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This paper deals with a generalized form of nonlinear retarded Gronwall-Bellman type integral inequality in which the maximum
of the unknown function of two variables is involved. This form includes both a nonconstant term outside the integrals and more
than one distinct nonlinear integrals. Requiring neither monotonicity nor separability of given functions, we apply a technique of
monotonization to estimate the unknown function. Our result can be used to weaken conditions for some known results. We apply
our result to a boundary value problem of a partial differential equation with maxima for uniqueness.

1. Introduction

The Gronwall-Bellman inequality [1, 2] plays an important
role in the study of existence, uniqueness, boundedness,
stability, invariantmanifolds, and other qualitative properties
of solutions of differential equations and integral equations.
There can be found a lot of its generalizations in various cases
from literatures (see, e.g., [3–18]). In 1956, Bihari [3] discussed
the integral inequality

𝑢 (𝑡) ≤ 𝑐 + ∫

𝑡

0

𝑓 (𝑠) 𝜔 (𝑢 (𝑠)) 𝑑𝑠, 𝑡 ≥ 0, (1)

where 𝑐 > 0 is a constant, 𝑓 is a continuous and nonnegative
function, and 𝜔 is a continuous and nondecreasing positive
function. Replacing 𝑡 by a function 𝑏(𝑡) in (1), Lipovan [4]
investigated the retarded integral inequality

𝑢 (𝑡) ≤ 𝑐 + ∫

𝑡

𝑡0

𝑓 (𝑠) 𝜔 (𝑢 (𝑠)) 𝑑𝑠

+ ∫

𝑏(𝑡)

𝑏(𝑡0)

𝑔 (𝑠) 𝜔 (𝑢 (𝑠)) 𝑑𝑠, 𝑡
0
≤ 𝑡 < 𝑡

1
.

(2)

Their results were further generalized by Agarwal et al. [5] to
the inequality

𝑢 (𝑡) ≤ 𝑎 (𝑡) +

𝑛

∑

𝑖=1

∫

𝑏𝑖(𝑡)

𝑏𝑖(𝑡0)

𝑓
𝑖
(𝑡, 𝑠) 𝜔

𝑖
(𝑢 (𝑠)) 𝑑𝑠, 𝑡

0
≤ 𝑡 < 𝑡

1
,

(3)

where the constant 𝑐 is replaced with a function 𝑎(𝑡), 𝑏
𝑖
’s

are continuously differentiable and nondecreasing functions,
and𝜔

𝑖
’s are continuous and nondecreasing positive functions

such that

𝜔
1
∝ 𝜔
2
∝ ⋅ ⋅ ⋅ ∝ 𝜔

𝑛
, (4)

that is, each ratio𝜔
𝑖+1
/𝜔
𝑖
is also nondecreasing on𝐴 ⊆ R\{0},

called in [6] that 𝜔
𝑖+1

is stronger nondecreasing than 𝜔
𝑖
. On

the basis of this work, Wang [7] considered the inequality of
two variables

𝑢
𝑝
(𝑥, 𝑦) ≤ 𝑎 (𝑥, 𝑦)

+

𝑛

∑

𝑖=1

∫

𝑏𝑖(𝑥)

𝑏𝑖(𝑥0)

∫

𝑐𝑖(𝑦)

𝑐𝑖(𝑦0)

𝑓
𝑖
(𝑥, 𝑦, 𝑠, 𝑡) 𝜔

𝑖
(𝑢 (𝑠, 𝑡)) 𝑑𝑡 𝑑𝑠,

(5)

where the functions 𝑎, 𝑓
𝑖
, and𝜔

𝑖
are not required to be

monotone, and those 𝜔
𝑖
’s are not required to be stronger
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monotone than the one after the next as shown in (4). This
inequality belongs to both the case ofmultivariables, to which
great attentions [7–11] have been paid, and to the case that
the left-hand side is a composition of the unknown function
with a known function, in which Ou-Iang’s idea [19] was
applied [11–14]. He applied a technique of monotonization
to construct a sequence of functions, made each function
possess stronger monotonization than the previous one, and
gave an estimate for the unknown function 𝑢.

On the other aspect, many problems in the control theory
can be modeled in the form of differential equations with
the maxima of the unknown function [20–22]. In connection
with the development of the theory of differential equations
with maxima (see, e.g., [20, 21, 23]) and partial differential
equations with maxima [24, 25], a new type of integral
inequalities withmaxima is required, respectively.There have
been given some results for integral inequalities containing
themaximaof the unknown function [23, 26–28]. Concretely,
in 2012, Bohner et al. [26] discussed the following system of
integral inequalities:

𝜑 (𝑢 (𝑡)) ≤ 𝑎 (𝑡)+

𝑚

∑

𝑖=1

∫

𝛼𝑖(𝑡)

𝛼𝑖(𝑡0)

𝑓
𝑖
(𝑠) 𝑢
𝑝
(𝑠) 𝜔
𝑖
(𝑢 (𝑠)) 𝑑𝑠

+

𝑚+𝑛

∑

𝑗=𝑚+1

∫

𝛼𝑗(𝑡)

𝛼𝑗(𝑡0)

𝑓
𝑗
(𝑠) 𝑢
𝑝
(𝑠)

× 𝜔
𝑗
( max
𝜉∈[𝑠−ℎ,𝑠]

𝑔 (𝑢 (𝜉))) 𝑑𝑠,

𝑢 (𝑡) ≤ 𝜓 (𝑡) ,

(6)

where 𝑎, 𝑓
𝑖
’s, 𝜔
𝑖
’s, 𝜑, and 𝜓 are nonnegative continuous

functions and𝛼
𝑖
’s are nonnegative continuously differentiable

and nondecreasing functions. They required that 𝑎(𝑡) ≥ 1,
𝜑 is 𝐶1 on R

+
:= [0, +∞) and increasing such that 𝜑(𝑡𝑥) ≥

𝑡𝜑(𝑥) for 0 ≤ 𝑡 ≤ 1, and 𝜔
𝑖
satisfies the following: (i) 𝜔

𝑖
∈

𝐶
1
(R
+
,R
+
) is an increasing function, and (ii) 𝜔

𝑖
(𝑡𝑥) ≥ 𝑡𝜔

𝑖
(𝑥)

for all 0 ≤ 𝑡 ≤ 1 and 𝑥 > 0. Bainov and Hristova [23]
considered the following system:

𝑢 (𝑥, 𝑦) ≤ 𝑎 (𝑥, 𝑦) + ∫

𝑥

𝑥0

∫

𝑦

𝑦0

𝑓 (𝑠, 𝑡) 𝑢
𝑝
(𝑠, 𝑡) 𝑑𝑡 𝑑𝑠

+ ∫

𝛼(𝑥)

𝛼(𝑥0)

∫

𝑦

𝑦0

ℎ (𝑠, 𝑡) ( max
𝜉∈[𝑠−ℎ,𝑠]

𝑢
𝑝
(𝜉, 𝑡)) 𝑑𝑡 𝑑𝑠,

𝑢 (𝑥, 𝑦) ≤ 𝜓 (𝑥, 𝑦) ,

(7)

where 𝑎(𝑥, 𝑦) is nonnegative and nondecreasing in both of
its arguments, 𝑓, ℎ, and 𝜓 are continuous and nonnegative
functions, and 𝑝 ∈ (0, 1].

In this paper, we consider the system of integral inequal-
ities as follows:

𝜑 (𝑢 (𝑥, 𝑦))

≤ 𝑎 (𝑥, 𝑦)

+

𝑛

∑

𝑖=1

∫

𝛼𝑖(𝑥)

𝛼𝑖(𝑥0)

∫

𝛽𝑖(𝑦)

𝛽𝑖(𝑦0)

𝑓
𝑖
(𝑥, 𝑦, 𝑠, 𝑡) 𝜔

𝑖
(𝑢 (𝑠, 𝑡)) 𝑑𝑡 𝑑𝑠

+

𝑛+𝑚

∑

𝑗=𝑛+1

∫

𝛼𝑗(𝑥)

𝛼𝑗(𝑥0)

∫

𝛽𝑗(𝑦)

𝛽𝑗(𝑦0)

𝑓
𝑗
(𝑥, 𝑦, 𝑠, 𝑡)

× 𝜔
𝑗
( max
𝜉∈[𝑠−ℎ,𝑠]

𝑔 (𝑢 (𝜉, 𝑡))) 𝑑𝑡 𝑑𝑠,

(𝑥, 𝑦) ∈ [𝑥
0
, 𝑥
1
) × [𝑦

0
, 𝑦
1
) ,

𝑢 (𝑥, 𝑦)≤𝜓 (𝑥, 𝑦) , (𝑥, 𝑦)∈[𝛼
∗
(𝑥
0
)−ℎ, 𝑥

0
]×[𝑦
0
, 𝑦
1
) ,

(8)

where 𝑎, 𝑓
𝑖
’s, 𝜔
𝑖
’s, and 𝑔 are continuous and nonnegative

functions, 𝛼
𝑖
’s and 𝛽

𝑖
’s are nonnegative continuously dif-

ferentiable and nondecreasing functions, and 𝛼
∗
(𝑥
0
) :=

min
1≤𝑖≤𝑚+𝑛

𝛼
𝑖
(𝑥
0
). As required in previous works [27–29], we

suppose that 0 ≤ 𝛼
𝑖
(𝑡) ≤ 𝑡, 0 ≤ 𝛽

𝑖
(𝑡) ≤ 𝑡, ℎ > 0 is

constant. In this paper, we require neither monotonicity of
𝑎, 𝜔
𝑖
’s, 𝑓
𝑖
’s, and 𝑔 nor 𝑎(𝑥, 𝑦) ≥ 1. We monotonize those 𝜔

𝑖
’s

to make a sequence of functions in which each one possesses
stronger monotonicity than the previous one so as to give an
estimation for the unknown function. We can use our result
to discuss inequalities (6) and (7), giving the stronger results
under weaker conditions.We finally apply the obtained result
to a boundary value problem of a partial differential equation
with maxima for uniqueness.

