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Attribute reduction is one of the challenging problems facing the effective application of computational intelligence technology
for artificial intelligence. Its task is to eliminate dispensable attributes and search for a feature subset that possesses the same
classification capacity as that of the original attribute set. To accomplish efficient attribute reduction, many heuristic search
algorithms have been developed. Most of them are based on the model that the approximation of all the target concepts associated
with a decision system is dividable into that of a single target concept represented by a pair of definable concepts known as lower and
upper approximations. This paper proposes a novel model called macroscopic approximation, considering all the target concepts
as an indivisible whole to be approximated by rough set boundary region derived from inconsistent tolerance blocks, as well as an
efficient approximation framework called positive macroscopic approximation (PMA), addressing macroscopic approximations
with respect to a series of attribute subsets. Based on PMA, a fast heuristic search algorithm for attribute reduction in incomplete
decision systems is designed and achieves obviously better computational efficiency than other available algorithms, which is also
demonstrated by the experimental results.

1. Introduction

Rough set theory (RST) [1] is a powerful mathematical
tool for dealing with imprecision, uncertainty, and vague-
ness. As an extension of traditional set theory supporting
approximation in decision making, RST provides a well-
established model that the approximation of an indefinable
target concept is represented by a pair of definable concepts
known as lower and upper approximations. In recent years,
more and more attention has been paid to RST, and much
success of its applications has already covered a variety of
fields such as artificial intelligence, machine learning, and
knowledge discovery [2–6].

Attribute reduction is one of the key topics in RST, viewed
as the strongest and most important result to distinguish
RST from other theories [7]. Its task is just to eliminate
reducible or dispensable attributes and search for a feature
subset with the same classification capacity as that of the
original attribute set. Much use has been made of attribute
reduction as a preprocessing stage prior to classification of

decision systems, making analysis algorithms more efficient
and learned classifiers more compact.

In attribute reduction, we encounter four general search
strategies. The most intuitive one is the exhaustive search,
which checks all the possible candidate subsets and retrieves
those that satisfy the given criteria. The exhaustive search
results in high time complexity and has been proved to be an
NP-hard problem [8]. Another alternative way characterized
by the incomplete search applies mapping and pruning tech-
niques to minimization. It is achieved by mapping pertinent
elements to a structuredmodel and pruning useless branches
in the search space [9, 10]. Similar to the exhaustive search,
the incomplete search finds theminimal reduct at the expense
of great computational effort. The third strategy for attribute
reduction conducts a random search using the techniques
such as genetic algorithm [11], ant colony optimization [12],
and particle swarm optimization [13]. The random search
provides a robust solution but is also computationally very
expensive. The fourth and most practical strategy discovers
feature subsets by the heuristic search, where attributes with
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high quality are preferred as heuristics according to an
evaluation function [14–18]. The heuristic search has the
ability to seek out an optimal or suboptimal reduct as well as
acceptable computational complexity, playing an important
role in the attribute reduction community.

To accomplish efficient attribute reduction, much work
has been devoted to developing heuristic search algorithms.
From the viewpoint of evaluation functions, they can be
classified into three main categories: positive region-based
reduction [19–25], combination-based reduction [26–30],
and entropy-based reduction [31–33].

The positive region-based reduction takes the change
of rough set positive region caused by the addition of an
attribute as the significance of the attribute. Attributes with
the highest significance are selected as heuristics to guide
the search process. One of the classic instances is the quick
reduct algorithm proposed by Chouchoulas and Shen [19],
which can pick the best path to a reduct from the whole
search space and receive many improved versions [20–22].
By using decomposition and sorting techniques to calculate
positive region, Meng and Shi [23] put forward a fast
positive region-based algorithm for feature selection from
incomplete decision systems. Qian et al. [24, 25] constructed
an efficient accelerator for heuristic search using a series
of positive regions to approximate a given target decision
on the gradually reduced universe. It can be incorporated
into heuristic attribute reduction algorithms and make the
modified versions capable of greatly reducing computational
time.

Unlike the positive region-based reduction, the combi-
nation-based reduction considers positive region as well as
other available information such as rule support and bound-
ary region. An attribute is evaluated by combined measure
generated by positive region and additional information.
With consideration of the overall quality of the potential
set of rules, Zhang and Yao [27] introduced rule support
into the evaluation function and proposed a support-oriented
algorithm called parameterized average support heuristic
(PASH), which selects features causing high average support
of rule over all decision classes. Parthaláin and Shen [28] used
distance metric to qualify the objects in the boundary region
with regard to their proximity to the lower approximation
and presented the distance metric-assisted tolerance rough
set attribute reduction algorithm, which employs a new eval-
uationmeasure created by combining the distancemetric and
the dependency degree.

Different from the above two categories, the entropy-
based reduction gives the evaluation functions from the
information view, such as combination entropy and rough
entropy. Qian and Liang [32] presented the concept of combi-
nation entropy for describing the uncertainty of information
systems and used its condition entropy to select a feature
subset. Sun et al. [33] utilized rough entropy-based uncer-
tainty measures to evaluate the roughness and accuracy of
knowledge and then constructed a heuristic search algorithm
with low computational complexity for attribute reduction in
incomplete decision systems.

These investigations have offered interesting insights into
attribute reduction.Whendealingwith large incomplete data,

however, they still suffer from computational inefficiency.
A more efficient and feasible attribute reduction approach
is really desirable. This paper just intends to provide such a
solution.

One can observe thatmost of heuristic attribute reduction
algorithms are based on the model that the approximation of
all the target concepts from a decision system is dividable into
that of a single target concept represented by lower and upper
approximations. Little work has hitherto taken the approxi-
mation problem into account at the macroscopic level. In this
paper, we propose a novel model called macroscopic approx-
imation, considering all the target concepts of a decision
system as an indivisible whole to be approximated by rough
set boundary region derived from inconsistent blocks, as
well as an efficient approximation framework called positive
macroscopic approximation (PMA), addressing macroscopic
approximations with respect to a series of attribute subsets.
Based on PMA, a fast heuristic attribute reduction algorithm
for incomplete decision systems is designed and achieves
obviously better computational efficiency than other available
algorithms, which is also demonstrated by the experimental
results.

The remainder of this paper is organized as follows. In
Section 2, we review some basic concepts of RST and outline
the quick reduct algorithm. Section 3 investigates macro-
scopic approximation and positive macroscopic approxi-
mation. In Section 4, a fast heuristic attribute reduction
algorithm based on positive macroscopic approximation is
devised and illustrated by a worked example. In Section 5,
some experiments are practiced to validate the time efficiency
of the proposed algorithm. Finally, we give a concise conclu-
sion in Section 6.

2. Preliminaries

In this section, we briefly recall some basic concepts, such
as incomplete decision system, tolerance relation, tolerance
block, tolerance class, positive region, and boundary region,
together with the quick reduct algorithm, needed in the
following sections.

2.1. Basic Concepts. A decision system is an information
system with distinction between decision attributes and
condition attributes. It is generally formulated by a data
table where columns are referred to as attributes and rows
as objects of interest. If there exist objects that contain
missing data, the decision system is incomplete; otherwise,
it is complete.

An incomplete decision system is a tuple 𝑆 = (𝑈, 𝐴),
where𝑈, called the universe of discourse, is a nonempty finite
object set and𝐴 is an attribute set that consists of a condition
attribute subset 𝐶 and a decision attribute subset 𝐷. For any
𝑎 ∈ 𝐴, there is a mapping 𝑓, 𝑓 : 𝑈 → 𝑉

𝑎
, where 𝑉

𝑎
is the

value domain of 𝑎.𝑉
𝐶
= {𝑉
𝑎
| 𝑎 ∈ 𝐶} ∪ {∗} (where “∗” stands

for missing values) and 𝑉
𝐷

= {𝑉
𝑑

| 𝑑 ∈ 𝐷} are the value
domains of 𝐶 and𝐷, respectively. For convenience, the tuple
𝑆 = (𝑈, 𝐴) is usually denoted as 𝑆 = (𝑈, 𝐶 ∪ 𝐷).
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Let 𝑆 = (𝑈, 𝐶 ∪𝐷) be an incomplete decision system. For
any subset 𝑃 ⊆ 𝐶, 𝑃 determines a binary relation, denoted by
SIM(𝑃), which is defined as

SIM (𝑃) = {(𝑢, V) ∈ 𝑈 × 𝑈 | ∀𝑎 ∈ 𝑃, 𝑓 (𝑢, 𝑎)

= 𝑓 (V, 𝑎) or 𝑓 (𝑢, 𝑎) = ∗ or 𝑓 (V, 𝑎) = ∗} .

