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This paper discusses a predator-prey system with Holling-(𝑛 + 1) functional response and the fractional type nonlinear diffusion
term in a bounded domain under homogeneous Neumann boundary condition.The existence and nonexistence results concerning
nonconstant positive steady states of the system were obtained. In particular, we prove that the positive constant solution (𝑢̃, Ṽ) is
asymptotically stable when the parameter k satisfies some conditions.

1. Introduction

In this paper, we are interested in the positive steady states
of the strongly coupled predator-prey system with Holling-
(𝑛 + 1) functional response. The specific system is as follows:

−𝑑
1
Δ𝑢 = 𝑢(1 −

𝑢

𝑘

) −

𝑢
𝑛V

𝑎 + 𝑢
𝑛

in Ω,

−𝑑
2
Δ(V +

𝑑
3
V

1 + 𝑢

) = −𝑏V +
𝜎𝑢
𝑛V

𝑎 + 𝑢
𝑛

in Ω,

𝜕𝑢

𝜕]
=

𝜕V

𝜕]
= 0 on 𝜕Ω,

(1)

where 1 ≤ 𝑛 < +∞; Ω is a bounded domain in 𝑅
𝑁

with smooth boundary 𝜕Ω; 𝜕/𝜕] is the outward directional
derivative normal to 𝜕Ω; 𝑢 and V stand for the densities of
the prey and predator; the given coefficients 𝑑

𝑖
(𝑖 = 1, 2),

𝑎, 𝑏, 𝑘, and 𝜎 are positive constants. The term 𝑢
𝑛
/(𝑎 + 𝑢

𝑛
)

is named Holling-(𝑛 + 1) functional response [1, 2]. In the
second equation, the fractional type nonlinear diffusion term
Δ𝑑
2
(𝑑
3
V/(1 + 𝑢))models a situation in which the population

pressure of the predator speciesweakens in high-density areas
of the prey species. For more precise details, we can refer
to [3, 4]. Paper [3] discusses a strongly coupled predator-
prey system with nonmonotonic functional response, the

existence and nonexistence results concerning nonconstant
positive steady states of the system were proved by degree
theory. Paper [4] considers the positive steady states for a
prey-predator model with some nonlinear diffusion terms,
and the sufficient conditions for the existence of positive
steady state solutions were obtained by bifurcation theory.

In recent years, there has been considerable interest in the
dynamics of strongly coupled reaction-diffusion systemswith
cross-diffusion. We point out that most efforts have concen-
trated on the Lotka-Volterra competition system which was
proposed first by Shigesada et al. [5]. Since their pioneering
work, many authors have studied population models with
cross-diffusion terms from various mathematical viewpoints,
for example, the global existence of time-depending solutions
[6–11], the stability analysis for steady states [12–14], and
the steady state problems [15–21]. In this paper, we mainly
consider the existence of solutions of (1). The research
method refers to [3, 22, 23].

For convenience of the research, we write (1) as the
following form:

−ΔΦ (𝑈) = 𝐺 (𝑈) , 𝑈 = [

𝑢

V
] , (2)
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where

Φ (𝑈) = [

𝜙
1
(𝑈)

𝜙
2
(𝑈)

] =
[

[

[

𝑑
1
𝑢

𝑑
2
V(1 +

𝑑
3

1 + 𝑢

)

]

]

]

,

𝐺 (𝑈) = [

𝑔 (𝑢) − V𝑝 (𝑢)
−𝑏V + 𝜎V𝑝 (𝑢)

] ,

(3)

𝑔 (𝑢) = 𝑢 (1 −

𝑢

𝑘

) , 𝑝 (𝑢) =

𝑢
𝑛

𝑎 + 𝑢
𝑛
, 𝑛 ∈ 𝑁

+
. (4)

The main work of this paper is to study the effects of the
fractional type nonlinear diffusion pressures on the existence
of nonconstant positive steady states of (1). Here, a positive
solution means a smooth solution (𝑢, V) with both 𝑢 and V
being positive. We will demonstrate that the cross-diffusion
pressure 𝑑

3
may help forming more patterns. Obviously, for

system (1), one notes that when 𝜎 ≤ 𝑏, there holds sup
𝑠≥0
{−𝑏+

𝜎𝑠
𝑛
/(𝑎 + 𝑠

𝑛
)} ≤ 0, so that the only nonnegative solutions to

(1) are 𝑈 = (0, 0) and 𝑈 = (𝑘, 0). Consequently, (1) does not
have any positive solution. On the other hand, when 𝜎 > 𝑏,
the unique positive constant solution to (1) is (𝑢̃, Ṽ); that is,

𝑢̃ =
𝑛

√
𝑎𝑏

𝜎 − 𝑏

,

Ṽ =
(1 − 𝑢̃/𝑘) (𝑎 + 𝑢̃

𝑛
)

𝑢̃
𝑛−1

=

(𝑘 − 𝑢̃) 𝜎𝑢̃

𝑘𝑏

, if 𝑘 > 𝑢̃.

(5)

The organization of our paper is as follows. In Section 2,
we establish a priori upper and lower bounds for positive
solutions of (1). In Section 3, we use a degree theory to
develop a general result to enable one to conclude the exis-
tence or nonexistence of nonconstant steady-state solutions
or patterns as the index of positive constant steady states
changes. In Section 4, we establish the existence of noncon-
stant positive solutions to (1) for a large range of diffusion
and cross-diffusion coefficients.Meanwhile, we prove that the
positive constant solution (𝑢̃, Ṽ) is asymptotically stable for
different ranges of parameters.

2. Upper and Lower Bounds for Positive
Solutions

Themain purpose of this section is to give a priori upper and
lower positive bounds for positive solutions of (1). Firstly, we
cite two known results.

Harnack Inequality (see [24]). Let 𝑐 ∈ 𝐶(Ω) and 𝜔 ∈

𝐶
2
(Ω)⋂𝐶

1
(Ω) be a positive classical solution to Δ𝜔(𝑥) +

𝑐(𝑥)𝜔(𝑥) = 0 in Ω subject to the homogeneous Neumann

boundary condition. Then, there exists a positive constant
𝐶 = 𝐶(Ω, ‖𝑐‖

∞
) such that max

Ω
𝜔 ≤ 𝐶min

Ω
𝜔.

Maximum Principle (see [25]). Suppose that 𝑔 ∈ 𝐶(Ω × 𝑅1).
If 𝑤 ∈ 𝐶2(Ω) ∩ 𝐶1(Ω) satisfies

Δ𝑤 (𝑥) + 𝑔 (𝑥, 𝑤 (𝑥)) ≥ 0 in Ω,

𝜕𝑤

𝜕]
≤ 0 on 𝜕Ω,

(6)

and 𝑤(𝑥
0
) = max

Ω
𝑤, then 𝑔(𝑥

0
, 𝑤(𝑥
0
)) ≥ 0.