2. Main Result

Consider system (8) of integral inequalities with 𝑥
0
< 𝑥
1
and

𝑦
0
< 𝑦
1
in R
+
:= [0,∞). Let Λ := [𝑥

0
, 𝑥
1
) × [𝑦

0
, 𝑦
1
), Ω :=

[𝛼
∗
(𝑥
0
) − ℎ, 𝑥

0
] × [𝑦

0
, 𝑦
1
). Suppose that

(H
1
) 𝛼
𝑖
: [𝑥
0
, 𝑥
1
) → R

+
(𝑖 = 1, 2, . . . , 𝑚 + 𝑛) and

𝛽
𝑖

: [𝑦
0
, 𝑦
1
) → [𝑦

0
, 𝑦
1
), 𝑖 = 1, 2, . . . , 𝑚 +

𝑛, are nondecreasing such that 𝛼
𝑖
(𝑥) ≤ 𝑥 on

[𝑥
0
, 𝑥
1
), 𝛽
𝑖
(𝑦) ≤ 𝑦 on [𝑦

0
, 𝑦
1
) and 𝛽

𝑖
(𝑦
0
) = 𝑦
0
;

(H
2
) all 𝑓

𝑖
’s (𝑖 = 1, 2, . . . , 𝑚 + 𝑛) are continuous and

nonnegative functions on Λ × [𝛼
∗
(𝑥
0
), 𝑥
1
) × [𝑦

0
, 𝑦
1
);

(H
3
) 𝑔, 𝜑 : R

+
→ R

+
and 𝜓 : [𝛼

∗
(𝑥
0
) − ℎ, 𝑥

1
) → R

+

are continuous, and 𝜑 is strictly increasing such that
lim
𝑡→∞

𝜑(𝑡) = +∞;

(H
4
) all 𝜔

𝑖
’s (𝑖 = 1, 2, . . . , 𝑚 + 𝑛) are continuous on R

+
and

positive on (0, +∞);

(H
5
) 𝑎(𝑥, 𝑦) is a continuous and nonnegative function on
Λ.
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For those 𝜔
𝑖
’s given in (H

4
), define 𝜔̃

𝑖
(𝑡), 𝑖 = 1, . . . , 𝑚 + 𝑛,

inductively by

𝜔̃
1
(𝑡) := max

𝜏∈[0,𝑡]

{𝜔
1
(𝜏)} ,

𝜔̃
𝑖+1

(𝑡) := max
𝜏∈[0,𝑡]

{

𝜔
𝑖+1

(𝜏)

𝜔̃
𝑖
(𝜏) + 𝜖

𝑖

} 𝜔̃
𝑖
(𝑡) ,

(9)

for 𝑖 = 1, 2, . . . , 𝑚 − 1 and

𝜔̃
𝑚+1

(𝑡) := max
𝜏∈[0,𝑡]

{

𝜔̂
𝑚+1

(max
𝑠∈[0,𝜏]

{𝑔 (𝑠)})

𝜔̃
𝑚
(𝜏) + 𝜖

𝑚

} 𝜔̃
𝑚
(𝑡) ,

𝜔̃
𝑗+1

(𝑡) := max
𝜏∈[0,𝑡]

{

𝜔̂
𝑗+1

(max
𝑠∈[0,𝜏]

{𝑔 (𝑠)})

𝜔̃
𝑗
(𝜏) + 𝜖

𝑗

} 𝜔̃
𝑗
(𝑡) ,

(10)

for 𝑗 = 𝑚 + 1, . . . , 𝑚 + 𝑛, where 𝜔̂
𝑗
(𝑡) := max

𝜏∈[0,𝑡]
{𝜔
𝑗
(𝜏)} for

𝑗 = 𝑚 + 1, . . . , 𝑚 + 𝑛, 𝜖
𝑖
:= 𝜀
1
if 𝜔̃
𝑖
(0) = 0 or := 0 if 𝜔̃

𝑖
(0) ̸= 0

for 𝑖 = 1, 2, . . . , 𝑚 + 𝑛 − 1, and 𝜀
1
> 0 be a given very small

constant.

Theorem 1. Suppose that (H
1
)–(H
5
) hold,

max
𝑠∈[𝛼∗(𝑥0)−ℎ,𝑥0]

𝜓(𝑠, 𝑦) ≤ 𝜑
−1
(𝑎(𝑥
0
, 𝑦)) for all 𝑦 ∈ [𝑦

0
, 𝑦
1
)

and 𝑢 ∈ 𝐶(Ω,R
+
) satisfies the system (8) of integral

inequalities. Then,

𝑢 (𝑥, 𝑦) ≤ 𝜑
−1
(𝑊
−1

𝑚+𝑛
(Ω
𝑚+𝑛

(𝑥, 𝑦))) , (11)

for all (𝑥, 𝑦) ∈ [𝑥
0
, 𝑋
1
) × [𝑦

0
, 𝑌
1
), where

Ω
𝑖
(𝑥, 𝑦) :=𝑊

𝑖
(𝑟
𝑖
(𝑥, 𝑦))

+ ∫

𝛼𝑖(𝑥)

𝛼𝑖(𝑥0)

∫

𝛽𝑖(𝑦)

𝛽𝑖(𝑦0)

max
(𝜄,𝜉)∈[𝑥0,𝑥]×[𝑦0 ,𝑦]

𝑓
𝑖
(𝜄, 𝜉, 𝑠, 𝑡) 𝑑𝑡 𝑑𝑠,

(12)

𝑊
−1

𝑖
is the inverse of the function

𝑊
𝑖
(𝑢) := ∫

𝑢

𝑢𝑖

𝑑𝑠

𝜔̃
𝑖
(𝜑
−1
(𝑠))

, 𝑢 ≥ 𝑢
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 + 𝑛,

(13)

𝑢
𝑖
> 0 is a given constant, 𝜔̃

𝑖
is defined just before the theorem,

and 𝑟
𝑖
(𝑥, 𝑦) is defined recursively by

𝑟
1
(𝑥, 𝑦) = max

(𝜄,𝜉)∈[𝑥0 ,𝑥]×[𝑦0 ,𝑦]

𝑎 (𝜄, 𝜉) ,

𝑟
𝑖+1

(𝑥, 𝑦) = 𝑊
−1

𝑖
(Ω
𝑖
(𝑥, 𝑦)) ,

(14)

for 𝑖 = 1, 2, . . . , 𝑚 + 𝑛 − 1, and𝑋
1
∈ [𝑥
0
, 𝑥
1
), 𝑌
1
∈ [𝑦
0
, 𝑦
1
) are

chosen such that

Ω
𝑖
(𝑋
1
, 𝑌
1
) ≤ ∫

∞

𝑢𝑖

𝑑𝑠

𝜔̃
𝑖
(𝜑
−1
(𝑠))

, (15)

for 𝑖 = 1, 2, . . . , 𝑚 + 𝑛.