(1)

It is easily known that the binary relation is reflexive,
symmetric, and intransitive, so it is a tolerance relation. Using
𝑃-tolerance relation, the universe can be divided into many
tolerance blocks such that 𝜋

𝑃
= {𝑋 | 𝑋 ∈ 𝑈/SIM(𝑃)},

where 𝑋 is a 𝑃-tolerance block and 𝜋
𝑃
is the family of all the

𝑃-tolerance blocks on 𝑈, called a 𝑃-approximation space. A
𝑃-tolerance block depicts the collection of objects which are
possibly indiscernible from each other with respect to 𝑃. If
there does not exist another 𝑃-tolerance block 𝑌 such that
𝑋 ⊂ 𝑌, then𝑋 is called a maximal 𝑃-tolerance block [34].

For any object 𝑢 ∈ 𝑈, 𝑃-tolerance relation determines the
tolerance class of 𝑢, denoted by 𝑆

𝑃
(𝑢), that is, 𝑆

𝑃
(𝑢) = {V ∈ 𝑈 |

(𝑢, V) ∈ SIM(𝑃)}, describing themaximal set of objects which
are probably indistinguishable to 𝑢with respect to 𝑃. There is
a relationship between the tolerance class and the maximal
tolerance block, shown as follows [34]:

𝑆
𝑃
(𝑢) = ⋃

𝑋∈𝜋
𝑚𝑃
(𝑢)

𝑋, (2)

where 𝜋
𝑚𝑃

(𝑢) is the family of maximal 𝑃-tolerance blocks
containing 𝑢. Then, it is easy to prove that

𝑆
𝑃
(𝑢) = ⋃

𝑋∈𝜋
𝑃
(𝑢)

𝑋, (3)

where 𝜋
𝑃
(𝑢) is the family of 𝑃-tolerance blocks containing 𝑢.

Consider a partition 𝜋
𝐷

= {𝐷
𝑖
| 𝑖 = 1, 2, . . . , 𝑗} of

𝑈 determined by 𝐷. 𝜋
𝐷

is the family of all the decision
classes derived from the decision system. Each decision class
can be viewed as a target concept approximated by a pair
of precise concepts which are known as lower and upper
approximations.The dual approximations of a target concept
𝐷
𝑖
are defined, respectively, as

𝑃 (𝐷
𝑖
) = {𝑢 ∈ 𝑈 | 𝑆

𝑃
(𝑢) ⊆ 𝐷

𝑖
} ,

𝑃 (𝐷
𝑖
) = {𝑢 ∈ 𝑈 | 𝑆

𝑃
(𝑢) ∩ 𝐷

𝑖
̸= 0} .

(4)

The low approximation of 𝐷
𝑖
is regarded as the maximal 𝑃-

definable set contained in 𝐷
𝑖
, whereas the upper approxi-

mation of 𝐷
𝑖
is considered as the minimal 𝑃-definable set

containing 𝐷
𝑖
. If 𝑃(𝐷

𝑖
) = 𝑃(𝐷

𝑖
), then 𝐷

𝑖
is a 𝑃-exact set;

otherwise, it is a 𝑃-rough set.
By the dual approximations, the universe of the deci-

sion system is partitioned into two mutually exclusive

crisp regions: positive region and boundary region, defined,
respectively, as

POS
𝑃
(𝜋
𝐷
) =

𝑗

⋃

𝑖=1

𝑃 (𝐷
𝑖
) , (5)

BND
𝑃
(𝜋
𝐷
) =

𝑗

⋃

𝑖=1

(𝑃 (𝐷
𝑖
) − 𝑃 (𝐷

𝑖
)) . (6)

It can be perceived that the positive region is the collection
of objects which are classified without any ambiguity into
the target concepts using 𝑃-tolerance relation, while the
boundary region is, in a sense, the undeterminable area of
the universe, where none of the objects are classified with
certainty into the target concepts as far as 𝑃 is concerned. It is
apparent that POS

𝑃
(𝜋
𝐷
) ∪ BND

𝑃
(𝜋
𝐷
) = 𝑈 and POS

𝑃
(𝜋
𝐷
) ∩

BND
𝑃
(𝜋
𝐷
) = 0. If BND

𝑃
(𝜋
𝐷
) = 0 or POS

𝑃
(𝜋
𝐷
) = 𝑈, we say

that 𝑆 is consistent; otherwise, it is inconsistent.

2.2. Rough Set Attribute Reduction. In RST environment,
dependency degree of decision attribute set 𝐷 to condition
attribute set𝑃 (𝑃 ⊆ 𝐶) is definable in terms of positive region:

𝛾
𝑃
(𝐷) =

󵄨󵄨󵄨󵄨POS𝑃 (𝜋𝐷)
󵄨󵄨󵄨󵄨

|𝑈|
, (7)

where |POS
𝑃
(𝜋
𝐷
)| and |𝑈| are the cardinalities of POS

𝑃
(𝜋
𝐷
)

and 𝑈, respectively. If 𝛾
𝑃
(𝐷) = 1, we say that 𝐷 totally

depends on 𝑃. If 𝛾
𝑃
(𝐷) < 1, we say that 𝐷 partially depends

on 𝑃. If 𝛾
𝑃
(𝐷) = 0, we say that 𝐷 is completely independent

of 𝑃. RST describes a variation of dependency degree caused
by the addition of attribute 𝑎 to 𝑃 as the significance of 𝑎 such
that

Sig (𝑎, 𝑃,𝐷) = 𝛾
𝑃∪{𝑎}

(𝐷) − 𝛾
𝑃
(𝐷) . (8)

The bigger the significance value is, the more informative
the attribute is. Accordingly, the quick reduct algorithm
[19], regarded as a classical rough set attribute reduction
algorithm, is constructed by iteratively adding the attribute
with the highest significance to an attribute poolwhich begins
with an empty set until the dependency value of the pool
equals that of the set of the whole condition attributes. This
process can be outlined by Algorithm 1.

3. Positive Macroscopic Approximation

It is well known that approximation is one of the core ideas
of RST. A target concept is approximated by the low and
upper approximations. Likewise, a decision system can be
viewed as a super concept to be approximated by the low
and upper super approximations, where the family of all the
target concepts from the decision system is considered as the
super concept, the positive region or the complementary set
of the boundary region of the decision system acts as the
low super approximation, and the universe of the decision
system serves as the upper super approximation. If the low
super approximation equals the upper super approximation,
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Inputs:
𝑈: the universe
𝐶: 𝐶 = {𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
}, a condition attribute set

𝐷:𝐷 = {𝑑}, a decision attribute set
Output:
red : a reduct of 𝐶
Begin
Step 1. Let red= 0 and 𝑅 = 𝐶

Step 2. While 𝛾red(𝐷) ̸= 𝛾
𝐶
(𝐷) and 𝑅 ̸= 0 do

Select an attribute 𝑎 ∈ 𝑅 with Sig(𝑎, red, 𝐷) = max(Sig(𝑎, red, 𝐷)) where 𝑎
𝑖
∈ 𝑅

𝑅 = 𝑅 − {𝑎}

red = red ∪ {𝑎}

Step 3. Output red
End.

Algorithm 1: Quick reduct.

the decision system is consistent or exact; otherwise, it is
inconsistent or rough. From the observation, it is easily
understood that the approximation of a decision system can
be represented by the positive region or the boundary region.

RST offers a feasible way to obtain the approximation
of a decision system by means of that of a single target
concept represented by lower and upper approximations as
stated by (5) and (6). For convenience, this model is called
microcosmic approximation. As opposed to microcosmic
approximation, this section introduces a novel model called
macroscopic approximation, where the approximation of
a decision system is achieved by regarding all the target
concepts as an inseparable entity to be approximated by the
boundary region. Furthermore, we explore positive macro-
scopic approximation (PMA), which considers macroscopic
approximations with respect to a series of attribute sets.

3.1. Macroscopic Approximation. Macrocosmic approxima-
tion is an alternative way to arrive at the approximation
of a decision system by the boundary region. Due to an
integral consideration of all the target concepts associated
with a decision system, the low and upper approximations are
unavailable. Affirmably, an attempt is deserved to pioneer a
new avenue to macroscopic approximation. An inconsistent
tolerance block, introduced in the following context, is
capable of offering such a feasible solution.