Theorem 1. Let 𝑃 = (𝜎, 𝑎, 𝑘, 𝑏) ∈ (0,∞)
4 and 𝑑, ̂𝑑 > 0 be

fixed constants. Assume that 𝑑
1
, 𝑑
2
≥ 𝑑 and 0 ≤ 𝑑

3
≤
̂
𝑑

there exists a positive constant𝐶 = 𝐶(𝑃, 𝑑, ̂𝑑,Ω), such that any
positive solution (𝑢, V) of (1) satisfies

max
Ω

𝑢 (𝑥) +max
Ω

V (𝑥) +
max
Ω
𝑢 (𝑥)

min
Ω
𝑢 (𝑥)

+

max
Ω
V (𝑥)

min
Ω
V (𝑥)

≤ 𝐶.

(7)

Proof. Let 𝜙
1
(𝑈) and 𝜙

2
(𝑈) be defined as in (3), and denote

that

𝑔
1
(𝑈) = 𝑢(1 −

𝑢

𝑘

−

𝑢
𝑛−1V

𝑎 + 𝑢
𝑛
) ,

𝑔
2
(𝑈) = V(

𝜎𝑢
𝑛

𝑎 + 𝑢
𝑛
− 𝑏) ,

𝐺 (𝑈) = (𝑔
1
(𝑈) , 𝑔

2
(𝑈))
𝑇

.

(8)

Then, (1) becomes

−ΔΦ (𝑈) = 𝐺 (𝑈) in Ω, 𝜕𝑈

𝜕]
= 0 on 𝜕Ω. (9)

For the first equation of (9), by the Maximum Principle,
we have

max
Ω

𝑢 (𝑥) ≤

1

𝑑
1

max
Ω

𝜙
1
(𝑈) < 𝑘. (10)

The function 𝜙
2
(𝑈) satisfies

Δ𝜙
2
(𝑈) + 𝑐 (𝑥) 𝜙

2
(𝑈) = 0 in Ω,

𝜕𝜙
2
(𝑈)

𝜕]
= 0 on 𝜕Ω,

(11)

where 𝑐(𝑥) = 𝑔
2
(𝑈)/𝜙

2
(𝑈) ∈ 𝐶(Ω). It is easy to verify that

the norm

‖𝑐‖∞
=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

V (𝜎𝑢𝑛/ (𝑎 + 𝑢𝑛) − 𝑏)

𝑑
2
(V + 𝑑

3
V/ (1 + 𝑢))

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩∞

≤

𝜎𝑘
𝑛
/ (𝑎 + 𝑘

𝑛
) + 𝑏

𝑑
2

≤

𝜎𝑘
𝑛
+ 𝑏 (𝑎 + 𝑘

𝑛
)

𝑑 (𝑎 + 𝑘
𝑛
)

;

(12)
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then, ‖𝑐‖
∞
is bounded by a constant depending only on𝑃 and

𝑑 (𝑑
2
≥ 𝑑). By the Harnack inequality, we have

max
Ω

𝜙
2
(𝑈 (𝑥)) ≤ 𝐶

1
min
Ω

𝜙
2
(𝑈 (𝑥)) , (13)

where 𝐶
1
= 𝐶
1
(Ω, ‖𝑐‖

∞
) = 𝐶
1
(𝑃, 𝑑, Ω). It follows that

max
Ω
V

min
Ω
V
≤

max
Ω
𝜙
2
(𝑈 (𝑥))

min
Ω
𝜙
2
(𝑈 (𝑥))

×

max
Ω
{1 + 𝑑

3
(1 + 𝑢)

−1
}

min
Ω
{1 + 𝑑

3
(1 + 𝑢)

−1
}

≤ 𝐶
1
(1 + 𝑑

3
) ≤ 𝐶
1
(1 +

̂
𝑑) .

(14)

Integrating the equations of (1) over Ω by parts and
making use of the boundary conditions, we have

𝜎∫

Ω

𝑢 (1 −

𝑢

𝑘

) 𝑑𝑥 = 𝑏∫

Ω

V 𝑑𝑥. (15)

For any 𝑓 ∈ 𝐿
1
(Ω), we denote that 𝑓 = (1/|Ω|) ∫

Ω
𝑓(𝑥)𝑑𝑥.

Then, from (15) and (10), we have

V =
𝜎

|Ω| 𝑏

∫

Ω

𝑢 (1 −

𝑢

𝑘

) 𝑑𝑥 <

𝜎

𝑏

𝑘. (16)

Along with (14), we have

max
Ω

V ≤ 𝐶
1
(1 +

̂
𝑑)

𝜎

𝑏

𝑘. (17)

Similarly, consider the equation of 𝜙
1
as follows:

‖𝑐‖∞
=

1

𝑑
1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1 −

𝑢

𝑘

−

𝑢
𝑛−1V

𝑎 + 𝑢
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩∞

≤

1

𝑑
1

[1 +

1

𝑘

‖𝑢 (𝑥)‖∞
+ 𝑚‖V (𝑥)‖∞] ,

(18)

where 𝑚 = [(𝑛 − 1)𝑎]
(𝑛−1)/𝑛

/𝑛𝑎. Then, ‖𝑐‖
∞

is bounded by
a constant depending only on 𝑃 and 𝑑 (𝑑

1
≥ 𝑑). By the

Harnack Inequality, there exists a positive constant 𝐶
2
=

𝐶
2
(𝑃, 𝑑,

̂
𝑑, Ω) such that max

Ω
𝜙
1
(𝑈(𝑥)) ≤ 𝐶

2
min
Ω
𝜙
1
(𝑈(𝑥)).

Then,

max
Ω
𝑢

min
Ω
𝑢

=

max
Ω
𝜙
1
(𝑈 (𝑥))

min
Ω
𝜙
1
(𝑈 (𝑥))

≤ 𝐶
2
. (19)

Thus, along with (10), (14), and (17), we can complete the
proof.

Theorem 2. Assume that 𝜎𝑘𝑛 ̸= 𝑏(𝑎+𝑘
𝑛
). Let 𝑑, ̂𝑑 > 0 be fixed

constants. There exists a constant 𝐶 = 𝐶(𝑑, ̂𝑑, 𝑃,Ω) > 0, such
that any positive solution (𝑢, V) of (1) satisfies

min
Ω

𝑢 (𝑥) > 𝐶, min
Ω

V (𝑥) > 𝐶, (20)

provided that 𝑑
1
, 𝑑
2
≥ 𝑑 and 𝑑

3
≤
̂
𝑑.

