), 𝑦(𝑗)(𝑡) is expressed as a convolu-
tion product

𝑦
(𝑗)

(𝑡) = (−1)
𝑗

∫

𝑇

0

Π
𝑗𝑁V (𝑇, 𝜏) 𝑦𝑁 (𝑡 − 𝜏) 𝑑𝜏. (17)

Replacing 𝑦
𝑁
in (17) by 𝑦

𝑚
, an algebraic estimator [𝑦(𝑗)(𝑡)]

𝑒

of 𝑦(𝑗)(𝑡) is derived from the noisy measurement

[𝑦
(𝑗)

(𝑡)]
𝑒

= (−1)
𝑗

∫

𝑇

0

Π
𝑗𝑁V (𝑇, 𝜏) 𝑦𝑚 (𝑡 − 𝜏) 𝑑𝜏. (18)

For specific𝑁, 𝑗, and V, different polynomials for estimating
the signal are obtained, such as

𝑁 = 1, 𝑗 = 0, V = 0,

[𝑦
(0)

(𝑡)]
𝑒

= ∫

𝑇

0

−6𝜏 + 4𝑇

𝑇2
𝑦
𝑚
(𝑡 − 𝜏) 𝑑𝜏,

(19)

𝑁 = 1, 𝑗 = 1, V = 0,

[𝑦
(1)

(𝑡)]
𝑒

= ∫

𝑇

0

12𝜏 − 6𝑇

𝑇3
𝑦
𝑚
(𝑡 − 𝜏) 𝑑𝜏.

(20)

The value of the integral in (18), (19), and (20)may be approx-
imated by a trapezoidal numerical integration. For each
sample time 𝑡 = 𝑘𝑇

𝑠
with 𝑘 = 0, 1, 2, . . ., it follows:

[𝑦
(𝑗)

(𝑘𝑇
𝑠
)]
𝑒

= (−1)
𝑗
𝑇
𝑠

2

𝑀

∑

𝑛=1

(Π
𝑛−1

𝑦
𝑚
((𝑘 − 𝑛 + 1) 𝑇

𝑠
)

+Π
𝑛
𝑦
𝑚
((𝑘 − 𝑛) 𝑇

𝑠
)) ,

(21)

where 𝑇
𝑠
is the sample time,𝑀 = 𝑇/𝑇

𝑠
denotes the number

of summation steps, Π
𝑛
= Π
𝑗𝑁V(𝑇, 𝑛𝑇𝑠).

A feedback controller based on algebraic estimation is
carried out to control epileptiform spikes in the neural mass
model, as shown in Figure 3, where 𝑦(𝑡) is the output of
the neural mass model, 𝜔(𝑡) is the noise, 𝑦

𝑚
(𝑡) is the noisy

measurement, [𝑦(𝑡)]
𝑒
is the algebraic estimation of 𝑦(𝑡), 𝐿 is

the feedback gain matrix, and 𝑢(𝑡) is the control law with the
form

𝑢 (𝑡) = −𝐿 ⋅ [𝑦 (𝑡)]
𝑒
. (22)

The goal is to control epileptiform spikes with as less control
energy as possible. In this context, the control energy is
defined as

𝐸 (𝑡) = 𝑢
𝑇

(𝑡) ⋅ 𝑢 (𝑡) , (23)

where the superscript 𝑇 denotes the transpose of a vector or
matrix.

3. Numerical Results

3.1. Analysis of Epileptiform Spikes in the Neural Mass Models.
Mechanisms of epileptic seizures have been studied widely in
recent years. It has been reported that interictal or ictal spike
discharges in focal or partial seizures originate in an area of
the cortex that is excessively excitable [28], and the interac-
tions between neural populations are found to be strength-
ened during epilepsy seizures [29]. In the neural mass model,
the ratio 𝐴/𝐵 controls the degree of excitatory within a
given population and directly influences the type of signal
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𝑢(𝑡)
The neural mass model

−𝐿
[𝑦(𝑡)]𝑒 Algebraic estimator

𝑦(𝑡) 𝑦𝑚(𝑡)

𝜔(𝑡)

Figure 3: The proposed control based on algebraic estimation.