For the special choice that 𝑛 = 𝑚 = 1, 𝜔
1
(𝑠) = 𝑠

𝑝, 𝜔
2
(𝑠) =

𝑠, 𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) = 𝑓(𝑠, 𝑡), 𝑓

2
(𝑥, 𝑦, 𝑠, 𝑡) = ℎ(𝑠, 𝑡), 𝛼

1
(𝑠) = 𝑠,

𝛼
2
(𝑠) = 𝛼(𝑠), 𝑔(𝑠) = 𝑠

𝑝, and 𝛽
1
(𝑠) = 𝛽

2
(𝑠) = 𝑠, where 𝛼 is

a nonnegative continuously differentiable and nondecreasing
function, Theorem 1 gives an estimate for the unknown 𝑢 in
the system (7). we require neither the monotonicity of 𝑎 nor
the monotonicity of 𝜔

𝑖
. Obviously, Lemma 2 and Theorem 1

are applicable to more general forms than Corollary 2.3.4 in
[23]. Even if𝜔

𝑖
(𝑠) is enlarged tomax

1≤𝑖≤𝑚+𝑛
𝜔
𝑖
(𝑠) such that (8)

is changed into the form of (2.1) in [29], where 𝑚 = 𝑛 = 1,
our theorem gives a better estimate. For example, the system
of inequalities

𝑢 (𝑥, 𝑦) ≤ 3 + 4∫

𝑥

0

∫

𝑦

0

𝑡𝑠√𝑢 (𝑠, 𝑡) + 1𝑑𝑡 𝑑𝑠

+ 4∫

√𝑥

0

∫

𝑦

0

𝑡𝑠 ( max
𝜉∈[𝑠−ℎ,𝑠]

𝑢 (𝜉, 𝑡) + 1) 𝑑𝑡 𝑑𝑠,

(𝑥, 𝑦) ∈ [0, 𝑥
1
) × [0, 𝑦

1
) ,

𝑢 (𝑥, 𝑦) ≤ 𝑥 + 3, (𝑥, 𝑦) ∈ [−ℎ, 0] × [0, 𝑦
1
) ,

(16)

implies that

𝑢 (𝑥, 𝑦) ≤ 3 + 4∫

𝑥

0

∫

𝑦

0

𝑡𝑠 (𝑢 (𝑠, 𝑡) + 1) 𝑑𝑡 𝑑𝑠

+ 4∫

√𝑥

0

∫

𝑦

0

𝑡𝑠 ( max
𝜉∈[𝑠−ℎ,𝑠]

𝑢 (𝜉, 𝑡) + 1) 𝑑𝑡 𝑑𝑠,

(𝑥, 𝑦) ∈ [0, 𝑥
1
) × [0, 𝑦

1
) ,

𝑢 (𝑥, 𝑦) ≤ 𝑥 + 3, (𝑥, 𝑦) ∈ [−ℎ, 0] × [0, 𝑦
1
) ,

(17)

by enlarging√𝑠 + 1 to 𝑠 + 1. ApplyingTheorem 1, we obtain

𝑢 (𝑥, 𝑦) ≤

(𝑥
2
𝑦
2
+ 4)

2

4

𝑒
𝑥𝑦
2

, (𝑥, 𝑦) ∈ [0, 𝑥
1
) × [0, 𝑦

1
) .

(18)
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On the other hand, Theorem 2.2 of [29] gives from (17) that

𝑢 (𝑡) ≤ 4𝑒
(𝑥
2
𝑦
2
+𝑥𝑦
2
)
, (𝑥, 𝑦) ∈ [0, 𝑥

1
) × [0, 𝑦

1
) . (19)

Clearly, (18) is sharper than (19) for large 𝑥 and 𝑦.
In order to prove Theorem 1, we need the following

lemma.

Lemma 2. Suppose that

(C1) 𝛼
𝑖
: [𝑥
0
, 𝑥
1
) → R

+
(𝑖 = 1, 2, . . . , 𝑚 + 𝑛) and 𝛽

𝑖
:

[𝑦
0
, 𝑦
1
) → R

+
(𝑖 = 1, 2, . . . , 𝑚+𝑛) are nondecreasing

such that 𝛼
𝑖
(𝑥) ≤ 𝑥 on [𝛼

∗
(𝑥
0
), 𝑥
1
) and 𝛽

𝑖
(𝑦) ≤ 𝑦 on

[𝑦
0
, 𝑦
1
) and 𝛽

𝑖
(𝑦
0
) = 𝑦
0
;

(C2) 𝜓 ∈ 𝐶([𝛼
∗
(𝑥
0
) − ℎ, 𝑥

1
) × [𝑦
0
, 𝑦
1
),R
+
), 𝑏
𝑖
∈ 𝐶([𝛼

∗
(𝑥
0
),

𝑥
1
) × [𝑦

0
, 𝑦
1
),R
+
) for 𝑖 = 1, 2, . . . , 𝑚 + 𝑛;

(C3) all ℎ
𝑖
’s (𝑖 = 1, 2, . . . , 𝑚 + 𝑛) are continuous and non-

decreasing on R
+
and positive on (0, +∞) such that

ℎ
1
∝ ℎ
2
∝ . . . ∝ ℎ

𝑚+𝑛
;

(C4) 𝑎(𝑥, 𝑦) is continuously differentiable in 𝑥 and
𝑦, nonnegative on [𝛼

∗
(𝑥
0
), 𝑥
1
) × [𝑦

0
, 𝑦
1
), and

max
𝑠∈[𝛼∗(𝑥0)−ℎ,𝑥1]

𝜓(𝑠, 𝑦) ≤ 𝑎(𝑥
0
, 𝑦) for all 𝑦 ∈ [𝑦

0
, 𝑦
1
).

If 𝑢 ∈ 𝐶([𝛼
∗
(𝑥
0
)−ℎ, 𝑥

1
)× [𝑦
0
, 𝑦
1
),R
+
) satisfies the system

of inequalities as follows:

𝑢 (𝑥, 𝑦)

≤ 𝑎 (𝑥, 𝑦) +

𝑚

∑

𝑖=1

∫

𝛼𝑖(𝑥)

𝛼𝑖(𝑥0)

∫

𝛽𝑖(𝑦)

𝛽𝑖(𝑦0)

𝑏
𝑖
(𝑠, 𝑡) ℎ

𝑖
(𝑢 (𝑠, 𝑡)) 𝑑𝑡 𝑑𝑠

+

𝑚+𝑛

∑

𝑗=𝑚+1

∫

𝛼𝑗(𝑥)

𝛼𝑗(𝑥0)

∫

𝛽𝑗(𝑦)

𝛽𝑗(𝑦0)

ℎ
𝑗
(𝑠, 𝑡) ℎ

𝑗
( max
𝜉∈[𝑠−ℎ,𝑠]

𝑢 (𝜉, 𝑡)) 𝑑𝑡 𝑑𝑠,

(𝑥, 𝑦) ∈ Λ,

𝑢 (𝑥, 𝑦) ≤ 𝜓 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ Ω,

(20)

then

𝑢 (𝑥, 𝑦) ≤ 𝐻
−1

𝑚+𝑛
(𝐻
𝑚+𝑛

(𝛾
𝑚+𝑛

(𝑥, 𝑦))

+∫

𝛼𝑚+𝑛(𝑥)

𝛼𝑚+𝑛(𝑥0)

∫

𝛽𝑚+𝑛(𝑦)

𝛽𝑚+𝑛(𝑦0)

ℎ
𝑚+𝑛

(𝑠, 𝑡) 𝑑𝑡𝑑𝑠) ,

(21)

for all (𝑥, 𝑦) ∈ [𝑥
0
, 𝑋
∗
) × [𝑦

0
, 𝑌
∗
), where𝐻−1

𝑖
is the inverse of

the function

𝐻
𝑖
(𝑢) := ∫

𝑢

𝑢𝑖

𝑑𝑥

𝜔
𝑖
(𝑥)

, 𝑢 ≥ 𝑢
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 + n, (22)

𝑢
𝑖
> 0 is a given constant, and 𝛾

𝑖
(𝑥, 𝑦) is defined recursively by

𝛾
1
(𝑥, 𝑦) := 𝑎 (𝑥

0
, 𝑦
0
) + ∫

𝑥

𝑥0

󵄨
󵄨
󵄨
󵄨
𝑎
𝑥
(𝑡, 𝑦)

󵄨
󵄨
󵄨
󵄨
𝑑𝑡 + ∫

𝑦

𝑦0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑎
𝑦
(𝑥, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠,

𝛾
𝑖+1

(𝑥, 𝑦) :=𝐻
−1

𝑖
(𝐻
𝑖
(𝛾
𝑖
(𝑥, 𝑦))+∫

𝛼𝑖(𝑡)

𝛼𝑖(𝑡0)

∫

𝛽𝑖(𝑡)

𝛽𝑖(𝑡0)

𝑏
𝑖
(𝑠, 𝑡) 𝑑𝑡𝑑𝑠)

(23)

for 𝑖 = 1, 2, . . . , 𝑚 + 𝑛 − 1, and 𝑥
0
≤ 𝑋
∗
< 𝑥
1
, 𝑦
0
≤ 𝑌
∗
< 𝑦
1

are chosen such that

𝐻
𝑖
(𝛾
𝑖
(𝑋
∗
, 𝑌
∗
)) + ∫

𝛼𝑖(𝑋
∗
)

𝛼𝑖(𝑥0)

∫

𝛽𝑖(𝑌
∗
)

𝛽𝑖(𝑦0)

𝑏
𝑖
(𝑠, 𝑡) 𝑑𝑡 𝑑𝑠 ≤ ∫

∞

𝑢𝑖

𝑑𝑠

ℎ
𝑖
(𝑠)

,

(24)

for 𝑖 = 1, 2, . . . , 𝑚 + 𝑛.