Proof. Since ∫
Ω
𝑔
2
(𝑈)𝑑𝑥 = 0, there exists 𝑥

1
∈ Ω, such that

𝑔
2
(𝑈(𝑥
1
)) = 0; that is,

𝜎𝑢
𝑛
(𝑥
1
) = 𝑏𝑎 + 𝑏𝑢

𝑛
(𝑥
1
) . (21)

It follows that max
Ω
𝑢 ≥

𝑛

√a𝑏/𝜎. Consequently, by
max
Ω
𝑢/min

Ω
𝑢 ≤ 𝐶 in Theorem 1, we have

min
Ω

𝑢 ≥

1

𝐶

max
Ω

𝑢 ≥

𝑛

√𝑎𝑏/𝜎

𝐶

:= 𝐶
3
= 𝐶
3
(𝑑,

̂
𝑑, 𝑃,Ω) , (22)

where 𝑑
3
≤
̂
𝑑 and 𝑑

1
, 𝑑
2
≥ 𝑑.

In the following, we mainly prove that min
Ω
V(𝑥) > 𝐶

as 𝜎𝑘𝑛 ̸= 𝑏(𝑎 + 𝑘
𝑛
). Now, we suppose that claim is not true;

then, there exists a sequence (𝑑
1,𝑖
, 𝑑
2,𝑖
, 𝑑
3,𝑖
) → (𝑑

1
, 𝑑
2
, 𝑑
3
)

with 𝑑
1,𝑖
, 𝑑
2,𝑖
≥ 𝑑 and 𝑑

3,𝑖
≤
̂
𝑑. And the positive solution

(𝑢
𝑖
, V
𝑖
) of (1) corresponding to (𝑑

1,𝑖
, 𝑑
2,𝑖
, 𝑑
3,𝑖
) is such that

𝑢
𝑖
󳨀→ 𝑢, min

Ω

V
𝑖
(𝑥) 󳨀→ 0, as 𝑖 󳨀→ ∞. (23)

By (14), we have max
Ω
V
𝑖
(𝑥)/min

Ω
V
𝑖
(𝑥) ≤ 𝐶

1
(1 +

̂
𝑑), and

then, max
Ω
V
𝑖
(𝑥) → 0; furthermore, V

𝑖
(𝑥) → 0 uniformly

holds as 𝑖 → ∞. Then, the first equation of (1) becomes the
following:

−Δ𝑢
𝑖
=

1

𝑑
1,𝑖

(1 −

𝑢
𝑖

𝑘

−

𝑢
𝑛−1

𝑖
V
𝑖

𝑎 + 𝑢
𝑛

𝑖

)𝑢
𝑖

in Ω,

𝜕𝑢
𝑖

𝜕]
= 0 on 𝜕Ω.

(24)

According to (7), there exists 𝐶 = 𝐶(𝑑, ̂𝑑, 𝑃,Ω) such that
‖𝑢
𝑖
‖
∞
≤ 𝐶, ‖(1−𝑢

𝑖
/𝑘)− (𝑢

𝑛−1

𝑖
V
𝑖
/(𝑎+𝑢

𝑛

𝑖
))/𝑑
1,𝑖
(1+𝑑

3,𝑖
V
𝑖
)‖
∞
≤

𝐶, where𝐶 is a positive constant which does not depend on 𝑖.
For each 𝑖 given in problem (24), it follows from 𝐿

𝑝 estimate
that ‖𝑢

𝑖
‖
𝑊
2,𝑝
(Ω)
≤ 𝐶
2
|Ω|
1/𝑝, where 𝑝 > 1. Let 𝑝 > 𝑁; then, by

Sobolev ImbeddingTheorems, we get
󵄩
󵄩
󵄩
󵄩
𝑢
𝑖

󵄩
󵄩
󵄩
󵄩𝐶
1,𝛼
(Ω)
≤ 𝐶
∗󵄩
󵄩
󵄩
󵄩
𝑢
𝑖

󵄩
󵄩
󵄩
󵄩𝑊
2,𝑝
(Ω)
≤ 𝐶
∗
𝐶
2
|Ω|
1/𝑝
, (25)

where𝛼 ∈ (0, 1).We choose𝛼 < 1−𝑁/𝑝 such that Imbedding
is compact, and along with elliptic equation regularity theory,
there exists the subsequence of {𝑢

𝑖
}, which is still denoted

by {𝑢
𝑖
}, and exists 𝑢 such that 𝑢

𝑖
→ 𝑢 uniformly holds in

𝐶
2,𝛼
(Ω). On the other hand, V

𝑖
→ 0, and when 𝑑

1,𝑖
→ 𝑑
1
∈

[𝑑,∞), the limit of (24) becomes the following problem:

−Δ𝑢 =

1

𝑑
1

𝑢 (1 −

𝑢

𝑘

) in Ω, 𝜕𝑢

𝜕]
= 0 on 𝜕Ω. (26)

Applying Maximum Principle to problem (26) and noting
that min

Ω
𝑢
𝑖
≥ 𝐶
3
, we have 𝑢 = 𝑘.

However, when 𝑑
1,𝑖
→ ∞, the limit of (24) becomes the

following problem:

−Δ𝑢 = 0 in Ω, 𝜕𝑢

𝜕]
= 0 on 𝜕Ω, (27)

which implies that 𝑢 = 𝐶 for some nonnegative constant 𝐶.
Since∫

Ω
𝑢
𝑖
(1−𝑢
𝑖
/𝑘−𝑢
𝑛−1

𝑖
V
𝑖
/(𝑎+𝑢

𝑛

𝑖
))𝑑𝑥 = 0, by letting 𝑖 → ∞
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and noting that min
Ω
𝑢
𝑖
≥ 𝐶
3
, V
𝑖
→ 0, and 𝑢

𝑖
→ 𝐶, we also

have 𝑢 = 𝑘.
By a similar argument as that in (24), for the second

equation of (1), we can prove that there exists a subse-
quence in 𝐶2,𝛼(Ω), such that V

𝑖
(𝑥)/max

Ω
V
𝑖
(𝑥) → V

0
. Since

V
𝑖
/max
Ω
V
𝑖
(𝑥) ≥ min

Ω
V
𝑖
(𝑥)/max

Ω
V
𝑖
(𝑥) ≥ 1/𝐶(1 +

̂
𝑑), then

V
0
≥ 1/𝐶(1 +

̂
𝑑). Dividing the second equation of (1) by

max
Ω
V
𝑖
(𝑥), and integrating over Ω, we have

∫

Ω

V
𝑖

max
Ω
V
𝑖
(𝑥)

(

𝜎𝑢
𝑛

𝑖

𝑎 + 𝑢
𝑛

𝑖

− 𝑏)𝑑𝑥 = 0. (28)

Let 𝑖 → ∞, and note that V
𝑖
/max
Ω
V
𝑖
(𝑥) → V

0
and 𝑢

𝑖
→ 𝑘;

then, 𝜎𝑘𝑛/(𝑎 + 𝑘𝑛) = 𝑏. This contradiction to the assumption
completes the proof.