Definition 1. Let 𝑆 = (𝑈, 𝐶 ∪𝐷), 𝑃 ⊆ 𝐶, and𝑋 ∈ 𝜋
𝑃
. Then,𝑋

is said an inconsistent tolerance block (IT-block) if |𝜆(𝑋)| >

1 or a consistent tolerance block (CT-block), where 𝜆(𝑋) =

{𝑓(𝑢, 𝑑) | 𝑢 ∈ 𝑋} and |𝜆(𝑋)| is the cardinality of 𝜆(𝑋).

An IT-block describes a set of 𝑃-definable objects
with diverse class labels, implying that a group of 𝑃-
indistinguishable objects have the divergence of decision
making, whereas a CT-block depicts a collection of 𝑃-
definable objects with the same class label, indicating that
a group of 𝑃-indiscernible objects share the same decision
making. Accordingly, 𝜋

𝑃
are classified into two mutually

exclusive crisp subfamilies. One is the consistent family,

denoted by 𝜋
CT
𝑃

, collecting all the CT-blocks from 𝜋
𝑃
such

that 𝜋CT
𝑃

= {𝑌 ∈ 𝜋
𝑃

| |𝜆(𝑌)| = 1}. The other is the
inconsistent family, denoted by 𝜋

IT
𝑃
, gathering all the IT-

blocks from 𝜋
𝑃
such that 𝜋IT

𝑃
= {𝑌 ∈ 𝜋

𝑃
| |𝜆(𝑌)| > 1}.

Obviously, 𝜋CT
𝑃

∪ 𝜋
IT
𝑃

= 𝜋
𝑃
and 𝜋

CT
𝑃

∩ 𝜋
IT
𝑃

= {0}.
It is worth noting the distinction between the boundary

region and the IT-block. The former consists of objects of
which tolerance classes cannot be entirely contained in target
concepts, while the latter is such an entity that overlaps two
or more target concepts. The following lemmas are used to
investigate the relationship between them.

Lemma 2. Let 𝑆 = (𝑈, 𝐶 ∪ 𝐷) and 𝑃 ⊆ 𝐶. For any 𝑢 ∈

BND
𝑃
(𝜋
𝐷
), there must exist at least one IT-block containing

𝑢.

Proof. This proof is done by contradiction. For any 𝑢 ∈

BND
𝑃
(𝜋
𝐷
), suppose that there does not exist any IT-block

containing 𝑢. That is to say, any 𝑋 ∈ 𝜋
𝑃
(𝑢) is a CT-block,

which implies that there must exist some decision value 𝑑
0

(𝑑
0

∈ 𝑉
𝐷
) such that 𝜆(𝑋) = 𝑑

0
. 𝑑
0
corresponds to a

certain decision class𝐷
0
(𝐷
0
∈ 𝜋
𝐷
) containing all the objects

whose decision values are equal to 𝑑
0
, and then 𝑋 ⊆ 𝐷

0

and ⋃
𝑋∈𝜋
𝑃
(𝑢)

𝑋 ⊆ 𝐷
0
. So, 𝑆

𝑃
(𝑢) = ⋃

𝑋∈𝜋
𝑃
(𝑢)

𝑋 ⊆ 𝐷
0
. This

means that 𝑢 ∈ POS
𝑃
(𝜋
𝐷
), contradicted with 𝑢 ∈ BND

𝑃
(𝜋
𝐷
).

Hence, for any 𝑢 ∈ BND
𝑃
(𝜋
𝐷
), there must exist at least one

IT-block containing 𝑢. The lemma holds.

Lemma 3. Let 𝑆 = (𝑈, 𝐶 ∪ 𝐷) and 𝑃 ⊆ 𝐶. For any 𝑋 ∈ 𝜋
IT
𝑃
,

𝑋 ⊆ BND
𝑃
(𝜋
𝐷
).

Proof. For any 𝑢 ∈ 𝑋, we have 𝑆
𝑃
(𝑢) = 𝑆

󸀠

𝑃
(𝑢) ∪ 𝑋, where

𝑆
󸀠

𝑃
(𝑢) = ⋃

𝑋
󸀠
∈𝜋
𝑃
(𝑢)

𝑋
󸀠. Since 𝑋 ∈ 𝜋

IT
𝑃
, there is 𝑋 ̸⊂ 𝐷

0
for

any 𝐷
0
∈ 𝜋
𝐷
(or if 𝑋 ⊆ 𝐷

0
, then |𝜆(𝑋)| = |𝜆(𝐷

0
)| = 1,

and thereby 𝑋 ∈ 𝜋
CT
𝑃

, contradicted with 𝑋 ∈ 𝜋
IT
𝑃
). Hence,

𝑆
𝑃
(𝑢) = 𝑆

󸀠

𝑃
(𝑢) ∪ 𝑋 ̸⊂ 𝐷

0
, which gives 𝑢 ∉ POS

𝑃
(𝜋
𝐷
). As

POS
𝑃
(𝜋
𝐷
)∪BND

𝑃
(𝜋
𝐷
) = 𝑈 and POS

𝑃
(𝜋
𝐷
)∩BND

𝑃
(𝜋
𝐷
) = 0

in 𝑆, 𝑢 ∉ POS
𝑃
(𝜋
𝐷
) implies that 𝑢 ∈ BND

𝑃
(𝜋
𝐷
). Therefore,

for any 𝑋 ∈ 𝜋
IT
𝑃

and 𝑢 ∈ 𝑋, there is 𝑢 ∈ BND
𝑃
(𝜋
𝐷
). This
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means that 𝑋 ⊆ BND
𝑃
(𝜋
𝐷
) for any 𝑋 ∈ 𝜋

IT
𝑃
. The lemma

holds.

Theorem4. Let 𝑆 = (𝑈, 𝐶∪𝐷) and𝑃 ⊆ 𝐶.Then, BND
𝑃
(𝜋
𝐷
) =

⋃
𝑋∈𝜋

IT
𝑃

𝑋.

Proof. For any 𝑢 ∈ BND
𝑃
(𝜋
𝐷
), according to Lemma 2, there

must exist at least one tolerance block 𝑋 containing 𝑢 such
that 𝑋 ∈ 𝜋

IT
𝑃
, which yields BND

𝑃
(𝜋
𝐷
) ⊆ ⋃

𝑋∈𝜋
IT
𝑃

𝑋. On
the other hand, for any 𝑋 ∈ 𝜋

IT
𝑃
, by Lemma 3, we have

𝑋 ⊆ BND
𝑃
(𝜋
𝐷
), which gives ⋃

𝑋∈𝜋
IT
𝑃

𝑋 ⊆ BND
𝑃
(𝜋
𝐷
). In

summary, BND
𝑃
(𝜋
𝐷
) = ⋃

𝑋∈𝜋
IT
𝑃

𝑋. The theorem holds.

Theorem 4 reveals the relationship that the boundary
region is the union of IT-blocks, which is in essence the
materialization of macroscopic approximation by integrally
approximating all the target concepts using the bound-
ary region derived from IT-blocks. Unlike the microscopic
approximation stated by (6), the macroscopic approximation
is directly constructed on the elementary members of the
approximation space rather than the low and upper approxi-
mations, making the calculation of the approximation of the
decision system more efficient.

3.2. PMA. For a given decision system, we can build a series
of attribute subsets according to the following rule. The first
set has only one attribute selected from the set of the whole
attributes, the union of the first set and another attribute
chosen from the remaining attributes is regarded as the
second set, and so on. The newly generated attribute subsets
form an ascending order of the sequence, called a positive
sequence. If a sequence is organized by a descending order,
it is called a converse sequence. Assume that attribute subsets
𝐴 and 𝐵 are two arbitrary elements of a positive sequence. If
𝐴 contains 𝐵, we say that the tolerance relation determined
by 𝐴 is finer than that determined by 𝐵. Conversely, if 𝐴 is
contained in 𝐵, we say that the tolerance relation determined
by 𝐴 is coarser than that determined by 𝐵. Accordingly, a
positive sequence determines a train of tolerance relations
stretching from coarse to fine.

In this subsection, we explore positive macroscopic
approximation (PMA), which addresses macroscopic
approximations with respect to a positive sequence. To
construct an efficient PMA, the following relevant definitions
and lemmas are needed.