Proof. From (23), we see that 𝛾
1
(𝑥, 𝑦) is nondecreasing on Λ,

𝑎(𝑥, 𝑦) ≤ 𝛾
1
(𝑥, 𝑦), and max

𝑠∈[𝛼∗(𝑥0)−ℎ,𝑥1]
𝜓(𝑠, 𝑦) ≤ 𝑎(𝑥

0
, 𝑦) ≤

𝛾
1
(𝑥
0
, 𝑦) for 𝑦 ∈ [𝑦

0
, 𝑦
1
). It implies from (20) that

𝑢 (𝑥, 𝑦) ≤ 𝛾
1
(𝑥, 𝑦) +

𝑚

∑

𝑖=1

∫

𝛼𝑖(𝑥)

𝛼𝑖(𝑥0)

∫

𝛽𝑖(𝑦)

𝛽𝑖(𝑦0)

𝑏
𝑖
(𝑠, 𝑡) ℎ

𝑖
(𝑢 (𝑠, 𝑡)) 𝑑𝑡 𝑑𝑠

+

𝑚+𝑛

∑

𝑗=𝑚+1

∫

𝛼𝑗(𝑥)

𝛼𝑗(𝑥0)

∫

𝛽𝑗(𝑦)

𝛽𝑗(𝑦0)

𝑏
𝑗
(𝑠, 𝑡)

× ℎ
𝑗
( max
𝜉∈[𝑠−ℎ,𝑠]

𝑢 (𝜉, 𝑡)) 𝑑𝑡 𝑑𝑠

(25)

for all (𝑥, 𝑦) ∈ Λ. Let

𝑧 (𝑥, 𝑦) :=

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝛾
1
(𝑥, 𝑦) +

𝑚

∑

𝑖=1

∫

𝛼𝑖(𝑥)

𝛼𝑖(𝑥0)

∫

𝛽𝑖(𝑦)

𝛽𝑖(𝑦0)

𝑏
𝑖
(𝑠, 𝑡) ℎ

𝑖
(𝑢 (𝑠, 𝑡)) 𝑑𝑡 𝑑𝑠

+

𝑚+𝑛

∑

𝑗=𝑚+1

∫

𝛼𝑗(𝑥)

𝛼𝑗(𝑥0)

∫

𝛽𝑖(𝑦)

𝛽𝑖(𝑦0)

𝑏
𝑗
(𝑠, 𝑡) ℎ

𝑗
( max
𝜉∈[𝑠−ℎ,𝑠]

𝑢 (𝜉, 𝑡)) 𝑑𝑡 𝑑𝑠, (𝑥, 𝑦) ∈ Λ,

𝛾
1
(𝑥
0
, 𝑦) , (𝑥, 𝑦) ∈ Ω.

(26)
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Clearly, 𝑧(𝑥, 𝑦) is nondecreasing in 𝑥. Then, we have

𝑢 (𝑥, 𝑦) ≤ 𝑧 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ [𝛼
∗
(𝑥
0
) − ℎ, 𝜉) × [𝑦

0
, 𝜂) ,

max
𝜉∈[𝑠−ℎ,𝑠]

𝑢 (𝜉, 𝑦) ≤ max
𝜉∈[𝑠−ℎ,𝑠]

𝑧 (𝜉, 𝑦) = 𝑧 (𝑠, 𝑦) ,

(𝑠, 𝑦) ∈ [𝛼
∗
(𝑥
0
) , 𝑥
1
) × [𝑦

0
, 𝑦
1
) .

(27)

From (25), (27), and (28) and the definition of 𝑧(𝑥, 𝑦) on Λ,
we get

𝑧 (𝑥, 𝑦) ≤ 𝛾
1
(𝑥, 𝑦) +

𝑚

∑

𝑖=1

∫

𝛼𝑖(𝑥)

𝛼𝑖(𝑥0)

∫

𝛽𝑖(𝑦)

𝛽𝑖(𝑦0)

𝑏
𝑖
(𝑠, 𝑡) ℎ

𝑖
(𝑢 (𝑠, 𝑡)) 𝑑𝑡 𝑑𝑠

+

𝑚+𝑛

∑

𝑗=𝑚+1

∫

𝛼𝑗(𝑥)

𝛼𝑗(𝑥0)

∫

𝛽𝑖(𝑦)

𝛽𝑖(𝑦0)

𝑏
𝑗
(𝑠, 𝑡) ℎ

𝑗
(𝑧 (𝑠, 𝑡)) 𝑑𝑡 𝑑𝑠.

(28)

Applying Theorem 1 of [7] to the case that 𝑓
𝑖
(𝑥, 𝑦, 𝑠, 𝑡) =

𝑏
𝑖
(𝑠, 𝑡), 𝑎(𝑥, 𝑦) = 𝛾

1
(𝑥, 𝑦), 𝑝 = 1, and 𝜔

𝑖
(𝑡) = ℎ

𝑖
(𝑡), 𝑖 =

1, 2, . . . , 𝑚 + 𝑛, we obtain (21) from (28). This completes the
proof.

Proof of Theorem 1. First of all, we monotonize some given
functions 𝑓

𝑖
, 𝜔
𝑖
, 𝑔, and 𝑎 in the system (8) of integral

inequalities. Let

𝑔̃ (𝑡) := max
𝜏∈[0,𝑡]

{𝑔 (𝜏)} , 𝑡 ≥ 0,

𝑎̃ (𝑥, 𝑦) := max
(𝜏,𝜉)∈[𝑥0 ,𝑥]×[𝑦0 ,𝑦]

{𝑎 (𝜏, 𝜉)} ,

(𝑥, 𝑦) ∈ [𝑥
0
, 𝑥
1
) × [𝑦

0
, 𝑦
1
) .

(29)

From (13), we see that the function 𝑊
𝑖
is strictly increasing,

and therefore its inverse𝑊−1
𝑖

is well defined, continuous, and
increasing in its domain. The sequence {𝜔̃

𝑖
(𝑡)}, defined by

𝜔
𝑖
(𝑠), consists of nondecreasing nonnegative functions onR

+

and satisfies

𝜔
𝑖
(𝑡) ≤ 𝜔̃

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑚,

𝜔
𝑖
(𝑡) ≤ 𝜔̂

𝑖
(𝑡) , 𝑖 = 𝑚 + 1, . . . , 𝑚 + 𝑛,

𝜔̂
𝑖
(𝑔̃ (𝑡)) ≤ 𝜔̃

𝑖
(𝑡) , 𝑖 = 𝑚 + 1, . . . , 𝑚 + 𝑛.

(30)

Moreover,

𝜔̃
𝑖
∝ 𝜔̃
𝑖+1
, 𝑖 = 1, 2, . . . , 𝑚 + 𝑛, (31)

because the ratios 𝜔̃
𝑖+1
/𝜔̃
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 + 𝑛, are all non-

decreasing. Furthermore, let

̃
𝑓
𝑖
(𝑥, 𝑦, 𝑠, 𝑡) := max

(𝜄,𝜉)∈[𝑥0,𝑥]×[𝑦0 ,𝑦]

𝑓
𝑖
(𝜄, 𝜉, 𝑠, 𝑡) , (32)

which is nondecreasing in 𝑥 and 𝑦 for each fixed 𝑡 and 𝑠 and
satisfies ̃𝑓

𝑖
(𝑥, 𝑦, 𝑠, 𝑡) ≥ 𝑓

𝑖
(𝑥, 𝑦, 𝑠, 𝑡) ≥ 0 for all 𝑖 = 1, 2, . . . , 𝑚+

𝑛. The monotonicity of 𝑔̃ implies that

max
𝜉∈[𝑠−ℎ,𝑠]

𝑔 (𝑢 (𝜉, 𝑦))≤ max
𝜉∈[𝑠−ℎ,𝑠]

𝑔̃ (𝑢 (𝜉, 𝑦))≤𝑔̃ ( max
𝜉∈[𝑠−ℎ,𝑠]

𝑢 (𝜉, 𝑦))

(33)

for (𝑠, 𝑦) ∈ [𝛼
∗
(𝑥
0
) − ℎ, 𝑥

1
) × [𝑦

0
, 𝑦
1
). From (8) and the

definition of ̃𝑓
𝑖
(𝑥, 𝑦, 𝑠, 𝑡), we obtain

𝜑 (𝑢 (𝑥, 𝑦)) ≤ 𝑎̃ (𝑥, 𝑦)

+

𝑛

∑

𝑖=1

∫

𝛼𝑖(𝑥)

𝛼𝑖(𝑥0)

∫

𝛽𝑖(𝑦)

𝛽𝑖(𝑦0)

̃
𝑓
𝑖
(𝑥, 𝑦, 𝑠, 𝑡)

× 𝜔
𝑖
(𝑢 (𝑠, 𝑡)) 𝑑𝑡𝑑𝑠

+

𝑛+𝑚

∑

𝑗=𝑛+1

∫

𝛼𝑗(𝑥)

𝛼𝑗(𝑥0)

∫

𝛽𝑗(𝑦)

𝛽𝑗(𝑦0)

̃
𝑓
𝑗
(𝑥, 𝑦, 𝑠, 𝑡)

× 𝜔
𝑗
( max
𝜉∈[𝑠−ℎ,𝑠]

𝑔 (𝑢 (𝜉, 𝑡))) 𝑑𝑡 𝑑𝑠, (𝑥, 𝑦) ∈ Λ,

𝑢 (𝑥, 𝑦) ≤ 𝜓 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ Ω.