3. A Result on Degree Theory

In this section, we obtain nonexistence of nonconstant posi-
tive solutions to (1) as 𝑑

3
= 0. Meanwhile, by degree theory,

a general result to establish the existence of nonconstant
positive solutions to (1) in the next section is proved.

Denote d = (𝑑
1
, 𝑑
2
, 𝑑
3
) and 𝑃 = (𝜎, 𝑎, 𝑘, 𝑏). We will fix

𝑃 ∈ (0,∞)
4 and take d ∈ (0,∞)

2
× [0,∞) as bifurcation

parameters, the dependence of 𝑃 will often be suppressed.
Define

𝑋 = {𝑈 ∈ [𝐶
2
(Ω)]

2

|

𝜕𝑈

𝜕]
= 0 on 𝜕Ω} ,

𝑋
+
= {(𝑢, V) ∈ 𝑋 | 𝑢 > 0, V > 0 on Ω} ,

𝐵 (𝐶) = {(𝑢, V) ∈ 𝑋 |

1

𝐶

< 𝑢, V < 𝐶 on Ω} .

(29)

Since

Φ
𝑈
(𝑈) =

[

[

[

[

𝑑
1

0

−

𝑑
2
𝑑
3
V

(1 + 𝑢)
2
𝑑
2
[1 +

𝑑
3

(1 + 𝑢)

]

]

]

]

]

(30)

and detΦ
𝑈
(𝑈) is positive for all nonnegative 𝑈, Φ−1

𝑈
exists.

Hence, 𝑈 is a positive solution to (1) if and only if

𝐹 (d; 𝑈) := 𝑈 − (𝐼 − Δ)−1

× {Φ
𝑈
(𝑈)
−1
[𝐺 (𝑈) + ∇𝑈Φ

𝑈𝑈
∇𝑈] + 𝑈}

= 0 in 𝑋+,

(31)

where (𝐼 − Δ)−1 is the inverse of 𝐼 − Δ in 𝑋. As 𝐹(d; ⋅) is a
compact perturbation of the identity operator 𝐼, the Leray-
Schauder deg(𝐹(d; ⋅), 0, 𝐵) is well defined if 𝐹(d; 𝑈) ̸= 0 for all
𝑈 ∈ 𝜕𝐵.

By Theorems 1 and 2, there exists a positive constant
𝐶
0
(d, 𝑃) such that if 𝐹(d; 𝑈) = 0 in 𝑋+, then 𝑈 ∈ 𝐵(𝐶

0
).

Note that 𝐶
0
(d, 𝑃) can be taken as a continuous function

for 𝜎 ̸= 𝑏𝑎/𝑘
𝑛
+ 𝑏. By the invariance property of the Leray-

Schauder degree, we then conclude that deg(𝐹(d; ⋅), 0, 𝐵(𝐶))

does not depend on d if 𝐶 > 𝐶
0
(d, 𝑃), and it also does not

depend on 𝑃, if 𝑃 changes continuously in (0,∞)4 without
touching the surface 𝜎 = 𝑏𝑎/𝑘𝑛 + 𝑏.

For the case 𝜎 > 𝑏𝑎/𝑘𝑛 + 𝑏, by degree invariance, we need
only consider a special d; say d = (𝑑, 𝑑, 0) with large 𝑑. For
this we can use the following nonexistence result. To compare
the existence regions of (1) with and without cross-diffusion,
we give a nonexistence result stronger than what is needed
here.

Theorem 3. Let (𝑑
2
, 𝑃) ∈ (0,∞)

5 be given. Then, there exists
a positive constant ̂𝑑

1
(𝑑
2
, 𝑃) such that when d = (𝑑

1
, 𝑑
2
, 0)

and 𝑑
1
≥
̂
𝑑
1
(𝑑
2
, 𝑃), (1) does not have any nonconstant positive

solution.

Proof. First, by (7), there exists a positive constant 𝐶 =

𝐶(𝑃,
̂
𝑑
2
) such that a classical solution to (1) satisfies 𝑢(𝑥),

V(𝑥) ≤ 𝐶 provided that 𝑑
2
≥
̂
𝑑
2
. Now, we write 𝑓 as average

of 𝑓 overΩ, where

𝑓 (𝑢, V) = 𝑢(1 −
𝑢

𝑘

−

𝑢
𝑛−1V

𝑎 + 𝑢
𝑛
) , 𝑔 (𝑢, V) =

𝜎𝑢
𝑛V

𝑎 + 𝑢
𝑛
.

(32)
Multiplying the equation for 𝑢 of (1) by (𝑢−𝑢) and integrating
overΩ by parts, we have

𝑑
1
∫

Ω

∇|𝑢 − 𝑢|
2
𝑑𝑥 = ∫

Ω

𝑓 (𝑢, V) (𝑢 − 𝑢) 𝑑𝑥

= ∫

Ω

{𝑓 (𝑢, V) − 𝑓 (𝑢, V)} (𝑢 − 𝑢) 𝑑𝑥

= ∫

Ω

{𝑓
𝑢
(𝜉, 𝜂) (𝑢 − 𝑢)

2

+𝑓V (𝜉, 𝜂) (𝑢 − 𝑢) (V − V) } 𝑑𝑥

≤ ∫

Ω

{(𝐶
1
𝑢 − 𝑢)

2

+ 𝜀(V − V)
2
} 𝑑𝑥

(33)

for some positive constant 𝐶
1
= 𝐶
1
(𝑃,

̂
𝑑
2
) and 𝜀 = 𝜀(𝑃, ̂𝑑

2
) ≪

1, where 𝜉 and 𝜂 lie between 𝑢 and 𝑢, V and V, respectively.
Similarly, we have

𝑑
2
∫

Ω

∇|V − V|
2
𝑑𝑥 = ∫

Ω

[−𝑏V + 𝑔 (𝑢, V)] (V − V) 𝑑𝑥

= ∫

Ω

[−𝑏 (V − V) + 𝑔 (𝑢, V) − 𝑔 (𝑢, V)]