Definition 5. Let 𝑆 = (𝑈, 𝐶 ∪ 𝐷), 𝑃 ⊆ 𝐶, 𝑎 ∈ 𝐶 − 𝑃, and
𝑋 ∈ 𝜋

𝑃
. Then, the family of subblocks determined by 𝑎 on𝑋

is defined as

𝜃
𝑎
(𝑋) = {{𝑢 ∈ 𝑋 | 𝑓 (𝑢, 𝑎) = 𝑏 or 𝑓 (𝑢, 𝑎) = ∗} | 𝑏 ∈ 𝑉

𝑎
} .

(9)

The consistent and inconsistent subfamilies of 𝜃
𝑎
(𝑋) are

defined as 𝜃
CT
𝑎

(𝑋) = {𝑌 ∈ 𝜃
𝑎
(𝑋) | |𝜆(𝑌)| = 1} and

𝜃
IT
𝑎
(𝑋) = {𝑌 ∈ 𝜃

𝑎
(𝑋) | |𝜆(𝑌)| > 1}, respectively. Apparently,

𝜃
CT
𝑎

(𝑋) ∪ 𝜃
IT
𝑎
(𝑋) = 𝜃

𝑎
(𝑋) and 𝜃

CT
𝑎

(𝑋) ∩ 𝜃
IT
𝑎
(𝑋) = {0}.

Lemma 6. Let 𝑆 = (𝑈, 𝐶∪𝐷), 𝑃 ⊆ 𝐶, 𝑎 ∈ 𝐶−𝑃, and𝑋 a CT-
block.Then, any𝑌 ∈ 𝜃

𝑎
(𝑋) is a CT-block and 𝜃CT

𝑎
(𝑋) = 𝜃

𝑎
(𝑋),

𝜃
IT
𝑎
(𝑋) = {0}.

Proof. Since𝑋 is aCT-block, |𝜆(𝑋)| = 1. Suppose that𝜆(𝑋) =

𝑑
0
(𝑑
0
∈ 𝑉
𝑑
), then 𝑓(𝑢, 𝑑) = 𝑑

0
for any 𝑢 ∈ 𝑋. 𝑌 ∈ 𝜃

𝑎
(𝑋)

means that 𝑌 ⊆ 𝑋, so we have V ∈ 𝑋 for any V ∈ 𝑌 and
𝑓(V, 𝑑) = 𝑑

0
. Hence, 𝜆(𝑌) = 𝑑

0
and |𝜆(𝑌)| = 1, which yields

that 𝑌 is a CT-block. Moreover, 𝜃CT
𝑎

(𝑋) = {𝑌 ∈ 𝜃
𝑎
(𝑋) |

|𝜆(𝑌)| = 1} = 𝜃
𝑎
(𝑋) and 𝜃

IT
𝑎
(𝑋) = {𝑌 ∈ 𝜃

𝑎
(𝑋) | |𝜆(𝑌)| >

1} = {0}. The lemma holds.

This lemma shows that any subblock derived from a
CT-block is also a CT-block. In other words, inconsistent
tolerance subblocks are derivable only from IT-blocks.

Definition 7. Let 𝑆 = (𝑈, 𝐶 ∪ 𝐷), 𝑃 ⊆ 𝐶, 𝑎 ∈ 𝐶 − 𝑃, and 𝑊

a family of 𝑃-tolerance blocks. Then, the family of subblocks
determined by 𝑎 on𝑊 is defined as

𝜔
𝑎
(𝑊) = {𝜃

𝑎
(𝑋) | 𝑋 ∈ 𝑊} . (10)

The consistent and inconsistent subfamilies of 𝜔
𝑎
(𝑊) are

defined as 𝜔
CT
𝑎

(𝑊) = {𝑌 ∈ 𝜔
𝑎
(𝑊) | |𝜆(𝑌)| = 1} and

𝜔
IT
𝑎
(𝑊) = {𝑌 ∈ 𝜔

𝑎
(𝑊) | |𝜆(𝑌)| > 1}, respectively. Clearly,

𝜔
CT
𝑎

(𝑊) ∪ 𝜔
IT
𝑎
(𝑊) = 𝜔

𝑎
(𝑊) and 𝜔

CT
𝑎

(𝑊) ∩ 𝜔
IT
𝑎
(𝑊) = {0}.

Lemma 8. Let 𝑆 = (𝑈, 𝐶 ∪ 𝐷), 𝑃 ⊆ 𝐶, 𝑎 ∈ 𝐶 − 𝑃, and 𝑊 a
family of CT-blocks. Then, any 𝑌 ∈ 𝜔

𝑎
(𝑊) is a CT-block and

𝜔
𝐶𝑇

𝑎
(𝑊) = 𝜔

𝑎
(𝑊), 𝜔𝐼𝑇

𝑎
(𝑊) = {0}.

Proof. For any𝑋 ∈ 𝑊,𝑋 is a CT-block. By Lemma 6, any𝑍 ∈

𝜃
𝑎
(𝑋) is also a CT-block, which yields that any 𝑌 ∈ {𝜃

𝑎
(𝑋) |

𝑋 ∈ 𝑊} = 𝜔
𝑎
(𝑊) is a CT-block. Since |𝜆(𝑌)| = 1, 𝜔CT

𝑎
(𝑊) =

{𝑌 ∈ 𝜔
𝑎
(𝑊) | |𝜆(𝑌)| = 1} = 𝜔

𝑎
(𝑊) and 𝜔

IT
𝑎
(𝑊) = {𝑌 ∈

𝜔
𝑎
(𝑊) | |𝜆(𝑌)| > 1} = {0}. The lemma holds.

Theorem 9. Let 𝑆 = (𝑈, 𝐶 ∪ 𝐷), 𝑃 ⊆ 𝐶, and 𝑎 ∈ 𝐶 − 𝑃. Then,
𝜋
IT
𝑃∪{𝑎}

= 𝜔
IT
𝑎
(𝜋

IT
𝑃
).

Proof. Assume that 𝑃 = {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑡
}. By (9) and (10),

we have 𝜋
𝑃

= 𝜔
𝑎
𝑡

(⋅ ⋅ ⋅ (𝜔
𝑎
2

(𝜃
𝑎
1

(𝑈))) ⋅ ⋅ ⋅ ) and 𝜋
𝑃∪{𝑎}

=

𝜔
𝑎
(𝜔
𝑎
𝑡

(⋅ ⋅ ⋅ (𝜔
𝑎
2

(𝜃
𝑎
1

(𝑈))) ⋅ ⋅ ⋅ )). Then, 𝜋
𝑃∪{𝑎}

= 𝜔
𝑎
(𝜋
𝑃
) =

𝜔
𝑎
(𝜋

IT
𝑃
) ∪ 𝜔
𝑎
(𝜋

CT
𝑃

).

𝜋
IT
𝑃∪{𝑎}

= {𝑋 ∈ 𝜋
𝑃∪{𝑎}

| |𝜆 (𝑋)| > 1}

= {𝑋 ∈ 𝜔
𝑎
(𝜋

IT
𝑃
) ∪ 𝜔
𝑎
(𝜋

CT
𝑃

) | |𝜆 (𝑋)| > 1}

= {𝑋 ∈ 𝜔
𝑎
(𝜋

IT
𝑃
) | |𝜆 (𝑋)| > 1}

∪ {𝑋 ∈ 𝜔
𝑎
(𝜋

CT
𝑃

) | |𝜆 (𝑋)| > 1}

= 𝜔
IT
𝑎
(𝜋

IT
𝑃
) ∪ 𝜔

IT
𝑎
(𝜋

CT
𝑃

) .

(11)

By Lemma 8, 𝜔IT
𝑎
(𝜋

CT
𝑃

) = {0}, and then 𝜋
IT
𝑃∪{𝑎}

= 𝜔
IT
𝑎
(𝜋

IT
𝑃
).

The theorem holds.
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Inputs:
𝑈: the universe
𝑃: 𝑃 = {𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑡
} ⊆ 𝐶, a condition attribute subset

𝐷: 𝐷 = {𝑑}, a decision attribute set
Output:
PMA(𝜌

𝑡
): a family of boundary regions

Begin
Sept 1. PMA(𝜌

𝑡
) = ⟨0⟩, 𝑃

0
= 0, 𝜋

IT
𝑃
0

= {𝑈} // regard the universe as a root IT-block
Step 2. For 𝑖 = 1 to 𝑡 do

𝑃
𝑖
= 𝑃
𝑖−1

∪ {𝑎
𝑖
} // generate an element 𝑃

𝑖
of a positive sequence

𝜋
IT
𝑃
𝑖

= 𝜔
IT
𝑎
𝑖

(𝜋
IT
𝑃
𝑖−1

) // derive IT-blocks with respect to 𝑃
𝑖
from those with respect to 𝑃

𝑖−1

BND
𝑃
𝑖

(𝜋
𝐷
) = ∪{𝑋 ∈ 𝜋

IT
𝑃
𝑖

} // obtain the boundary region by means of IT-blocks
PMA(𝜌

𝑡
) = PMA(𝜌

𝑡
) + {BND

𝑃
𝑖

(𝜋
𝐷
)} // add the boundary region to the sequence

Step 3. Output PMA(𝜌
𝑡
)

End.