(34)

Concerning (34), we consider the auxiliary systemof inequal-
ities

𝜑 (𝑢 (𝑥, 𝑦)) ≤ 𝑎̃ (𝑋, 𝑌)

+

𝑛

∑

𝑖=1

∫

𝛼𝑖(𝑥)

𝛼𝑖(𝑥0)

∫

𝛽𝑖(𝑦)

𝛽𝑖(𝑦0)

̃
𝑓
𝑖
(𝑋, 𝑌, 𝑠, 𝑡)

× 𝜔
𝑖
(𝑢 (𝑠, 𝑡)) 𝑑𝑡 𝑑𝑠

+

𝑚

∑

𝑗=1

∫

𝛼𝑗(𝑥)

𝛼𝑗(𝑥0)

∫

𝛽𝑖(𝑦)

𝛽𝑖(𝑦0)

̃
𝑓
𝑗
(𝑋, 𝑌, 𝑠, 𝑡)

× 𝜔
𝑗
( max
𝜉∈[𝑠−ℎ,𝑠]

𝑔 (𝑢 (𝜉, 𝑡))) 𝑑𝑡 𝑑𝑠,

(𝑥, 𝑦) ∈ [𝑥
0
, 𝑋) × [𝑦

0
, 𝑌) ,

𝑢 (𝑥, 𝑦) ≤ 𝜓 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ Ω,

(35)

where 𝑥
0
≤ 𝑋 ≤ 𝑋

1
and 𝑦

0
≤ 𝑌 ≤ 𝑌

1
are chosen arbitrarily,

and claim

𝑢 (𝑥, 𝑦) ≤ 𝜑
−1
(𝑊
−1

𝑚+𝑛
(Ω̃
𝑖
(𝑋, 𝑌, 𝑥, 𝑦))) , (36)

for all 𝑥
0
≤ 𝑥 ≤ min{𝑋,𝑋

2
}, 𝑦
0
≤ 𝑦 ≤ min{𝑌, 𝑌

2
}, where

Ω̃
𝑖
(𝑋, 𝑌, 𝑥, 𝑦) := 𝑊

𝑖
(𝑟̃
𝑖
(𝑋, 𝑌, 𝑥, 𝑦))

+ ∫

𝛼𝑖(𝑥)

𝛼𝑖(𝑥0)

∫

𝛽𝑖(𝑦)

𝛽𝑖(𝑦0)

̃
𝑓 (𝑋, 𝑌, 𝑠, 𝑡) 𝑑𝑡 𝑑𝑠,

(37)

𝑖 = 1, 2, . . . , 𝑚 + 𝑛, 𝑟̃
𝑖
(𝑋, 𝑌, 𝑥, 𝑦) is defined inductively by

𝑟̃
1
(𝑋, 𝑌, 𝑥, 𝑦) := 𝑎̃ (𝑋, 𝑌) ,

𝑟̃
𝑖+1

(𝑋, 𝑌, 𝑥, 𝑦) := 𝑊
−1

𝑖
(𝑊
𝑖
(Ω̃
𝑖
(𝑋, 𝑌, 𝑥, 𝑦))) ,

(38)
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for 𝑖 = 1, 2, . . . , 𝑚 + 𝑛 − 1, and𝑋
2
, 𝑌
2
are chosen such that

Ω̃
𝑖
(𝑋, 𝑌,𝑋

2
, 𝑌
2
) ≤ ∫

∞

𝑢𝑖

𝑑𝑠

𝜔̃
𝑖
(𝜑
−1
(𝑠))

, (39)

for 𝑖 = 1, 2, . . . , 𝑚 + 𝑛.
Notice that we may take 𝑋

2
= 𝑋
1
and 𝑌

2
= 𝑌
1
. In

fact, the monotonicity that 𝑟̃
𝑖
(𝑋, 𝑌, 𝑥, 𝑦) and ̃

𝑓
𝑖
(𝑋, 𝑌, 𝑥, 𝑦) are

both nondecreasing in 𝑋 and 𝑌 for fixed 𝑥, 𝑦. Furthermore,
it is easy to check that 𝑟̃

𝑖+1
(𝑋, 𝑌,𝑋, 𝑌) = 𝑟

𝑖
(𝑋, 𝑌), for 𝑖 =

1, 2, . . . , 𝑚+𝑛. If𝑋
2
,𝑌
2
are replaced with𝑋

1
,𝑌
1
, respectively,

on the left side of (39), we get from (15) that

Ω̃
𝑖
(𝑋, 𝑌,𝑋

1
, 𝑌
1
) = 𝑊

𝑖
(𝑟̃
𝑖
(𝑋, 𝑌,𝑋

1
, 𝑌
1
))

+ ∫

𝛼𝑖(𝑋1)

𝛼𝑖(𝑥0)

∫

𝛽𝑖(𝑌1)

𝛽𝑖(𝑦0)

̃
𝑓 (𝑋, 𝑌, 𝑠, 𝑡) 𝑑𝑡 𝑑𝑠

≤ 𝑊
𝑖
(𝑟̃
𝑖
(𝑋
1
, 𝑌
1
, 𝑋
1
, 𝑌
1
))

+ ∫

𝛼𝑖(𝑋1)

𝛼𝑖(𝑥0)

∫

𝛽𝑖(𝑌1)

𝛽𝑖(𝑦0)

̃
𝑓 (X
1
, 𝑌
1
, 𝑠, 𝑡) 𝑑𝑡 𝑑𝑠

= 𝑟
𝑖
(𝑋
1
, 𝑌
1
)

+ ∫

𝛼𝑖(𝑋1)

𝛼𝑖(𝑥0)

∫

𝛽𝑖(𝑌1)

𝛽𝑖(𝑦0)

̃
𝑓 (𝑋
1
, 𝑌
1
, 𝑠, 𝑡) 𝑑𝑡 𝑑𝑠

= Ω
𝑖
(𝑋
1
, 𝑌
1
)

≤ ∫

∞

𝑢𝑖

𝑑𝑠

𝜔̃
𝑖
(𝜑
−1
(𝑠))

.

(40)

Thus, it means that we can take𝑋
2
= 𝑋
1
, 𝑌
2
= 𝑌
1
.

Now, we prove (36) by induction. From (33), (35), and the
definitions of 𝑔̃(𝑡), 𝜔̃

𝑖
(𝑡), and 𝜔̂

𝑖
(𝑡), we obtain

𝜑 (𝑢 (𝑥, 𝑦))

≤ 𝑎̃ (𝑋, 𝑌)

+

𝑚

∑

𝑖=1

∫

𝛼𝑖(𝑥)

𝛼𝑖(𝑥0)

∫

𝑦

𝑦0

̃
𝑓
𝑖
(𝑋, 𝑌, 𝑠, 𝑡) 𝜔

𝑖
(𝑢 (𝑠, 𝑡))

+

𝑚+𝑛

∑

𝑗=𝑚+1

∫

𝛼𝑗(𝑥)

𝛼𝑗(𝑥0)

∫

𝑦

𝑦0

̃
𝑓
𝑗
(𝑋, 𝑌, 𝑠, 𝑡)

× 𝜔̂
𝑗
(𝑔̃ ( max
𝜉∈[𝑠−ℎ,𝑠]

𝑢 (𝜉, 𝑡))) 𝑑𝑡 𝑑𝑠

≤ 𝑎̃ (𝑋, 𝑌)

+

𝑚

∑

𝑖=1

∫

𝛼𝑖(𝑥)

𝛼𝑖(𝑥0)

∫

𝛽𝑖(𝑦)

𝛽𝑖(𝑦0)

̃
𝑓
𝑖
(𝑋, 𝑌, 𝑠, 𝑡) 𝜔̃

𝑖
(𝑢 (𝑠)) 𝑑𝑠

+

𝑚+𝑛

∑

𝑗=𝑚+1

∫

𝛼𝑗(𝑥)

𝛼𝑗(𝑥0)

∫

𝛽𝑗(𝑦)

𝛽𝑗(𝑦0)

̃
𝑓
𝑗
(𝑋, 𝑌, 𝑠, 𝑡)

× 𝜔̃
𝑗
( max
𝜉∈[𝑠−ℎ,𝑠]

𝑢 (𝜉)) 𝑑𝑡 𝑑𝑠,

(41)

for all (𝑥, 𝑦) ∈ [𝑥
0
, 𝑋) × [𝑦

0
, 𝑌), where 𝑥

0
≤ 𝑋 ≤ 𝑋

1
and 𝑦
0
≤

𝑌 ≤ 𝑌
1
are chosen arbitrarily. Sincemax

𝑠∈[𝛼∗(𝑥0)−ℎ,𝑥0]
𝜓(𝑠, 𝑦) ≤

𝜑
−1
(𝑎(𝑥
0
, 𝑦)) and 𝑎(𝑥

0
, 𝑦) ≤ 𝑎̃(𝑥

0
, 𝑦) ≤ 𝑎̃(𝑋, 𝑌), we have

max
𝑠∈[𝛼∗(𝑥0)−ℎ,𝑥0]