× (V − V) 𝑑𝑥

= ∫

Ω

{−𝑏(V − V)
2
+ 𝑔V (𝜉, 𝜂) (V − V)

2

+ 𝑔
𝑢
(𝜉, 𝜂) (𝑢 − 𝑢) (V − V) } 𝑑𝑥

≤ ∫

Ω

{(𝜎 − 𝑏) (V − V)
2
+ 𝜀
1
(V − V)

2

+𝐶
2
(𝑢 − 𝑢)

2
} 𝑑𝑥

(34)
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for some positive constant 𝐶
2

= 𝐶
2
(𝑃,

̂
𝑑
2
) and 𝜀

1
=

𝜀
1
(𝑃,
̂d
2
) ≪ 1, where 𝜉 and 𝜂 are the same as in (33). Adding

(33) and (34), we obtain

∫

Ω

{𝑑
1
∇|𝑢 − 𝑢|

2
+ 𝑑
2
∇|V − V|

2
} 𝑑𝑥

≤ ∫

Ω

{(𝐶
1
+ 𝐶
2
) (𝑢 − 𝑢)

2
+ (𝜎 − 𝑏 + 𝜀 + 𝜀

1
) (V − V)

2
} 𝑑𝑥.

(35)

It follows from the Poincaré Inequality that

𝜇
1
∫

Ω

{𝑑
1
(𝑢 − 𝑢)

2
+ 𝑑
2
(V − V)

2
} 𝑑𝑥

≤ ∫

Ω

{(𝐶
1
+ 𝐶
2
) (𝑢 − 𝑢)

2
+ (𝜎 − 𝑏 + 𝜀 + 𝜀

1
) (V − V)

2
} 𝑑𝑥.

(36)

Since we can choose 𝑑
2
≥
̂
𝑑
2
such that 𝜇

1
𝑑
2
> 𝜎 − 𝑏, we

may also choose 𝜀 and 𝜀
1
sufficiently small such that 𝜇

1
𝑑
2
>

𝜎 − 𝑏 + 𝜀 + 𝜀
1
. Consequently, by (36),

𝜇
1
𝑑
1
∫

Ω

(𝑢 − 𝑢)
2
𝑑𝑥 ≤ (𝐶

1
+ 𝐶
2
) ∫

Ω

(𝑢 − 𝑢)
2
𝑑𝑥, (37)

which implies that 𝑢 = 𝑢 = constant, and, hence, V = V =

constant if 𝑑
1
≥
̂
𝑑
1
(𝑑
2
, 𝑃) := (𝐶

1
(𝑃,

̂
𝑑
2
)+𝐶
2
(𝑃,

̂
𝑑
2
))/𝜇
1
.Thus,

we complete the proof of the theorem.

In the following, we only calculate deg(𝐹, 0, 𝐵) when all
solutions to 𝐹 = 0 are positive constant solutions in 𝐵(𝐶).

Let 0 = 𝜇
1
< 𝜇
2
< 𝜇
3
< ⋅ ⋅ ⋅ be the eigenvalues of

the operator −Δ in Ω with zero flux boundary condition,
𝐸(𝜇
𝑖
) be the eigenspace corresponding to 𝜇

𝑖
in𝐶1(Ω), 𝜙

𝑖𝑗
, 𝑗 =

1, 2, 3, . . ., dim𝐸(𝜇
𝑖
) an orthonormal basis of 𝐸(𝜇

𝑖
), and𝑋

𝑖𝑗
=

{𝐶𝜙
𝑖𝑗
| 𝐶 ∈ 𝑅

2
}. Then, 𝑋 = ⊕

∞

𝑖=1
𝑋
𝑖
, where 𝑋

𝑖
= ⊕

dim𝐸(𝜇
𝑖
)

𝑗=1
𝑋
𝑖𝑗
.

This decomposed method is similar to that of [22].
Let 𝑈∗ be a positive root to 𝐺(𝑈) = 0. We can calculate

𝐷
𝑈
𝐹 (d; 𝑈∗) = 𝐼 − (𝐼 − Δ)−1

× {Φ
−1

𝑈
(𝑈
∗
) 𝐺
𝑈
(𝑈
∗
) + 𝐼} in 𝐿 (𝑋,𝑋) ,

(38)

where 𝐿(𝑋,𝑋) is a linear mapping from𝑋 to itself.
Denote that𝐻(d, 𝑈∗; 𝜇) := det[𝜇𝐼 − Φ

𝑈
(𝑈
∗
)
−1
𝐺
𝑈
(𝑈
∗
)].

Lemma 4. Let 𝑈∗ be a positive root to 𝐺(⋅) = 0, and assume
that𝐻(d, 𝑈∗; 𝜇

𝑖
) ̸= 0 for all 𝑖. Then,

index (𝐹 (d; ⋅) , 𝑈∗) = (−1)𝑟, 𝑟 = ∑

𝑖≥1,𝐻(d,𝜇
𝑖
)<0

1. (39)

Proof. If 𝐷
𝑈
𝐹 is invertible, then the index of 𝐹 at 𝑈∗

is defined as index(𝐹(d; ⋅), 𝑈∗) = (−1)
𝑟, where 𝑟 is the

number of eigenvalues of 𝐷
𝑈
𝐹 with negative real parts. The

deg(𝐹(d; ⋅), 0, 𝐵) is then equal to summation of the indexes
over all solutions to 𝐹 = 0 in 𝐵, provided that 𝐹 ̸= 0 on

𝜕𝐵. Since for each integer 𝑖 ≥ 1, 𝑋
𝑖
is invariant under

𝐷
𝑈
(𝐹(d; 𝑈∗)), and 𝜆 is an eigenvalue of 𝐷

𝑈
𝐹 on 𝑋

𝑖
if and

only if 𝜆 is an eigenvalue of following matrix:

𝐼 −

1

1 + 𝜇
𝑖

[Φ
𝑈
(𝑈
∗
)
−1

𝐺
𝑈
(𝑈
∗
) + 𝐼]

=

1

1 + 𝜇
𝑖

[𝜇
𝑖
𝐼 − Φ
𝑈
(𝑈
∗
)
−1

𝐺
𝑈
(𝑈
∗
)] .