Population 1

Population 3Population 2

𝐾12 𝐾31

𝐾23

Figure 4: A regular network of three coupled neural populations.

dynamics produced by the model. The value of this ratio can
be altered by adjusting𝐴.The connectivity constant𝐾

𝑙𝑗
can be

used to adjust the strength of coupling between population 𝑙

and population 𝑗. This constant may also be used to inter-
connect populations in different ways. Consider a regular
network represented by (7) with three identical neural popu-
lations, as shown in Figure 4. Several simulations are provided
to validate the ability of the model to produce epileptiform
spikes and clarify the causality relations of the produced
signals among underlying populations. In our simulations,
(7) is solved by using a fourth-order Runge-Kutta differential
solver, and 𝑝

𝑙
(𝑡)(𝑙 = 1, 2, 3) is assumed to be a Gaussian white

noise with mean value 101 and standard deviation 35. Pop-
ulation 1 is made hyperexcitable by keeping all parameters
standard except for the average excitatory synaptic gain 𝐴,
which is set to 3.4mV. Populations 2 and 3 exhibit normal
activity by keeping all parameters standard. Figure 5 shows
the simulated dynamics of the model with different values of
coupling constants. When 𝐾

12
= 𝐾
23

= 𝐾
31

= 0, popula-
tion 1 produces sporadic spikes appearing randomly while
populations 2 and 3 produce signals reflecting normal activ-
ities (Figure 5(a)). Thus, the increase of 𝐴 may result in the
production of sporadic spikes.When𝐾

12
= 𝐾
23

= 100,𝐾
31

=

0, the propagation of sporadic spikes from population 1 to
populations 2 and 3 is observed, as shown in Figure 5(b). It
may be conjectured that sporadic spikes in populations 2 and
3 are due to that in population 1 and the increase of the cou-
pling constants 𝐾

12
and 𝐾

23
. When 𝐾

12
= 𝐾
23

= 𝐾
31

= 100,
a simulated EEG series with spikes resembling real EEG
signals during the propagation of temporal lobe seizure [17]
is observed, as shown in Figure 5(c). The introduction of
𝐾
31
is sufficient to generate sustained spike discharges. Based

on these results, the conclusion is reached that the neural

mass models can generate epileptiform EEG signals such as
sporadic spikes and sustained discharge of spikes by increas-
ing the value of 𝐴 and introducing the interactions between
populations. The coupling strength and the coupling direc-
tion control the causality relations of the produced signals
among the underlying populations. This observed behavior
is in accordance with results obtained in [17].

3.2. Control of Epileptiform Spikes in the Neural Mass models.
The feedback control based on algebraic estimation is imple-
mented to control epileptiform spikes in the regular network
of three coupled populations (Figure 4). For the underlying
model given in Figure 4, we choose a specific control strategy
with the feedback gain matrix 𝐿 of the following forms:

𝐿 = (𝐿
1
𝐿
2
𝐿
3
)
𝑇

, (24)

where

𝐿
1
= (

0 0 0 𝑘
𝑝1

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

) ,

𝐿
2
= (

0 0 0 0 0 0 0 0

0 0 0 𝑘
𝑝2

0 0 0 0

0 0 0 0 0 0 0 0

) ,

𝐿
3
= (

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 𝑘
𝑝3

0 0 0 0

) ,

(25)

𝑘
𝑝1
, 𝑘
𝑝2
, and 𝑘

𝑝3
are constants. The rules of determining 𝑘

𝑝𝑙

are to control epileptiform spikes with as less control energy
as possible. Several numerical simulations are applied to
determine the following characteristics regarding the pro-
posed control strategy in underlying neural mass model: (1)
the relationship between the type of populations to be con-
trolled and the ability to suppress epileptiform spikes, (2) the
relationship between the control energy and the number of
controlled populations, and (3) the dependence of the control
time and the control energy on the control gain. In all cases,
𝜔(𝑡) is chosen as a normal distribution of random noise, and
the polynomial (19) is used to derive the estimation [𝑦]

𝑒
from

𝑦
𝑚
. The parameters 𝑇 = 0.25 s, V = 0, and 𝑇

𝑠
= 0.0025 s are

set.