𝜓(𝑠, 𝑦) ≤ 𝜑
−1
(𝑎̃(𝑋, 𝑌)). Define a function

𝑧(𝑥, 𝑦) : [𝛼
∗
(𝑥
0
) − ℎ,𝑋) × [𝑦

0
, 𝑌) → R

+
by

𝑧 (𝑥, 𝑦)

=

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

𝑎̃ (𝑋, 𝑌) +

𝑚

∑

𝑖=1

∫

𝛼𝑖(𝑥)

𝛼𝑖(𝑥0)

∫

𝛽𝑖(𝑦)

𝛽𝑖(𝑦0)

̃
𝑓
𝑖
(𝑋, 𝑌, 𝑠, 𝑡) 𝜔̃

𝑖
(𝑢 (𝑠, 𝑡)) 𝑑𝑡 𝑑𝑠

+

𝑚+𝑛

∑

𝑗=𝑚+1

∫

𝛼𝑗(𝑥)

𝛼𝑗(𝑥0)

∫

𝛽𝑖(𝑦)

𝛽𝑖(𝑦0)

̃
𝑓
𝑗
(𝑠, 𝑡) 𝜔̃

𝑗
( max
𝜉∈[𝑠−ℎ,𝑠]

𝑢 (𝜉, 𝑡)) 𝑑𝑡 𝑑𝑠, (𝑥, 𝑦) ∈ [𝑥
0
, 𝑋) × [𝑦

0
, 𝑌) ,

𝑎̃ (𝑋, 𝑌) , (𝑥, 𝑦) ∈ [𝛼
∗
(𝑥
0
) − ℎ, 𝑥

0
] × [𝑦

0
, 𝑌) .

(42)

Clearly, 𝑧(𝑥, 𝑦) is nondecreasing in 𝑥. By (41) and the
definition of 𝑧(𝑥, 𝑦), we have

𝑢 (𝑥, 𝑦) ≤ 𝜑
−1
(𝑧 (𝑥, 𝑦)) ,

(𝑥, 𝑦) ∈ [𝛼
∗
(𝑥
0
) − ℎ,𝑋) × [𝑦

0
, 𝑌) .

(43)

Then noting that 𝑧(𝑥, 𝑦) is nondecreasing and 𝜑(𝑡) is strictly

increasing, from (43), we obtain

max
𝜉∈[𝑠−ℎ,𝑠]

𝑢 (𝜉, 𝑦) ≤ max
𝜉∈[𝑠−ℎ,𝑠]

𝜑
−1
(𝑧 (𝜉, 𝑦)) ≤ max

𝜉∈[𝑠−ℎ,s]
𝜑
−1
(𝑧 (𝑠, 𝑦))

≤ 𝜑
−1
( max
𝜉∈[𝑠−ℎ,𝑠]

𝑧 (𝜉, 𝑦)) ,

(𝑠, 𝑦) ∈ [𝛼
∗
(𝑥
0
) , 𝑋) × [𝑦

0
, 𝑌) .

(44)
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It follows from (43), (44), and the definition of 𝑧(𝑥, 𝑦) that

𝑧 (𝑥, 𝑦) ≤ 𝑎̃ (𝑋, 𝑌)

+

𝑚

∑

𝑖=1

∫

𝛼𝑖(𝑥)

𝛼𝑖(𝑥0)

∫

𝛽𝑖(𝑦)

𝛽𝑖(𝑦0)

̃
𝑓
𝑖
(𝑋, 𝑌, 𝑠, 𝑡)

× 𝜔̃
𝑖
(𝜑
−1
(𝑧 (𝑠, 𝑡))) 𝑑𝑡 𝑑𝑠

+

𝑚+𝑛

∑

𝑗=𝑚+1

∫

𝛼𝑗(𝑥)

𝛼𝑗(𝑥0)

∫

𝛽𝑖(𝑦)

𝛽𝑖(𝑦0)

̃
𝑓
𝑖
(𝑋, 𝑌, 𝑠, 𝑡)

× 𝜔̃
𝑗
(𝜑
−1
( max
𝜉∈[𝑠−ℎ,𝑠]

𝑧 (𝜉, 𝑡))) 𝑑𝑡𝑑𝑠,

(𝑥, 𝑦) ∈ [𝑥
0
, 𝑋) × [𝑦

0
, 𝑌] ,

𝑧 (𝑥, 𝑦) ≤ 𝑎̃ (𝑋, 𝑌) , (𝑥, 𝑦) ∈ [𝛼
∗
(𝑥
0
) − ℎ, 𝑥

0
] × [𝑦

0
, 𝑌] .

(45)

In order to demonstrate the basic condition of monotonicity,
let ℎ(𝑡) := 𝜑

−1
(𝑡), which is clearly a continuous and nonde-

creasing function on R
+
. Thus, each 𝜔̃

𝑖
(ℎ(𝑡)) is continuous

and nondecreasing on R
+
and satisfies 𝜔̃

𝑖
(ℎ(𝑡)) > 0 for

𝑡 > 0. Moreover, since 𝜔̃
𝑖
(𝑡) ∝ 𝜔̃

𝑖+1
(𝑡), 𝜔̃
𝑖+1
(ℎ(𝑡))/𝜔̃

𝑖
(ℎ(𝑡))

is also continuous and nondecreasing on R
+
and positive

on (0, +∞), implying that 𝜔̃
𝑖
(ℎ(𝑡)) ∝ 𝜔̃

𝑖+1
(ℎ(𝑡)), for 𝑖 =

1, 2, . . . , 𝑚 + 𝑛 − 1. By Lemma 2 and (45),

𝑧 (𝑥, 𝑦) ≤ 𝑊
−1

𝑚+𝑛
(𝑊(𝑟̃

𝑚+𝑛
(𝑋, 𝑌, 𝑥, 𝑦))

+∫

𝛼𝑚+𝑛(𝑥)

𝛼𝑚+𝑛(𝑥0)

∫

𝛽𝑚+𝑛(𝑦)

𝛽𝑚+𝑛(𝑦0)

̃
𝑓
𝑚+𝑛

(𝑋, 𝑌, 𝑠, 𝑡) 𝑑𝑡 𝑑𝑠) ,

(46)

for 𝑥
0
≤ 𝑥 < 𝑋

2
and 𝑦

0
≤ 𝑦 < 𝑌

2
. It follows from (43) and

(46) that

𝑢 (𝑥, 𝑦)

≤ 𝜑
−1
(𝑊
−1

𝑚+𝑛
(𝑊(𝑟̃

𝑚+𝑛
(𝑋, 𝑌, 𝑥, 𝑦))

+∫

𝛼𝑚+𝑛(𝑥)

𝛼𝑚+𝑛(𝑥0)

∫

𝛽𝑚+𝑛(𝑦)

𝛽𝑚+𝑛(𝑦0)

̃
𝑓
𝑚+𝑛

(𝑋, 𝑌, 𝑠, 𝑡) 𝑑𝑡 𝑑𝑠)) ,

(47)

for 𝑥
0
≤ 𝑥 < 𝑋

2
and 𝑦

0
≤ 𝑦 < 𝑌

2
. This proves the claimed

(36).

Taking 𝑥 = 𝑋, 𝑦 = 𝑌, 𝑋
2
= 𝑋
1
, and 𝑌

2
= 𝑌
1
in (36), we

have

𝑢 (𝑋, 𝑌)

≤ 𝜑
−1
(𝑊
−1

𝑚+𝑛
(𝑊
𝑚+𝑛

(𝑟̃
𝑚+𝑛

(𝑋, 𝑌,𝑋, 𝑌))

+∫

𝛼𝑚+𝑛(𝑋)

𝛼𝑚+𝑛(𝑥0)

∫

𝛽𝑚+𝑛(𝑌)

𝛽𝑚+𝑛(𝑦0)

̃
𝑓
𝑚+𝑛

(𝑋, 𝑌, 𝑠, 𝑡) 𝑑𝑡 𝑑𝑠)) ,

(48)

for all 𝑥
0
≤ 𝑋 < 𝑋

1
, 𝑦
0
≤ 𝑌 < 𝑌

1
. It is easy to verify

𝑟̃
𝑚+𝑛

(𝑋, 𝑌,𝑋, 𝑌) = 𝑟
𝑚+𝑛

(𝑋, 𝑌). Thus, (48) can be written

𝑢 (𝑋, 𝑌)

≤ 𝜑
−1
(𝑊
−1

𝑚+𝑛
(𝑊
𝑚+𝑛

(𝑟
𝑚+𝑛

(𝑋, 𝑌))

+∫

𝛼𝑚+𝑛(𝑋)

𝛼𝑚+𝑛(𝑥0)

∫

𝛽𝑚+𝑛(𝑌)

𝛽𝑚+𝑛(𝑦0)

̃
𝑓
𝑚+𝑛

(𝑋, 𝑌, 𝑠, 𝑡) 𝑑𝑡 𝑑𝑠)) .