(40)

Since 𝐻(𝑑,𝑈∗; 𝜇) ̸= 0, 𝐷
𝑈
𝐹(d; 𝑈∗) is invertible. Therefore,

the number of eigenvalues with negative real parts of
𝐷
𝑈
𝐹(d; 𝑈∗) on 𝑋

𝑖
is odd if and only if𝐻(d, 𝑈∗; 𝜇

𝑖
) < 0, and

therefore

index (𝐹 (d; ⋅) , 𝑈∗) = (−1)𝑟, 𝑟 = ∑

𝑖≥1,𝐻(d,𝜇
𝑖
)<0

1. (41)

Theorem 5. Assume that 𝑃 = (𝜎, 𝑎, 𝑘, 𝑏) ∈ (0,∞)
4 with

𝜎𝑘
𝑛
̸= 𝑏(𝑎 + 𝑘

𝑛
). Then, for every d ∈ (0,∞)

2
× [0,∞), there

exists a constant 𝐶
0
(d, 𝑃) such that for every 𝐶 > 𝐶

0
(d, 𝑃),

deg (𝐹 (d; ⋅) , 0, 𝐵 (𝐶)) =
{
{
{

{
{
{

{

0, if 𝜎 < 𝑏𝑎
𝑘
𝑛
+ 𝑏,

1, if 𝜎 < 𝑏𝑎
𝑘
𝑛
+ 𝑏.

(42)

Proof. Since (1) does not have any positive solution in 𝐵(𝐶),
when 𝜎 ≤ 𝑏, we then conclude that

deg (𝐹 (d; ⋅) , 0, 𝐵 (𝐶)) = 0,

∀𝑃 ∈ {(𝜎, 𝑎, 𝑘, 𝑏) ∈ (0,∞)
4
| 𝜎 <

𝑏𝑎

𝑘
𝑛
+ 𝑏} ,

𝐶 > 𝐶
0
(d, 𝑃) .

(43)

Next, to complete the proof of Theorem 5. We need only
to calculate the degree for the case 𝜎 > 𝑏𝑎/𝑘

𝑛
+ 𝑏. In this

case, by Theorem 3, all positive solutions to 𝐹 = 0 are the
unique positive constant solution to 𝐺(⋅) = 0, denoted by
𝑈̃, when d = (𝑑, 𝑑, 0), Φ

𝑈
(𝑈̃) = 𝑑𝐼 so that 𝐻(d, 𝑈̃; 𝜇) =

(1/𝑑) det(𝑑𝜇𝐼 − 𝐺
𝑈
(𝑈̃)), det(𝐺

𝑈
(𝑈̃)) = 𝑛𝑏

2
(𝜎 − 𝑏)Ṽ/𝜎2𝑢̃ > 0.

This implies that when 𝑑 is sufficiently large,𝐻(d, 𝑈̃; 𝜇
𝑖
) > 0

for all 𝑖 = 1, 2, 3, . . ., and thus 𝑟 = 0. It follows from Lemma 4
that deg(𝐹(d; ⋅), 0, 𝐵(𝐶)) = 1. This completes the proof.

Remark 6. Thechange of degreewhen𝜎 passes the borderline
𝜎 = 𝑏𝑎/𝑘

𝑛
+ 𝑏 is due to the appearance (disappearance) of a

positive constant steady-state bifurcating from 𝑈 ≡ (𝑘, 0).

4. Existence of Nonconstant Positive Solutions

In this section, we establish the existence of positive non-
constant solutions for (1). In particular, we show that for
certain ranges of parameters where (1) does not have any
positive nonconstant steady state, ourmodel can still produce
patterns. The idea is as follows. First we calculate the index
of 𝐹(d; ⋅) at positive constant steady states. Suppose that the
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sum of all these indices is not equal to the degree stated in
Theorem 5. Then, 𝐹(d; ⋅) = 0 in 𝐵(𝐶) for 𝐶 = 𝐶

0
(d, 𝑃) must

have a nonconstant positive solution, which also solves (1).
In the following, we always assume that 𝜎 > 𝑏, and (1) has

a unique positive constant solution (𝑢̃, Ṽ), when 𝑈̃ = (𝑢̃, Ṽ)
is a positive solution to 𝐺(𝑈) = 0. We can get the following
results at 𝑈̃ by simply calculating

𝐺
𝑈
(𝑈̃) =

[

[

[

[

1

𝜎𝑘

{(𝑛 (𝜎 − 𝑏) − 2𝜎) 𝑢̃ − 𝑘 [𝑛 (𝜎 − 𝑏) − 𝜎]} −

𝑏

𝜎

𝑛𝑏 (𝜎 − 𝑏) Ṽ

𝜎𝑢̃

0

]

]

]

]

=: [
𝑔
11
−

𝑏

𝜎

𝑔
21

0

] ,

Φ
𝑈
(𝑈̃) =

[

[

[

[

𝑑
1

0

−

𝑑
2
𝑑
3
Ṽ

(1 + 𝑢̃)
2
𝑑
2
[1 +

𝑑
3

(1 + 𝑢̃)

]

]

]

]

]

=: [
𝜙
11

0

𝜙
21
𝜙
22

] ,

𝐻 (d, 𝑈̃; 𝜇) ≡ det (𝜇𝐼 − Φ−1
𝑈
(𝑈̃) 𝐺

𝑈
(𝑈̃))

= 𝜇
2
+ 𝜇

󵄨
󵄨
󵄨
󵄨
𝜙
21

󵄨
󵄨
󵄨
󵄨
𝑏/𝜎 − 𝜙

22
𝑔
11

𝜙
11
𝜙
22

+

𝑔
21
𝑏/𝜎

𝜙
11
𝜙
22

.

(44)

To calculate the roots of 𝐻(d, 𝑈̃; ⋅) = 0, we will restrict
our attention to large |d|. Note that

lim
𝑑
𝑖
→∞

𝐻(d, 𝑈̃; 𝜇) = 𝜇2 − Λ
𝑖
𝜇, ∀𝑖 = 2, 3, (45)

where

Λ
2
= Λ
2
(𝑑
1
, 𝑑
3
; 𝑈) = (−𝑑

3
𝑏𝑘Ṽ + (1 + 𝑢̃ + 𝑑

3
) (1 + 𝑢̃)

× {(𝑛 (𝜎 − 𝑏) − 2𝜎) 𝑢̃ − 𝑘 (𝑛 (𝜎 − 𝑏) − 𝜎)} )

× (𝜎𝑘𝑑
1
(1 + 𝑢̃ + 𝑑

3
) (1 + 𝑢̃))

−1

,

Λ
3
= Λ
3
(𝑑
1
; 𝑈)

=

−𝑏𝑘Ṽ + {(𝑛 (𝜎 − 𝑏) − 2𝜎) 𝑢̃ − 𝑘 (𝑛 (𝜎 − 𝑏) − 𝜎)} (1 + 𝑢̃)

𝜎𝑘𝑑
1
(1 + 𝑢̃)

.