Algorithm 2: PMA.

Theorem 9 indicates that 𝜋IT
𝑃∪{𝑎}

can be deduced by 𝜋
IT
𝑃
,

which implies that the IT-blocks determined by the finer tol-
erance relation can be achieved by successively decomposing
the IT-blocks determined by the coarser tolerance relation,
regardless of corresponding CT-blocks. By Theorem 9, we
arrive at an efficient PMA, embodied by Definition 10.

Definition 10. Let 𝑆 = (𝑈, 𝐶 ∪ 𝐷), 𝑃 ⊆ 𝐶 with 𝑃 =

{𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑡
}, and 𝜌

𝑡
= ⟨𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑡
⟩ a positive sequence,

where 𝑃
1
= {𝑎
1
}, 𝑃
2
= {𝑎
1
, 𝑎
2
},. . ., and 𝑃

𝑡
= {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑡
}.

Then, PMA with respect to 𝜌
𝑡
can be defined as

PMA (𝜌
𝑡
) = ⟨BND

𝑃
𝑡

(𝜋
𝐷
) | 1 ≤ 𝑖 ≤ 𝑡⟩ , (12)

where BND
𝑃
𝑡

(𝜋
𝐷
) = ⋃

𝑋∈𝜋
IT
𝑃
𝑡

𝑋, 𝜋IT
𝑃
𝑡

= 𝜔
IT
𝑎
𝑡

(𝜋
IT
𝑃
𝑡−1

), and 𝜋
IT
𝑃
1

=

𝜔
IT
𝑎
1

({𝑈}) = 𝜃
IT
𝑎
1

(𝑈).

PMA is in fact a sequence of boundary regions, each of
which denotes the approximation of the decision systemwith
respect to some attribute subset. Since the tolerance relations
determined by the positive sequence are from coarse to fine, it
is easily proved that corresponding boundary regions stretch
from broad to narrow. In other words, PMA is the sequence
of gradually reduced boundary regions. When 𝑃 = 𝐶, PMA
portrays in detail the evolution of boundary region becoming
narrower and narrower until reaching the boundary region
with respect to the set of the whole condition attributes.

PMA provides an efficient approximation framework
where a decision system is consecutively approximated by
the boundary region derived from IT-blocks according to
a positive sequence. This mechanism can be visualized in
Figure 1.

PMA considers the universe 𝑈 as a root IT-block and
evaluates the boundary regions by repeatedly dividing the
IT-blocks into the smaller ones with the positive sequence.
For the attribute set 𝑃

1
, the attribute 𝑎

1
works on the root

IT-block and then outputs the consistent family 𝜋
CT
𝑃
1

and
the inconsistent family 𝜋

IT
𝑃
1

. The former is pruned, while the
latter is used to produce the boundary region BND

𝑃
1

(𝜋
𝐷
)

𝑃1

𝑃2

𝑃𝑡−1

𝑃𝑡

𝜋
CT
𝑃𝑖

𝜋
IT
𝑃𝑖

CT-block

IT-block

BND𝑃𝑖
(𝜋𝐷)

· · · · · ·

...
...

. . .

Figure 1: Mechanism of PMA.

and serves as father IT-blocks for next operation. As for
𝑃
2
, 𝜋CT
𝑃
2

and 𝜋
IT
𝑃
2

are generated by employing 𝑎
2
to operate

on 𝜋
IT
𝑃
1

, and then BND
𝑃
2

(𝜋
𝐷
) is derived from 𝜋

IT
𝑃
2

. Likewise,
we can obtain 𝜋

CT
𝑃
𝑡

and 𝜋
IT
𝑃
𝑡

calculated by using 𝑎
𝑡
to split

𝜋
IT
𝑃
𝑡−1

along with BND
𝑃
𝑡

(𝜋
𝐷
) induced by 𝜋

IT
𝑃
𝑡

. The detailed
steps of this process are shown in Algorithm 2. PMA starts
with an empty sequence; boundary regions with respect to
a positive sequence are added incrementally. This process
continues until all the attributes are traversed. For each loop,
the boundary region is derivable from the corresponding IT-
blocks obtained by operating on their predecessors with a
single attribute.

There are several highlights decorating PMA. First, the
inconsistent family with respect to some attribute subsets
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Table 1: An incomplete decision system.

Car Price Mileage Size Max speed Acceleration
𝑢
1

High High Full Low Good
𝑢
2

∗ ∗ Full Low Good
𝑢
3

∗ ∗ Compact Low Poor
𝑢
4

Low ∗ Full High Good
𝑢
5

∗ ∗ Full High Excellent
𝑢
6

High High Full ∗ Good

inherits from its predecessor rather than starting all over
again, which makes efficient use of the intermediate results.
Second, the cardinality of the boundary region with respect
to a fine tolerance relation is not more than the cardinality
of the boundary region with respect to a coarse tolerance
relation, indicating that PMA works on a gradually reduced
universe. Finally, obtaining a series of boundary regions
needs to traverse the entire condition attribute set just only
once. All the advantages are beneficial for PMA to achieve
better computational efficiency, which can be visible in the
process of attribute reduction addressed in the next section.
The following example is employed to illustrate this idea.

Example 11. Consider an incomplete decision system 𝑆 =

(𝑈, 𝐶 ∪𝐷) showed in Table 1, where𝑈 = {𝑢
1
, 𝑢
2
, . . . , 𝑢

6
}, 𝐶 =

{𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
}, and𝐷 = {𝑑}.The attributes 𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, and

𝑑 stand for price, mileage, size, max-speed, and acceleration,
respectively. Note that Table 1 is somewhat different from that
in the literature [23, 34].

Let 𝑃 = {𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
}. We can build a positive sequence

𝜌
4
such that 𝜌

4
= {𝑃
1
, 𝑃
2
, 𝑃
3
, 𝑃
4
}, where 𝑃

1
= {𝑎
1
}, 𝑃
2

=

{𝑎
1
, 𝑎
2
}, 𝑃
3
= {𝑎
1
, 𝑎
2
, 𝑎
3
}, and 𝑃

4
= {𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
}. Applying

𝑎
1
to the universe, we can get 𝜋IT

𝑃
1

and then BND
𝑃
1

(𝜋
𝐷
):

𝜋
IT
𝑃
1

= {{𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
5
, 𝑢
6
} , {𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
}} ,

BND
𝑃
1

(𝜋
𝐷
) = {𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
} .

(13)

For 𝑃
2
, the attribute 𝑎

2
is used to operate on 𝜋

IT
𝑃
1

for 𝜋IT
𝑃
2

. The
corresponding results are generated:

𝜋
IT
𝑃
2

= {{𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
5
, 𝑢
6
} , {𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
}} ,

BND
𝑃
2

(𝜋
𝐷
) = {𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
} .

(14)

Similarly, the results with respect to 𝑃
3
and 𝑃

4
are produced

as follows:

𝜋
IT
𝑃
3

= {{𝑢
1
, 𝑢
2
, 𝑢
5
, 𝑢
6
} , {𝑢
2
, 𝑢
4
, 𝑢
5
}} ,

BND
𝑃
3

(𝜋
𝐷
) = {𝑢

1
, 𝑢
2
, 𝑢
4
, 𝑢
5
, 𝑢
6
} ,

𝜋
IT
𝑃
4

= {{𝑢
4
, 𝑢
5
} , {𝑢
5
, 𝑢
6
}} ,

BND
𝑃
4

(𝜋
𝐷
) = {𝑢

4
, 𝑢
5
, 𝑢
6
} .

(15)

Therefore, PMA with respect to 𝜌
4
is achieved:

PMA (𝜌
4
) = ⟨BND

𝑃
1

(𝜋
𝐷
) ,BND

𝑃
2

(𝜋
𝐷
) ,

BND
𝑃
3

(𝜋
𝐷
) ,BND

𝑃
4

(𝜋
𝐷
)⟩

= ⟨{𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
} , {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
} ,

{𝑢
1
, 𝑢
2
, 𝑢
4
, 𝑢
5
, 𝑢
6
} , {𝑢
4
, 𝑢
5
, 𝑢
6
}⟩ .