(49)

Since 𝑋,𝑌 are arbitrary, replacing 𝑋 and 𝑌 with 𝑥 and 𝑦,
respectively, we get

𝑢 (𝑥, 𝑦)

≤ 𝜑
−1
(𝑊
−1

𝑚+𝑛
(𝑊
𝑚+𝑛

(𝑟
𝑚+𝑛

(𝑥, 𝑦))

+∫

𝛼𝑚+𝑛(𝑥)

𝛼𝑚+𝑛(𝑥0)

∫

𝛽𝑚+𝑛(𝑦)

𝛽𝑚+𝑛(𝑦0)

̃
𝑓
𝑚+𝑛

(𝑥, 𝑦, 𝑠, 𝑡) 𝑑𝑡 𝑑𝑠)) ,

(50)

for all (𝑥, 𝑦) ∈ [𝑥
0
, 𝑋
1
) × [𝑦

0
, 𝑌
1
). This completes the proof.

3. Applications

In this section, we apply our result to prove the boundedness
of solutions for a differential equation with the maxima.

Consider a system of partial differential equations with
maxima

𝜕
2
𝑧 (𝑥, 𝑦)

𝜕𝑥𝜕𝑦

= 𝐹(𝑥, 𝑦, 𝑧 (𝑥, 𝑦) , max
𝑠∈[𝛼(𝑥),𝛽(𝑥)]

𝜔 (𝑧 (𝑠, 𝑦))) ,

(𝑥, 𝑦) ∈ [𝑥
0
, 𝑥
1
) × [𝑦

0
, 𝑦
1
)

𝑧 (𝑥, 𝑦) = 𝜓 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ [𝛽 (𝑥
0
) − ℎ, 𝑥

0
] × [𝑦

0
, 𝑦
1
) ,

𝑧 (𝑥, 𝑦
0
) = 𝑓 (𝑥) , 𝑧 (𝑥

0
, 𝑦) = 𝑔 (𝑦) , 𝑥 ≥ 𝑥

0
, 𝑦 ≥ 𝑦

0
,

(51)

where 𝐹 ∈ 𝐶([𝑥
0
, 𝑥
1
) × [𝑦

0
, 𝑦
1
) × R2,R), 𝜔 ∈ 𝐶([0,∞),R

+
),

𝛼, 𝛽 ∈ 𝐶
1
([𝑥
0
, 𝑥
1
),R
+
) are nondecreasing such that 𝛼(𝑥) ≤ 𝑥,
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𝛽(𝑥) ≤ 𝑥, and 0 < 𝛽(𝑥) − 𝛼(𝑥) ≤ ℎ (ℎ is a positive constant)
for 𝑥 ∈ [𝑥

0
, 𝑥
1
], 𝜓 ∈ 𝐶([𝛽(𝑥

0
) − ℎ, 𝑥

0
] × [𝑦

0
, 𝑦
1
), and 𝑓 ∈

𝐶([𝑥
0
, 𝑥
1
),R), 𝑔 ∈ 𝐶([𝑦

0
, 𝑦
1
),R) satisfy that 𝑓(𝑥

0
) = 𝑔(𝑦

0
)

and 𝑔(𝑦) = 𝜓(𝑥
0
, 𝑦), for all 𝑦 ∈ [𝑦

0
, 𝑦
1
).

Equation (51) is more general than the equation con-
sidered in Section 2.4 of [23]. The following result gives an
estimate for its solutions.

Corollary 3. Suppose that functions 𝐹 and 𝜓 in (51) satisfy

󵄨
󵄨
󵄨
󵄨
𝐹 (𝑥, 𝑦, 𝑠, 𝑡)

󵄨
󵄨
󵄨
󵄨
≤ ℎ
1
(𝑥, 𝑦) 𝜇

1
(|𝑠|) + ℎ

2
(𝑥, 𝑦) 𝜇

2
(|𝑡|) ,

󵄨
󵄨
󵄨
󵄨
𝜓 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑦)

󵄨
󵄨
󵄨
󵄨
, ∀ (𝑥, 𝑦) ∈ [𝛽 (𝑥

0
) − ℎ, 𝑥

0
] × [𝑦

0
, 𝑦
1
) ,

(52)

where ℎ
𝑖
∈ 𝐶([𝑥

0
, 𝑥
1
) × [𝑦

0
, 𝑦
1
),R
+
) and 𝜇

𝑖
∈ 𝐶(R

+
, (0,∞)),

𝑖 = 1, 2. Then, any solution 𝑧(𝑥, 𝑦) of (51) has the estimate

󵄨
󵄨
󵄨
󵄨
𝑧 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
≤ 𝑄
−1

2
(𝑄
2
(𝛾 (𝑥, 𝑦)) + ∫

𝑥

𝑥0

∫

𝑦

𝑦0

ℎ
2
(𝑠, 𝑡) 𝑑𝑡 𝑑𝑠) ,

(53)

for all (𝑥, 𝑦) ∈ [𝑥
0
, 𝑋
1
) × [𝑦

0
, 𝑌
1
), where

𝛾 (𝑥, 𝑦) := 𝑄
−1

1
(𝑄
1
(𝛾
1
(𝑥, 𝑦)) + ∫

𝑥

𝑥0

∫

𝑦

𝑦0

ℎ
1
(𝑠, 𝑡) 𝑑𝑡 𝑑𝑠) ,

𝛾
1
(𝑥, 𝑦) := max

(𝜉,𝜂)∈[𝑥0,𝑥]×[𝑦0 ,𝑦]

(
󵄨
󵄨
󵄨
󵄨
𝑓 (𝜉) + 𝑔 (𝜂) − 𝑓 (𝑥

0
)
󵄨
󵄨
󵄨
󵄨
) ,

𝑄
2
(𝑢) :=

∫

𝑢

𝑢2

𝑑𝑠

{max
𝜏∈[0,𝑠]

{̃𝜇
2
(𝜔̃(𝜏))/max

𝜏1∈[0,𝜏]
{𝜇
1
(𝜏
1
)}}max

𝜏∈[0,𝑠]
{𝜇
1
(𝜏)}}

,

𝑄
1
(𝑢) := ∫

𝑢

𝑢1

𝑑𝑠

max
𝜏∈[0,𝑠]

{𝜇
1
(𝜏)}

,

𝜔̃ (𝑡) := max
𝑠∈[0,𝑡]

{𝜔 (𝑠)} , 𝜇̃
2
(𝑡) := max

𝑠∈[0,𝑡]

{𝜇
2
(𝑠)} , and

(54)

𝑋
1
, 𝑌
1
are given as in Theorem 1, and constants 𝑢

1
> 0, 𝑢

2
> 0

are given arbitrarily.

Proof. From (51), we obtain

𝑧 (𝑥, 𝑦)

= 𝑓 (𝑥) + 𝑔 (𝑦) − 𝑓 (𝑥
0
)

+ ∫

𝑥

𝑥0

∫

𝑦

𝑦0

𝐹(𝑠, 𝑡, 𝑧 (𝑠, 𝑡) , max
𝜉∈[𝛼(𝑠),𝛽(𝑠)]

𝜔 (𝑧 (𝜉, 𝑡))) 𝑑𝑡 𝑑𝑠,

(𝑥, 𝑦) ∈ Λ,

𝑧 (𝑥, 𝑦) = 𝜓 (𝑥, 𝑦) ,

(𝑥, 𝑦) ∈ (𝑥, 𝑦) ∈ [𝛽 (𝑥
0
) − ℎ, 𝑥

0
] × [𝑦

0
, 𝑦
1
) .

(55)

From (52) and (55), we get
󵄨
󵄨
󵄨
󵄨
𝑧 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥) + 𝑔 (𝑦) − 𝑓 (𝑥

0
)
󵄨
󵄨
󵄨
󵄨

+ ∫

𝑥

𝑥0

∫

𝑦

𝑦0

ℎ
1
(𝑠, 𝑡) 𝜇

1
(|𝑧 (𝑠, 𝑡)|) 𝑑𝑡 𝑑𝑠

+ ∫

𝑥

𝑥0

∫

𝑦

𝑦0

𝜇
2
(

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

max
𝜉∈[𝛼(𝑠),𝛽(𝑠)]

𝜔 (𝑧 (𝜉, 𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

) 𝑑𝑡 𝑑𝑠

≤
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥) + 𝑔 (𝑦) − 𝑓 (𝑥

0
)
󵄨
󵄨
󵄨
󵄨

+ ∫

𝑥

𝑥0

∫

𝑦

𝑦0

ℎ
1
(𝑠, 𝑡) 𝜇

1
(|𝑧 (𝑠, 𝑡)|) 𝑑𝑡𝑑𝑠

+∫

𝑥

𝑥0

∫

𝑦

𝑦0

ℎ
2
(𝑠, 𝑡) 𝜇̃

2
( max
𝜉∈[𝛼(𝑠),𝛽(𝑠)]

𝜔̃ (
󵄨
󵄨
󵄨
󵄨
𝑧 (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨
) 𝑑𝑡𝑑𝑠,

(𝑥, 𝑦) ∈ Λ,

󵄨
󵄨
󵄨
󵄨
𝑧 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝜓 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
,

(𝑥, 𝑦) ∈ [𝛽 (𝑥
0
) − ℎ, 𝑥

0
] × [𝑦

0
, 𝑦
1
) .