(46)

The sign of the trace tr(𝐺
𝑈
) = 𝑔

11
is determined by 𝛾 =

(𝑛(𝜎−𝑏)−2𝜎)𝑢̃−𝑘(𝑛(𝜎−𝑏)−𝜎) and the sign of the determinant
det(𝐺

𝑈
) = 𝑛𝑏

2
(𝜎 − 𝑏)V/𝜎2𝑢 > 0.

Hence, we will discuss separately the following cases:

(i) 𝑛(𝜎 − 𝑏) − 2𝜎 > 0(𝑛 > 2𝜎/(𝜎 − 𝑏)), obviously 𝑘 > 𝑢̃ >
((𝑛(𝜎 − 𝑏) − 2𝜎)/(𝑛(𝜎 − 𝑏) − 𝜎))𝑢̃, then 𝛾 < 0;

(ii) 𝑛(𝜎 − 𝑏) − 𝜎 < 0(𝑛 < 𝜎/(𝜎 − 𝑏)):

(iia) if 𝑢̃ < 𝑘 < ((2𝜎−𝑛(𝜎−𝑏))/(𝜎−𝑛(𝜎−𝑏)))𝑢̃, then
𝛾 < 0;

(iib) if 𝑘 > ((2𝜎 − 𝑛(𝜎 − 𝑏))/(𝜎 − 𝑛(𝜎 − 𝑏)))𝑢̃, then
𝛾 > 0.

4.1. The Case 𝑛(𝜎−𝑏)−2𝜎>0 (𝑛>2𝜎/(𝜎−𝑏)). In this sub-
section, we consider local stability of the constant steady state
𝑈 ≡ 𝑈̃ for evolution dynamics

𝑈
𝑡
= ΔΦ (𝑈) + 𝐺 (𝑈) in Ω × (0,∞) ,

𝜕𝑈

𝜕]
= 0 on 𝜕Ω,

(47)

where 𝑈̃ = (𝑢̃, Ṽ) is a positive constant solution to 𝐺(⋅) = 0 by
(5).

Theorem 7. Let 𝑘 > 𝑢̃ > ((𝑛(𝜎 − 𝑏) − 2𝜎)/(𝑛(𝜎 − 𝑏) −

𝜎))𝑢̃ (𝑛 > 2𝜎/(𝜎 − 𝑏)). Then the positive constant solution
𝑈(𝑥, 𝑡) ≡ (𝑢̃, Ṽ) is asymptotically stable with respect to the
dynamics (47). Consequently, in a small neighborhood of 𝑈̃,
(1) does not have any nonconstant positive solution.

Proof. The linearization of (47) at 𝑈̃ takes the form

𝑉
𝑡
= Φ
𝑈
(𝑈̃) Δ𝑉 + 𝐺

𝑈
(𝑈̃)𝑉 in Ω × (0,∞) ,

𝜕𝑉

𝜕]
= 0 on 𝜕Ω.

(48)

Denote that the corresponding linear operator𝐿 := Φ
𝑈
(𝑈̃)Δ+

𝐺
𝑈
(𝑈̃). For each eigen-pair (𝜇

𝑖
, 𝜙
𝑖
) (𝑖 = 1, 2, 3, . . .) of −Δ on

Ω with no flux boundary condition, 𝑉 = 𝐶𝑒
𝜆𝑡
𝜙 is a solution

to (48) if and only if (𝜆, 𝐶) is an eigen-pair of thematrix𝐴
𝑖
:=

−𝜇
𝑖
Φ
𝑈
(𝑈̃)+𝐺

𝑈
(𝑈̃).𝑋

𝑖
is invariant under the operator𝐿. From

(44), we have

𝑔
11
< 0 (𝑘 >

𝑛 (𝜎 − 𝑏) − 2𝜎

𝑛 (𝜎 − 𝑏) − 𝜎

𝑢̃) , 𝑔
21
> 0 (𝜎 > 𝑏) .

(49)

Then

det 𝐴
𝑖
:= 𝜙
11
𝜙
22
𝜇
2

𝑖
− (

𝑏

𝜎

𝜙
21
+ 𝑔
11
𝜙
22
)𝜇
𝑖
+

𝑏

𝜎

𝑔
21
> 0,

tr 𝐴
𝑖
:= − (𝜙

11
+ 𝜙
22
) 𝜇
𝑖
+ 𝑔
11
< 0.

(50)

Hence, we conclude that the two eigenvalues 𝜆+
𝑖
and 𝜆−

𝑖
of

𝐴
𝑖
have negative real parts. More specifically, we have the

following:
(i) For 𝑖 = 1, 𝜇

1
= 0, if 𝑔2

11
− 4𝑔
21
𝑏/𝜎 ≤ 0, then Re 𝜆±

𝑖
=

(1/2)𝑔
11
< 0; if 𝑔2

11
− 4𝑔
21
𝑏/𝜎 > 0, then

Re 𝜆+
𝑖
=

1

2

[

[

𝑔
11
+ √𝑔
2

11
−

4𝑔
21
𝑏

𝜎

]

]

≤ 0,

Re 𝜆−
𝑖
=

1

2

[

[

𝑔
11
− √𝑔
2

11
−

4𝑔
21
𝑏

𝜎

]

]

< 0.

(51)
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(ii) For 𝑖 ≥ 2, as 𝜇
𝑖
is increasing with respect to 𝑖 and 𝜇

𝑖
→

∞ as 𝑖 → ∞, it follows that if (tr𝐴
𝑖
)
2
− 4 det𝐴

𝑖
≤ 0, then

Re 𝜆±
𝑖
=

1

2

tr𝐴
𝑖
=

1

2

[− (𝜙
11
+ 𝜙
22
) 𝜇
𝑖
+ 𝑔
11
]

≤

1

2

[− (𝜙
11
+ 𝜙
22
) 𝜇
2
+ 𝑔
11
] < 0;

(52)

if (tr𝐴
𝑖
)
2
− 4 det𝐴

𝑖
> 0, since det𝐴

𝑖
> 0 and tr𝐴

𝑖
< 0, then

Re 𝜆−
𝑖
=

1

2

(tr𝐴
𝑖
− √(tr𝐴

𝑖
)
2

− 4 det𝐴
𝑖
)

≤

1

2

tr𝐴
𝑖
≤

1

2

[− (𝜙
11
+ 𝜙
22
) 𝜇
2
+ 𝑔
11
] < 0;

Re 𝜆+
𝑖
=

1

2

(tr𝐴
𝑖
+ √(tr𝐴

𝑖
)
2

− 4 det𝐴
𝑖
)

=

2 det𝐴
𝑖

tr𝐴
𝑖
− √(tr𝐴

𝑖
)
2

− 4 det𝐴
𝑖

≤

det𝐴
𝑖

tr𝐴
𝑖

< −𝜀.