(16)

It is clear that BND
𝑃
1

(𝜋
𝐷
) ⊇ BND

𝑃
2

(𝜋
𝐷
) ⊇ BND

𝑃
3

(𝜋
𝐷
) ⊇

BND
𝑃
4

(𝜋
𝐷
), which confirms the fact that the boundary

region of PMA is gradually reduced in accordance with
the positive sequence and finally catches up to the minimal
boundary region (BND

𝐶
(𝜋
𝐷
) = {𝑢

4
, 𝑢
5
, 𝑢
6
}).

4. PMA-Based Attribute Reduction

As mentioned previously, PMA offers a sequence of the
boundary regions in descending order. If each selected
attribute is so informative that it makes the boundary region
narrowed remarkably, the boundary region with respect to
some attribute subsets can keep up with the boundary region
with respect to the set of all the attributes. In other words, a
reduct is the attribute subset with the minimal number that
creates the same approximation of the decision system as the
original attribute set. Following the observation, we design a
heuristic attribute reduction algorithm based on PMA, called
PMA-AR. Before elaborating PMA-AR, we give a redefinition
of the attribute dependency.

In (7), the dependency degree is definable in terms of
positive region. Since positive region and boundary region
are complementary within the universe of a decision system,
the dependency degree can also be defined in terms of
boundary region.

Definition 12. Let 𝑆 = (𝑈, 𝐶∪𝐷),𝑃 ⊆ 𝐶, and 𝑎 ∈ 𝐶−𝑃, and the
dependency degree of decision attribute set 𝐷 to condition
attribute set 𝑃 is defined as

𝛾
𝑃
(𝐷) = 1 −

󵄨󵄨󵄨󵄨BND𝑃 (𝜋𝐷)
󵄨󵄨󵄨󵄨

|𝑈|
. (17)

Then, the significance of the attribute 𝑎 is also equivalently
redefined as

Sig (𝑎, 𝑃,𝐷) =

󵄨󵄨󵄨󵄨BND𝑃 (𝜋𝐷)
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨BND𝑃∪{𝑎} (𝜋𝐷)
󵄨󵄨󵄨󵄨

|𝑈|
. (18)
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Inputs:
𝑈: the universe
𝐶: 𝐶 = {𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
}, a condition attribute set

𝐷: 𝐷 = {𝑑}, a decision attribute set
Output:
red: a reduct of 𝐶
Begin
Sept 1. 𝑃 = 0, 𝜋

IT
𝑃

= {𝑈}, BND
𝑃
(𝜋
𝐷
) = 𝑈, 𝑅 = 𝐶

Sept 2. Compute BND
𝐶
(𝜋
𝐷
) by Algorithm 2

Step 3. While BND
𝑃
(𝜋
𝐷
) ̸=BND

𝐶
(𝜋
𝐷
) and 𝑅 ̸= 0 do {

𝑎max = null, 𝜋IT
max = 0, BNDmax(𝜋𝐷) = 0, Sig(𝑎max, 𝑃, 𝐷) = −1

For 𝑖 = 1 to |𝑅| do {

𝜋
IT
𝑃∪{𝑟
𝑖
}
= 𝜔

IT
𝑟
𝑖

(𝜋
IT
𝑃
) // 𝑟
𝑖
denotes the No. 𝑖 attribute in 𝑅

BND
𝑃∪{𝑟
𝑖
}
(𝜋
𝐷
) = ∪{𝑋 ∈ 𝜋

IT
𝑃∪{𝑟
𝑖
}
}

Sig(𝑟
𝑖
, 𝑃, 𝐷) = (

󵄨󵄨󵄨󵄨BND𝑃(𝜋𝐷)
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨󵄨
BND
𝑃∪{𝑟
𝑖
}
(𝜋
𝐷
)
󵄨󵄨󵄨󵄨󵄨
) / |𝑈|

If Sig(𝑟
𝑖
, 𝑃, 𝐷) > Sig(𝑎max, 𝑃, 𝐷) then {

𝑎max = 𝑟
𝑖
, 𝜋

IT
max = 𝜋

IT
𝑃∪{𝑟𝑖}

, BNDmax(𝜋𝐷) = BND
𝑃∪{𝑟
𝑖
}
(𝜋
𝐷
)

Sig(𝑎max, 𝑃, 𝐷) = Sig(𝑟
𝑖
, 𝑃, 𝐷)

} //end If
}//end For
𝑃 = 𝑃 ∪ {𝑎max}, 𝜋

IT
𝑃

= 𝜋
IT
max, BND𝑃(𝜋𝐷) = BNDmax(𝜋𝐷), 𝑅 = 𝑅 − {𝑎max}

}//end While
Step 4. Let red = 𝑃

Algorithm 3: PMA-AR.

The significance expresses how the boundary region will be
affected if the attribute 𝑎 is added to the set 𝑃. In general, an
attribute with a maximal significance value is preferentially
selected to guide the search process.

PMA-AR is in essence an extension of the quick reduct
algorithm indicated previously. It marries PMA and the
boundary region-based significance. The former provides an
efficient way to compute the boundary region, and the latter
acts as a router to determine the optimal search path. This
effective combination allows PMA-AR to have the ability
to locate a reduct efficiently. Algorithm 3 gives the detailed
description of PMA-AR.

PMA-AR is constructed onPMAand employs the bound-
ary region-based significance as the evaluation function to
determine the positive sequence. A new attribute subset is
achieved by this way. Each of the unselected attributes is
used to work on the IT-blocks generated by the current
attribute subset, and then corresponding boundary region
is derived from the resulted IT-blocks. By evaluating the
boundary region-based significance, the attribute with the
biggest significance value is selected and added to the current
attribute subset, which creates the expected attribute subset.
This process continues until the boundary regionwith respect
to the newly generated attribute subset equals the boundary
regionwith respect to the set of all the attributes; equivalently,
the dependency degree of the decision attribute set to the
newly generated attribute subset is equal to that of the
decision attribute set to the original attribute set.

PMA-AR produces the shortest positive sequence
together with the fastest evolution of the boundary regions
from maximal to minimal. A hidden reduct is uncovered
which makes use of the minimal attributes to describe the
approximation of the decision system with respect to the set
of all the attributes.

Note that the time complexity of PMA-AR is 𝑂(|𝐶||𝑈| +

∑
red
𝑖=1

(|𝐶|−𝑖)⋅|BND
𝑃
𝑖

(𝜋
𝐷
)|), which is dependent on Step 2with

𝑂(|𝐶||𝑈|) and Step 3with𝑂(∑
red
𝑖=1

(|𝐶|−𝑖)⋅|BND
𝑃
𝑖

(𝜋
𝐷
)|), where

|𝐶| and |𝑈| are the cardinalities of 𝐶 and 𝑈, respectively. In
the worst case where BND

𝑃
𝑖

(𝜋
𝐷
) = 𝑈 and red = 𝐶, it is

theoretically possible that PMA-AR takes time 𝑂(|𝐶|
2

|𝑈|).
In fact, according to Algorithm 3, if BND

𝑃
𝑖

(𝜋
𝐷
) = 𝑈 or

red = 𝐶, PMA-AR costs time 𝑂(|𝐶||𝑈|), which implies that
the practical time consumption is much less than𝑂(|𝐶|

2

|𝑈|).
Compared with the existing attribute reduction algorithms
for incomplete decision systems with time complexities
not less than 𝑂(|𝐶|

2

|𝑈| log |𝑈|) [23, 33], PMA-AR achieves
obviously lower time complexity. The following example is
employed to illustrate the working process of PMA-AR.

Example 13. Consider 𝑆 = (𝑈, 𝐶 ∪ 𝐷) described in Table 1,
where 𝑈 = {𝑢

1
, 𝑢
2
, . . . , 𝑢

6
}, 𝐶 = {𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
}, and 𝐷 = {𝑑}.

The attributes 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, and 𝑑 stand for price, mileage,

size, max-speed, and acceleration, respectively.