3.2.1. Effect of the Type of Controlled Populations. Theeffect of
adding feedback to different types of populations on the abil-
ity of controlling epileptiform spikes is analyzed. The ability
of controlling epileptiform spikes is evaluated based on the
output waveforms of the model for two different types of
populations to be controlled: (1) hyperexcitable population by
keeping all parameters standard except for 𝐴, which is set to
3.4mV, and (2) normal population by keeping all parameters
standard. The model that contains one (population 1), two
(populations 1 and 2), and three hyperexcitable populations
is taken into account for a thorough analysis. In these cases,
the coupling constants𝐾

12
= 𝐾
23

= 𝐾
31

= 100 are fixed.
For the model containing one hyperexcitable population,

two different control schemes are performed to realize the
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Figure 5: Simulated signals for the regular network of three coupled neural populations with different coupling strength. (a) 𝐾
12

= 𝐾
23

=

𝐾
31
= 0. (b)𝐾

12
= 𝐾
23
= 100, 𝐾

31
= 0. (c) 𝐾

12
= 𝐾
23
= 𝐾
31
= 100.

goal. The first one is to add control action to the hyperex-
citable population 1 by setting 𝑘

𝑝1
= 1.96, 𝑘

𝑝2
= 𝑘
𝑝3

= 0. The
second one is to add control action to the normal population
2 by setting 𝑘

𝑝2
= 6, 𝑘

𝑝1
= 𝑘
𝑝3

= 0. Simulation results are
exhibited in Figure 6. It is illustrated from the output wave-
forms that the first scheme is able to control spikes in all
populations, while the second one fails to control spikes in
population 1. In our simulations, control action is also added
to population 3 or both the normal populations; spikes in
population 1 cannot be controlled.

For the model containing two hyperexcitable popula-
tions, control action is added to hyperexcitable population 1
by setting 𝑘

𝑝1
= 5.5, 𝑘

𝑝2
= 𝑘
𝑝3

= 0, the normal population
3 by setting 𝑘

𝑝1
= 𝑘
𝑝2

= 0, 𝑘
𝑝3

= 10, and both the hyperex-
citable populations by setting 𝑘

𝑝1
= 𝑘
𝑝2

= 0.86, 𝑘
𝑝3

= 0, res-
pectively. By comparing the output waveforms (as shown
in Figure 7) for the applications of the above three control
schemes, it is illustrated that epileptiform spikes in all popula-
tions are controlled only by adding control action to both
hyperexcitable populations.

For the model containing three hyperexcitable popula-
tions, control action is added to hyperexcitable populations
1 and 2 by setting 𝑘

𝑝1
= 𝑘
𝑝2

= 8, 𝑘
𝑝3

= 0 and all hyperexcit-
able populations by setting 𝑘

𝑝1
= 𝑘
𝑝2

= 𝑘
𝑝3

= 1.62. The
output waveforms for the use of the above two control
schemes are exhibited in Figure 8. Spikes in all populations

are controlled by adding control action to all hyperexcitable
populations.

As such, these simulation results indicate that for the
analyzedmodel the hyperexcitable populations are the neces-
sary choices for being controlled to realize the goal by using
the specific control strategy with the feedback gain matrix
given in (24) and (25). Nevertheless, it is important to use
as less control energy as possible to realize suppression of
epileptiform spikes. The control energy is associated with the
number of populations to be controlled from the definition
of it. This association is investigated in details as shown next.