(53)

for some positive constant 𝜀 that does not depend on 𝑖.
The previous arguments show that there exists a positive
constant 𝜀, which does not depend on 𝑖, such that Re 𝜆

𝑖
<

−𝜀, ∀𝑖. Consequently, the spectrum of 𝐿, which consists of
eigenvalues, lies in {Re(𝜆) < −𝜀}. It then follows from
Theorem 5.1.1 of [26, page 98] that the constant steady-state
𝑈(𝑥, 𝑡) ≡ 𝑈̃ is asymptotically stable to (47).

4.2. The Case 𝑛(𝜎−𝑏)−𝜎<0 (𝑛<𝜎/(𝜎−𝑏))

4.2.1. (𝛾<0)𝑢̃<𝑘<((2𝜎−𝑛(𝜎−𝑏))/(𝜎−𝑛(𝜎−𝑏)))𝑢̃

Theorem8. Let 𝑢̃ < 𝑘 < ((2𝜎−𝑛(𝜎−𝑏))/(𝜎−𝑛(𝜎−𝑏)))𝑢̃.Then
the positive constant solution 𝑈(𝑥, 𝑡) ≡ (𝑢̃, Ṽ) is asymptotically
stable with respect to the dynamics (47).

Proof. Similar to the proof of Theorem 7.

4.2.2. (𝛾>0) 𝑘>((2𝜎−𝑛(𝜎−𝑏))/(𝜎−𝑛(𝜎−𝑏)))𝑢̃. In this case,
𝑈̃ = (𝑢̃, Ṽ) is the only positive constant solution to 𝐺(⋅) = 0.
By fixing the diffusion coefficients 𝑑

1
(for prey) and using the

diffusion coefficients 𝑑
2
and 𝑑

3
(for predator) as bifurcation

parameters, we will show that (1) can create nonconstant
positive solutions. We want to emphasize that it is caused by
the presence of cross-diffusionwhich has amore complex role
than that of the diffusion coefficients 𝑑

1
and 𝑑

2
.

Theorem 9 (existence with suitable 𝑑
2
and 𝑑

3
). Assume that

𝜎 > 𝑏𝑎/𝑘
𝑛
+𝑏 and 𝑘 > ((2𝜎−𝑛(𝜎−𝑏))/(𝜎−𝑛(𝜎−𝑏)))𝑢̃, define

Λ
2
(𝑑
1
, 𝑑
3
; 𝑈) and Λ

3
(𝑑
1
; 𝑈) as (46).

(i) Suppose that 𝑑
1

and 𝑑
3

are given such that
Λ
2
(𝑑
1
, 𝑑
3
; 𝑈̃) ∈ (𝜇

𝑗
, 𝜇
𝑗+1
) for some positive even integer

𝑗. There exists a positive constant𝐷
2
such that if 𝑑

2
≥ 𝐷
2
, then

(1) has at least one nonconstant positive solution.
(ii) Suppose that 𝑑

1
is given such that Λ

3
(𝑑
1
; 𝑈) ∈

(𝜇
𝑗
, 𝜇
𝑗+1
) for some positive even integer 𝑗. Then, for any given

𝑑
2
> 0, there exists a positive constant𝐷

3
such that if 𝑑

3
≥ 𝐷
3
,

(1) has at least one nonconstant positive solution.

Proof. Denote by 𝜇±(d, 𝑈̃), with Re(𝜇−) ≤ Re(𝜇+), the two
roots to𝐻(d, 𝑈̃; 𝜇) = 0, and then

𝜇
+
(d, 𝑈̃) 𝜇− (d, 𝑈̃) = [det (Φ

𝑈
(𝑈̃))]

−1

det (𝐺
𝑈
(𝑈̃))

=

𝑔
21
𝑏/𝜎

𝜙
11
𝜙
22

> 0.

(54)

From (45), we see that

lim
𝑑
2
→∞

𝜇
−
(d, 𝑈̃) = 0, lim

𝑑
2
→∞

𝜇
+
(d, 𝑈̃) = Λ

2
(𝑑
1
, 𝑑
3
; 𝑈̃) ,

lim
𝑑
3
→∞

𝜇
−
(d, 𝑈̃) = 0, lim

𝑑
3
→∞

𝜇
+
(d, 𝑈̃) = Λ

3
(𝑑
1
; 𝑈̃) .

(55)

Suppose thatΛ
2
(𝑑
1
, 𝑑
3
; 𝑈̃) ∈ (𝜇

𝑗
, 𝜇
𝑗+1
) for somepositive even

integer 𝑗; then, there exists a positive constant 𝐷
2
≫ 1 such

that 𝑑
2
≫ 𝐷
2
, and we have

0 = 𝜇
1
< 𝜇
−
(d, 𝑈̃) < 𝜇

2
, 𝜇

+
(d, 𝑈̃) ∈ (𝜇

𝑗
, 𝜇
𝑗+1
) . (56)

Hence, if 𝑑
2
≫ 1, 𝐻(d, 𝑈̃; 𝜇

𝑖
) < 0 is equivalent to 𝑖 ∈

{2, 3, . . . , 𝑗}, since 𝑗 is even. It follows from Lemma 4 that

index (𝐹 ( d ; ⋅) , 𝑈̃) = (−1)𝑗−1 = −1. (57)

Consequently, 𝐹(d; 𝑈) = 0 has at least one nonconstant
positive solution that is different from the constant function
𝑈 = 𝑈̃. Otherwise, the degree of 𝐹 = 0 in 𝐵(𝐶) would be −1
for all large enough 𝐶, which would contradict Theorem 5.
This proves, the first assertion of the theorem, and the second
assertion is similarly proved.

Remark 10. For Λ
3
(𝑑
1
; 𝑈) to be positive, it is necessary and

sufficient to have

𝑘 >

(𝑘 + 1) 𝜎𝑢̃

(1 + 𝑢̃) [𝜎 − 𝑛 (𝜎 − 𝑏)]

+ 𝑢̃. (58)

When this inequality holds, Λ
2
(𝑑
1
, 𝑑
3
; 𝑈̃) is also positive

provided that 𝑑
3
is large, and we then can adjust to 𝑑

1
and

make the assumptions in (i) or (ii) of theorem hold.

Remark 11. In fact, if 𝜎/(𝜎 − 𝑏) < 𝑛 < 2𝜎/(𝜎 − 𝑏), then 𝛾 <
0. This case is similar to case (i). Furthermore, the positive
constant solution U(𝑥, 𝑡) ≡ (𝑢̃, Ṽ) is also asymptotically stable
with respect to the dynamics (47).
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