Unlike Example 11, the positive sequence associated with
PMA-AR is dynamically generated by iteratively selecting the
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attribute with themaximal significance value. To this end, the
following results are produced:

𝜋
IT
𝑃
0
∪{𝑎1}

= {{𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
5
, 𝑢
6
} , {𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
}} ,

BND
𝑃
0
∪{𝑎
1
}
(𝜋
𝐷
) = {𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
} ,

Sig (𝑎
1
, 𝑃
0
, 𝐷) = 0,

𝜋
IT
𝑃
0
∪{𝑎2}

= {{𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
}} ,

BND
𝑃
0
∪{𝑎
2
}
(𝜋
𝐷
) = {𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
} ,

Sig (𝑎
2
, 𝑃
0
, 𝐷) = 0,

𝜋
IT
𝑃
0
∪{𝑎3}

= {{𝑢
1
, 𝑢
2
, 𝑢
4
, 𝑢
5
, 𝑢
6
}} ,

BND
𝑃
0
∪{𝑎
3
}
(𝜋
𝐷
) = {𝑢

1
, 𝑢
2
, 𝑢
4
, 𝑢
5
, 𝑢
6
} ,

Sig (𝑎
3
, 𝑃
0
, 𝐷) =

1

6
,

𝜋
IT
𝑃
0
∪{𝑎4}

= {{𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
6
} , {𝑢
4
, 𝑢
5
, 𝑢
6
}} ,

BND
𝑃
0
∪{𝑎
4
}
(𝜋
𝐷
) = {𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
, 𝑢
6
} ,

Sig (𝑎
4
, 𝑃
0
, 𝐷) = 0.

(19)

It is evident that the attribute 𝑎
3
with the maximal

significance value is available and can be used to create the
attribute subset 𝑃

1
= {𝑎
3
}. Then, 𝜋IT

𝑃
1

= {{𝑢
1
, 𝑢
2
, 𝑢
4
, 𝑢
5
, 𝑢
6
}}

and BND
𝑃
1

(𝜋
𝐷
) = {𝑢

1
, 𝑢
2
, 𝑢
4
, 𝑢
5
, 𝑢
6
}. Now, 𝜋IT

𝑃
1

is regarded
as father IT-blocks to breed son IT-blocks by adding one of
the remaining attributes to 𝑃

1
. From the newly generated

IT-blocks, the boundary region is derivable. By evaluating
the boundary region-based significance, the next expected
attribute can be selected from the set of remaining attributes
{𝑎
1
, 𝑎
2
, 𝑎
4
}.The corresponding results are exhibited as follows:

𝜋
IT
𝑃
1
∪{𝑎1}

= {{𝑢
1
, 𝑢
2
, 𝑢
5
, 𝑢
6
} , {𝑢
2
, 𝑢
4
, 𝑢
5
}} ,

BND
𝑃
1
∪{𝑎
1
}
(𝜋
𝐷
) = {𝑢

1
, 𝑢
2
, 𝑢
4
, 𝑢
5
, 𝑢
6
} ,

Sig (𝑎
1
, 𝑃
1
, 𝐷) = 0,

𝜋
IT
𝑃
1
∪{𝑎2}

= {{𝑢
1
, 𝑢
2
, 𝑢
4
, 𝑢
5
, 𝑢
6
}} ,

BND
𝑃
1
∪{𝑎
2
}
(𝜋
𝐷
) = {𝑢

1
, 𝑢
2
, 𝑢
4
, 𝑢
5
, 𝑢
6
} ,

Sig (𝑎
2
, 𝑃
1
, 𝐷) = 0,

𝜋
IT
𝑃
1
∪{𝑎4}

= {{𝑢
4
, 𝑢
5
} , {𝑢
5
, 𝑢
6
}} ,

BND
𝑃
1
∪{𝑎
4
}
(𝜋
𝐷
) = {𝑢

4
, 𝑢
5
, 𝑢
6
} ,

Sig (𝑎
4
, 𝑃
1
, 𝐷) =

1

3
.

(20)

Thus, the attribute 𝑎
4
with the maximal significance value

is preferably selected and used to generate another attribute
subset 𝑃

2
= {𝑎
3
, 𝑎
4
}. Then, 𝜋IT

𝑃
2

= {{𝑢
4
, 𝑢
5
}, {𝑢
5
, 𝑢
6
}} and

Table 2: Description of datasets.

No. Dataset Objects Attributes Classes
1 Lung cancer 32 56 3
2 Standardized audiology 200 69 24
3 Congressional voting 435 16 2

4 Balance scale weight and
distance 625 4 3

5 Tic-tac-toe end game 958 9 2
6 Car evaluation 1728 6 4
7 Chess end game 3196 36 2
8 Nursery 12960 8 5

BND
𝑃
2

(𝜋
𝐷
) = {𝑢

4
, 𝑢
5
, 𝑢
6
}. Since BND

𝑃
2

(𝜋
𝐷
) is equal to

BND
𝐶
(𝜋
𝐷
), 𝑃
2
is just a reduct.

As a result, the reduct of the decision system is {𝑎
3
, 𝑎
4
}.

5. Experimental Evaluation

In the following, we carry out several experiments on a
personal computer with Windows XP, 2.53GHZ CPU, and
2.0G memory so as to evaluate PMA-AR in terms of the
number of selected features and running time.

There are many heuristic search algorithms for attribute
reduction in incomplete decision systems [17, 20, 23–25, 28,
33], of which three state-of-the-art algorithms are appro-
priate for comparison with PMA-AR. They are positive
region-based algorithm (PRA) [23], distance metric-assisted
algorithm (DMA) [28], and rough entropy-based algorithm
(REA) [33], qualified as the representatives of positive region
based reduction, combination-based reduction, and entropy-
based reduction, respectively.

Our experiments employ eight publicly accessible
datasets from UCI repository of machine learning databases
[35]. Each of them is a discrete dataset with only one decision
attribute. Since PMA-AR is designed to deal with incomplete
data, five complete datasets, such as balance scale weight
and distance, tic-tac-toe end game, car evaluation, chess
end game, and nursery, are all turned into incomplete
ones by randomly replacing some known attribute values
with missing ones. In addition, an identifier attribute of
standardized audiology is removed. The characteristics of
these datasets are described in Table 2.

The experiments are performed by applying the four
algorithms (PRA, DMA, REA, and PMA-AR) to the eight
datasets shown in Table 2. The resulted number of selected
features and running time expressed in seconds is exhibited
in Tables 3 and 4, respectively.

From Table 3, it can be observed that the number of
features selected by PMA-AR is the same as that by PRA but
not less than those by DMA and REA. On the whole, the
numbers by the four algorithms are relatively approximate.
This indicates that the performances of the four algorithms
are very close, though DMA and REA perform a little better
than PMA-AR and PRA.

On the other hand, Table 4 shows that for each dataset,
DMA needs the most time, PRA and REA get the second and
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Table 3: Number of features selected by four algorithms.

No. Dataset DMA REA PRA PMA-AR
1 Lung cancer 4 4 4 4
2 Standardized audiology 21 21 22 22
3 Congressional voting 8 8 9 9

4 Balance scale weight and
distance 4 4 4 4

5 Tic-tac-toe end game 7 8 8 8
6 Car evaluation 6 6 6 6
7 Chess end game 26 28 29 29
8 Nursery 8 8 8 8

Table 4: Running time of four algorithms.

No. Dataset DMA REA PRA PMA-AR
1 Lung cancer 1.054 0.817 0.849 0.808
2 Standardized audiology 7.132 3.167 3.363 1.564
3 Congressional voting 2.657 1.301 1.365 1.107

4 Balance scale weight
and distance 2.548 1.211 1.306 0.910

5 Tic-tac-toe end game 14.745 6.694 7.703 1.834
6 Car evaluation 46.889 15.660 17.503 2.303
7 Chess end game 384.416 105.985 128.153 8.445
8 Nursery 569.490 139.974 179.430 9.224

third place, respectively, and PMA-AR need the lest. More-
over, the running time of DMA, PRA, and REA increases
muchmore rapidly than that of PMA-AR.The differences can
be illustrated by plotting the ratios of DMA, PRA, and REA
to PMA-AR, respectively, as shown in Figure 2.

From Figure 2, we can find that the curve corresponding
to DMA/PMA-AR increases most rapidly, and the curve
corresponding to PRA/PMA-AR increases slightly rapidly
than that corresponding to REA/PMA-AR.The experimental
result coincides with the theoretical analysis that the time
complexity of DMA is not less than 𝑂(|𝐶|

2

|𝑈|
2

), which is
the highest among all four algorithms; the second one is
PRA, of which the time complexity is 𝑂(|𝐶|

2

|𝑈| log |𝑈|).
Following PRA, REA has the time complexity not more than
𝑂(|𝐶|

2

|𝑈| log |𝑈|), and themost efficient one is PMA-ARwith
the time complexity much less than 𝑂(|𝐶|

2

|𝑈|). It is verified
that PMA-AR achieves the best performance in terms of time
efficiency.