3.2.2. Effect of the Number of Controlled Populations. The
effect of the number of controlled populations on the control
energy is analyzed. For the entire analysis, the coupling
constants𝐾

12
= 𝐾
23

= 𝐾
31

= 100 are set.
First, population 1 is assumed to be hyperexcitable by

keeping all parameters standard except for 𝐴, which is set
to 3.4mV, and populations 2 and 3 are assumed to exhibit
normal activity by keeping all parameters standard. Based
on the analysis of Section 3.2.1, it is known that under the
control strategy with (24) and (25) adding feedback to all
hyperexcitable populations is necessary to control epilepti-
form spikes. Thus, the following three schemes in which the
control action works on different numbers of populations
are performed for comparison: (1) adding control action to
population 1 by setting 𝑘

𝑝1
= 1.96, 𝑘

𝑝2
= 𝑘
𝑝3

= 0, (2) adding
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Figure 6: The output waveforms for the use of the proposed control to the model containing one hyperexcitable population. (a) 𝑘
𝑝1

= 1.96,
𝑘
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= 𝑘
𝑝3

= 0. (b) 𝑘
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= 6, 𝑘
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= 0.
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Figure 7: The output waveforms for the use of the proposed control to the model containing two hyperexcitable populations. (a) 𝑘
𝑝1

= 5.5,
𝑘
𝑝2

= 𝑘
𝑝3

= 0. (b) 𝑘
𝑝1

= 𝑘
𝑝2

= 0, 𝑘
𝑝3

= 10. (c) 𝑘
𝑝1

= 𝑘
𝑝2

= 0.86, 𝑘
𝑝3

= 0.
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Figure 8: The output waveforms for the use of the proposed control to the model containing three hyperexcitable populations. (a) 𝑘
𝑝1

=

𝑘
𝑝2

= 8, 𝑘
𝑝3

= 0. (b) 𝑘
𝑝1

= 𝑘
𝑝2

= 𝑘
𝑝3

= 1.62.
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Figure 9: The output waveforms of population 2 for different values of 𝑘
𝑝1
. (a) 𝑘

𝑝1
= 0.65. (b) 𝑘

𝑝1
= 0.68. (c) 𝑘

𝑝1
= 0.7. (d) 𝑘

𝑝1
= 0.74. (e)

𝑘
𝑝1

= 0.95. (f) 𝑘
𝑝1

= 1.3.

control action to populations 1 and 2 by setting 𝑘
𝑝1

= 0.8,
𝑘
𝑝2

= 0.2, 𝑘
𝑝3

= 0, and (3) adding control action to all popula-
tions by setting 𝑘

𝑝1
= 0.7, 𝑘

𝑝2
= 0.35, and 𝑘

𝑝3
= 0.175.

Table 1 presents the total control energy over 20 simulation
realizations for the above four control schemes. It is noted

that the total control energy decreases with the increase of the
number of controlled populations.

Then, populations 1 and 2 are assumed to be hyperex-
citable by keeping all parameters standard except for𝐴, which
is set to 3.4mV, and population 3 is assumed to exhibit normal



Journal of Applied Mathematics 9

Table 1:The total control energy over 20 simulation realizations for
the model containing one hyperexcitable population.

Number of controlled populations Total control energy (mV2)
One population 252182.76
Two populations (populations 1 and 2) 62822.61
Three populations 58659.78

Table 2:The total control energy over 20 simulation realizations for
the model containing two hyperexcitable populations.

Number of controlled populations Total control energy (mV2)
Two populations 140134.83
Three populations 131983.87

activity by keeping all parameters standard. Control action
works on populations 1 and 2 by setting 𝑘

𝑝1
= 𝑘
𝑝2

= 0.86,
𝑘
𝑝3

= 0 and all populations by setting 𝑘
𝑝1

= 0.79, 𝑘
𝑝2

= 0.79,
𝑘
𝑝3

= 0.395. Table 2 presents the comparison of total control
energy over 20 simulation realizations for the above two
control schemes. The results indicate that the total control
energy decreases with the increase of the number of con-
trolled populations.

It is concluded from the above results that under the
control strategy with the feedback gain matrix given in (24)
and (25) the total control energy for controlling epileptiform
spikes in the analyzed model reduces when the number of
controlled populations increases.

3.2.3. Effect of the Control Gain. The effect of increasing con-
trol gain values 𝑘

𝑝𝑙
, 𝑙 = 1, 2, 3 on the control time and the

control energy is analyzed. It has been shown in Section 3.2.2
that adding control action to each population needs less con-
trol energy for the regular network of three coupled neural
populations.Thus, the effect of control gain is analyzed under
this control frame. Here, the control time is approximately
evaluated based on the moment that spikes in the model
disappear.