One can also observe that although each curve tends to
increase with size of datasets, it is not strictly monotonic,
namely, the curves fluctuate significantly. This can be seen
from the case that the ratio of DMA to PMA-AR on Dataset
2 is higher than that on Dataset 3. The main reason is
that the attribute number of datasets is different, and more
importantly, the number of selected features is also different.
For example, Dataset 2 has 69 attributes, of which 21 features
are selected, while Dataset 3 has 16 attributes, and 8 features
are selected. Furthermore, the curves also indicate that when
the number of attributes is far less than that of objects, the
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Figure 2: Ratios of DMA, PRA, and REA to PMA-AR.

running time mainly relies on the latter. This supports the
conclusion that PMA-AR ismore suitable for feature selection
from large data than the other three algorithms because it is
proportional to |𝑈|.

6. Conclusions

Attribute reduction in incomplete decision systems has been
a hotspot of rough set-based data analysis. To efficiently
obtain a feature subset, many heuristic attribute reduction
algorithms have been studied. Unfortunately, these algo-
rithms are still computationally costly for large data. This
paper has developed PMA-AR, which has the ability to find
a feature subset as well as obviously better computational
efficiency.

Unlike other algorithms featured bymicrocosmic approx-
imation, PMA-AR adopts a novel model called macrocosmic
approximation, which considers all the target concepts of
a decision system as an indivisible whole to be approx-
imated by rough set boundary region derived from IT-
blocks. Constructed on PMA which serves as an accelerator
for calculation of boundary region, PMA-AR is capable
of efficiently identifying a reduct by using the boundary
region-based significance as the evaluation function. Both
theoretical analysis and experimental results demonstrate
that PMA-AR indeed outperforms other available algorithms
with regard to time efficiency.

Acknowledgment

This work is supported by the Specialized Research Fund for
the Doctoral Program of Higher Education of China (Grant
no. 20090002110085).

References

[1] Z. Pawlak, “Rough sets,” International Journal of Computer and
Information Sciences, vol. 11, no. 5, pp. 341–356, 1982.



Journal of Applied Mathematics 11

[2] A. An, N. Shan, C. Chan, N. Cercone, andW. Ziarko, “Discover-
ing rules for water demand prediction: an enhanced rough-set
approach,” Engineering Applications of Artificial Intelligence, vol.
9, no. 6, pp. 645–653, 1996.

[3] K. Li and Y.-S. Liu, “Rough set based attribute reduction
approach in data mining,” in Proceedings of 2002 International
Conference on Machine Learning and Cybernetics, pp. 60–63,
Beijing, China, November 2002.

[4] R. Li and Z.-O. Wang, “Mining classification rules using rough
sets and neural networks,”The European Journal of Operational
Research, vol. 157, no. 2, pp. 439–448, 2004.

[5] H. Wang and S. Wang, “Discovering patterns of missing data in
survey databases: an application of rough sets,” Expert Systems
with Applications, vol. 36, no. 3, pp. 6256–6260, 2009.

[6] L. Shi, X. Ma, L. Xi, Q. Duan, and J. Zhao, “Rough set and
ensemble learning based semi-supervised algorithm for text
classification,” Expert Systems with Applications, vol. 38, no. 5,
pp. 6300–6306, 2011.

[7] Z. H. Wang, L. Shu, and X. Y. Ding, “Reduction of
neighborhood-based generalized rough sets,” Journal of
Applied Mathematics, vol. 2011, Article ID 409181, 22 pages,
2011.

[8] A. Skowron and J. Stepaniuk, “Towards an approximation
theory of discrete problems,” Fundamenta Informaticae, vol. 15,
no. 2, pp. 187–208, 1991.

[9] A. A. Bakar, M. N. Sulaiman, M. Othman, and M. H. Selamat,
“Finding minimal reduct with binary integer programming
in data mining,” in Proceedings of the TENCON, pp. 141–146,
September 2000.

[10] Y. Chen, D. Miao, R. Wang, and K. Wu, “A rough set approach
to feature selection based on power set tree,” Knowledge-Based
Systems, vol. 24, no. 2, pp. 275–281, 2011.

[11] M. E. ElAlami, “A filter model for feature subset selection based
on genetic algorithm,” Knowledge-Based Systems, vol. 22, no. 5,
pp. 356–362, 2009.

[12] R. Jensen and Q. Shen, “Finding rough set reducts with ant
colony optimization,” in Proceeding of UK Workshop Computa-
tional Intelligence, pp. 15–22, 2003.

[13] X. Y.Wang, J. Yang, X. L. Teng,W. J. Xia, and R. Jensen, “Feature
selection based on rough sets and particle swarm optimization,”
Pattern Recognition Letters, vol. 28, no. 4, pp. 459–471, 2007.

[14] J. W. Guan and D. A. Bell, “Rough computational methods for
information systems,” Artificial Intelligence, vol. 105, no. 1-2, pp.
77–103, 1998.

[15] M. Beynon, “Reducts within the variable precision rough
sets model: a further investigation,” The European Journal of
Operational Research, vol. 134, no. 3, pp. 592–605, 2001.

[16] M. Dash and H. Liu, “Consistency-based search in feature
selection,” Artificial Intelligence, vol. 151, no. 1-2, pp. 155–176,
2003.

[17] Y. Caballero, D. Alvarez, R. Bello, and M. M. Garcia, “Feature
selection algorithms using rough set theory,” in Proceedings of
the 7th International Conference on Intelligent Systems Design
and Applications (ISDA ’07), pp. 407–411, Rio de Janeiro, Brazil,
October 2007.

[18] Y. H. Qian, J. Y. Liang, and C. Y. Dang, “Consistency measure,
inclusion degree and fuzzy measure in decision tables,” Fuzzy
Sets and Systems, vol. 159, no. 18, pp. 2353–2377, 2008.

[19] A. Chouchoulas and Q. Shen, “Rough set-aided keyword
reduction for text categorization,” Applied Artificial Intelligence,
vol. 15, no. 9, pp. 843–873, 2001.

[20] K. Thangavel, A. Pethalakshmi, and P. Jaganathan, “A novel
reduct algorithm for dimensionality reduction with missing
values based on rough set theory,” International Journal of Soft
Computing, vol. 1, no. 2, pp. 111–117, 2006.

[21] A. Pethalakshmi and K. Thangavel, “Performance analysis
of accelerated quickreduct algorithm,” in Proceedings of the
International Conference on Computational Intelligence and
Multimedia Applications (ICCIMA ’07), pp. 318–322, Sivakasi,
Tamil Nadu, India, December 2007.

[22] P. S. V. S. S. Prasad and C. R. Rao, “IQuickReduct: an improve-
ment to Quick Reduct algorithm,” in Rough Sets, Fuzzy Sets,
Data Mining and Granular Computing, H. Sakai, Ed., vol. 5908,
pp. 152–159, Heidelberg, Germany, 2009.

[23] Z. Q.Meng and Z. Z. Shi, “A fast approach to attribute reduction
in incomplete decision systems with tolerance relation-based
rough sets,” Information Sciences, vol. 179, no. 16, pp. 2774–2793,
2009.

[24] Y. Qian, J. Y. Liang, W. Pedrycz, and C. Dang, “Positive
approximation: an accelerator for attribute reduction in rough
set theory,” Artificial Intelligence, vol. 174, no. 9-10, pp. 597–618,
2010.

[25] Y. H. Qian, J. Y. Liang,W. Pedrycz, and C. Y. Dang, “An efficient
accelerator for attribute reduction from incomplete data in
rough set framework,” Pattern Recognition, vol. 44, no. 8, pp.
1658–1670, 2011.

[26] N. Zhong, J. Dong, and S. Ohsuga, “Using rough sets with
heuristics for feature selection,” Journal of Intelligent Informa-
tion Systems, vol. 16, no. 3, pp. 199–214, 2001.

[27] M. Zhang and J. T. Yao, “A rough sets based approach to feature
selection,” in Proceedings of the IEEE Annual Meeting of the
North American Fuzzy Information Processing Society: Fuzzy
Sets in the Heart of the Canadian Rockies (NAFIPS ’04), pp. 434–
439, Saskatchewan, Canada, June 2004.
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