Population 1 is assumed to be hyperexcitable by keeping
all parameters standard except for 𝐴, which is set to 3.4mV
and populations 2 and 3 are assumed to exhibit normal activ-
ity by keeping all parameters standard. For the convenience
of analysis, let 𝑘

𝑝2
= 𝑘
𝑝1
/2 and 𝑘

𝑝3
= 𝑘
𝑝1
/4. Figure 9 presents

the output waveforms of population 2 for different values of
control gain 𝑘

𝑝1
. The output waveforms of populations 1 and

3 are omitted because they are similar to that of population 1.
Table 3 presents the total control energy over 20 simulation
realizations for corresponding 𝑘

𝑝1
. It is noted that for the

analyzedmodel, the control time and the total control energy
have meaningful reductions as 𝑘

𝑝1
varies from 0.65 to 0.7.

However, when 𝑘
𝑝1

varies from 0.7 to 1.3, and so on, no
meaningful reduction of the control time is verified, while
the corresponding total control energy has a tremendous
increase.

Based on these results, it is possible to come up with the
conjecture that for the analyzed model the increase of 𝑘

𝑝1

in (24) significantly reduces the control time and the total

control energy up to a limit. Beyond this limit, increase of
𝑘
𝑝1

may not have any further meaningful reduction of the
control time while leads to an increase of the total control
energy.

4. Conclusions

The generation of epileptiform spikes in the neural mass
models can be derived by increasing the average excitatory
synaptic gain and introducing the interactions between pop-
ulations. The feedback control method based on algebraic
estimation is able to control epileptiform spikes in the neural
mass models. The influence of the type of the controlled
populations, the number of the controlled populations, and
the control gain on the control performance is investigated in
details for a regular network of three coupled neural popu-
lations using a specific control strategy. The results indicate
that under the specific control strategy the hyperexcitable
populations are necessary choices for being controlled in
order to suppress epileptiform spikes.The results also indicate
that under the specific control strategy increasing the number
of controlled populations leads to the reduction of the control
energy, while increasing the control gain does not ensure a
meaningful reduction of the control time and the control
energy. As a matter of fact, there may exist an optimum value
of the control gain that ensures the shortest control time and
minimal control energy.

The integral in algebraic estimation of the noisy measure-
ment is evaluated by a trapezoidal numerical integration.The
different choices of the integration interval, the sample time,
and the number of summation steps lead to different exact-
ness of estimation and different control performance. There-
fore, it is important to determine these parameters appro-
priately for an optimized exactness and control performance.
In practice, the integral is able to be approximated by an
other method of numerical integration, such as the classi-
cal composite Newton-Cotes exact approximation. So, the
mathematical theory still offers potential for optimization
regarding exactness and control performance, which is only
one of the many possible directions of the work. The method
of algebraic estimationmight approximate not only the signal
itself but also the derivative of it from a noisy measurement.
There are a variety of fields forwhich the derivative estimation
might be applied. As shown in [30], the derivative estimation
is used to constructmodel-free controller for a shapememory
alloy active spring. It should be pointed out that although our
algorithm is model based, it may be model-free because the
acquisition of [𝑦]

𝑒
from algebraic estimation may be inde-

pendent of system model. No need of a mathematical model
is really attractive because a “good” mathematical modeling
is difficult if not impossible, especially for the neural system.

In this study, the model parameters are assumed to be
homogeneous for populations under consideration. It is not
realistic and should be improved in future work. Since the
connections of different populations are highly complicated,
the influence of topology structure of multiple (𝑁 > 3) popu-
lations on the control performance is another possible avenue
of future work. Validation of the proposed strategy via
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Table 3: The total control energy over 20 simulation realizations for different values of 𝑘
𝑝1
.

𝑘
𝑝1

0.65 0.68 0.7 0.74 0.95 1.3
Total control energy (mV2) 280420.11 80660.28 58659.78 68832.4 104877.94 165078.52

experimental applications is also one of the possible future
directions.
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