(56)

Set V(𝑥, 𝑦) = |𝑧(𝑥, 𝑦)| for (𝑥, 𝑦) ∈ [𝛽(𝑥
0
) − ℎ, 𝑥

1
) × [𝑦

0
, 𝑦
1
).

Noting that max
𝜉∈[𝛼(𝑠),𝛽(𝑠)]

𝑧(𝜉, 𝑦) ≤ max
𝜉∈[𝛽(𝑠)−ℎ,𝛽(𝑠)]

𝑧(𝜉, 𝑦),
from (56), we get

V (𝑥, 𝑦) ≤ 𝛾
1
(𝑥, 𝑦) + ∫

𝑥

𝑥0

∫

𝑦

𝑦0

ℎ
1
(𝑠, 𝑡) 𝜇

1
(V (𝑠, 𝑡)) 𝑑𝑡 𝑑𝑠

+ ∫

𝛽(𝑥)

𝛽(𝑥0)

∫

𝑦

𝑦0

ℎ
2
(𝛽
−1
(𝜂) , 𝑡) (𝛽

−1
(𝜂))

󸀠

𝜇̃
2

× ( max
𝜉∈[𝜂−ℎ,𝜂]

𝜔̃ (V (𝜉, 𝑡)) 𝑑𝑡 𝑑𝜂

V (𝑥, 𝑦) ≤
󵄨
󵄨
󵄨
󵄨
𝜓 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
, (𝑥, 𝑦) ∈ [𝛽 (𝑥

0
) − ℎ, 𝑥

0
] × [𝑦

0
, 𝑦
1
) .

(57)

Applying Theorem 1 to specified 𝑚 = 𝑛 = 1, 𝜑(𝑢) = 𝑢,
𝑓
1
(𝑥, 𝑦, 𝑠, 𝑡) = ℎ

1
(𝑠, 𝑡), 𝛼

1
(𝑡) = 𝑡, and 𝛼

2
(𝑡) = 𝛽(𝑡), 𝛽

𝑖
(𝑡) =

𝑡, 𝑖 = 1, 2, 𝑓
2
(𝑠, 𝑡) = ℎ

2
(𝛽
−1
(𝑠), 𝑡)(𝛽

−1
(𝑠))

󸀠, and 𝜔
𝑖
(𝑢) =

𝜇
𝑖
(𝑢), 𝑖 = 1, 2, we obtain (53) from (57).

Next, we discuss the uniqueness of solutions for system
(51).

Corollary 4. Suppose that 𝑔(𝑠) = 𝑠 and

󵄨
󵄨
󵄨
󵄨
𝐹 (𝑥, 𝑦, 𝑠

1
, 𝑡
1
) − 𝐹 (𝑥, 𝑦, 𝑠

2
, 𝑡
2
)
󵄨
󵄨
󵄨
󵄨

≤ ℎ
1
(𝑥, 𝑦) 𝜇

1
(
󵄨
󵄨
󵄨
󵄨
𝑥
1
− 𝑥
2

󵄨
󵄨
󵄨
󵄨
) + ℎ
2
(𝑥, 𝑦) 𝜇

2
(
󵄨
󵄨
󵄨
󵄨
𝑦
1
− 𝑦
2

󵄨
󵄨
󵄨
󵄨
) ,

(58)

for all (𝑥, 𝑦) ∈ [𝑥
0
, 𝑥
1
] × [𝑦

0
, 𝑦
1
] and all 𝑥

𝑖
, 𝑦
𝑖
∈ R (𝑖 = 1, 2),

where ℎ
𝑖
∈ 𝐶([𝑥

0
, 𝑥
1
] × [𝑦

0
, 𝑦
1
],R
+
) and 𝜇

𝑖
∈ 𝐶([R,R

+
) are
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both nondecreasing such that 𝜇
𝑖
(0) = 0, 𝜇

𝑖
(𝑢) > 0 for 𝑢 > 0,

𝜇
2
/𝜇
1
is also nondecreasing, and ∫

1

0
𝑑𝑠/𝜇
𝑖
(𝑠) = +∞, 𝑖 = 1, 2.

Then, system (51) has atmost one solution on [𝑥
0
, 𝑥
1
)×[𝑦
0
, 𝑦
1
).

Proof. 𝑔(𝑠) = 𝑠. From (51), we get

𝜕
2
𝑧 (𝑥, 𝑦)

𝜕𝑥 𝜕𝑦

= 𝐹(𝑥, 𝑦, 𝑧 (𝑥, 𝑦) , max
𝑠∈[𝛼(𝑥),𝛽(𝑥)]

𝑧 (𝑠, 𝑦)) ,

(𝑥, 𝑦) ∈ [𝑥
0
, 𝑥
1
) × [𝑦

0
, 𝑦
1
) ,

𝑧 (𝑥, 𝑦) = 𝜓 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ [𝛼 (𝑥
0
) − ℎ, 𝑥

0
] × [𝑦

0
, 𝑦
1
] ,

𝑧 (𝑥, 𝑦
0
) = 𝑓 (𝑥) , 𝑧 (𝑥

0
, 𝑦) = 𝑔 (𝑦) , 𝑥 ≥ 𝑥

0
, 𝑦 ≥ 𝑦

0
.

(59)

Assume that (59) has two different solutions 𝑢(𝑥, 𝑦) and
V(𝑥, 𝑦). From the equivalent integral equation system (55), we
have

󵄨
󵄨
󵄨
󵄨
𝑢 (𝑥, 𝑦) − V (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑥

𝑥0

∫

𝑦

𝑦0

ℎ
1
(𝑠, 𝑡) 𝜇

1
(|𝑢 (𝑠, 𝑡) − V (𝑠, 𝑡)|) 𝑑𝑡 𝑑𝑠

+ ∫

𝑥

𝑥0

∫

𝑦

𝑦0

ℎ
2
(𝑠, 𝑡) 𝜇

2
(

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

max
𝜉∈[𝛼(𝑠),𝛽(𝑠)]

𝑢 (𝜉, 𝑡)

− max
𝜉∈[𝛼(𝑠),𝛽(𝑠)]

V (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

) 𝑑𝑡 𝑑𝑠

≤ ∫

𝑥

𝑥0

∫

𝑦

𝑦0

ℎ
1
(𝑠, 𝑡) 𝜇

1
(|𝑢 (𝑠) − V (𝑠)|) 𝑑𝑡 𝑑𝑠

+ ∫

𝑥

𝑥0

∫

𝑦

𝑦0

ℎ
2
(𝑠, 𝑡) 𝜇

2

× ( max
𝜉∈[𝛼(𝑠),𝛽(𝑠)]

󵄨
󵄨
󵄨
󵄨
𝑢 (𝜉, 𝑡) − V (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨
) 𝑑𝑠,

(60)

for all (𝑥, 𝑦) ∈ [𝑥
0
, 𝑥
1
] × [𝑦

0
, 𝑦
1
]. The continuity of the

function 𝑢(𝑥, 𝑦) implies that for any fixed points 𝑠 ∈ [𝑥
0
, 𝑥]

and 𝑡 ∈ [𝑦
0
, 𝑦] there exists a point 𝜂 ∈ [𝛼(𝑠), 𝛽(𝑠)] such

that the inequality max
𝜉∈[𝛼(𝑠),𝛽(𝑠)]

𝑢(𝜉, 𝑡) = 𝑢(𝜂, 𝑡) holds, and
therefore

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

max
𝜉∈[𝛼(𝑠),𝛽(𝑠)]

𝑢 (𝜉, 𝑡) − max
𝜉∈[𝛼(𝑠),𝛽(𝑠)]

V (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑢 (𝜂, 𝑡) − max
𝜉∈[𝛼(𝑠),𝛽(𝑠)]

V (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝑢 (𝜂, 𝑡) − V (𝜂, 𝑡)

󵄨
󵄨
󵄨
󵄨
≤ max
𝜉∈[𝛼(𝑠),𝛽(𝑠)]

󵄨
󵄨
󵄨
󵄨
𝑢 (𝜉, 𝑡) − V (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨
.

(61)

Hence,
󵄨
󵄨
󵄨
󵄨
𝑢 (𝑥, 𝑦) − V (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑥

𝑥0

∫

𝑦

𝑦0

ℎ
1
(𝑠, 𝑡) 𝜇

1
(
󵄨
󵄨
󵄨
󵄨
𝑢 (𝑠, 𝑦) − V (𝑠, 𝑦)

󵄨
󵄨
󵄨
󵄨
) 𝑑𝑡 𝑑𝑠

+ ∫

𝑥

𝑥0

∫

𝑦

𝑦0

ℎ
2
(𝑠, 𝑡) 𝜇

2
( max
𝜉∈[𝛼(𝑠),𝛽(𝑠)]

󵄨
󵄨
󵄨
󵄨
𝑢 (𝜉, 𝑡) − V (𝜉, 𝑡)

󵄨
󵄨
󵄨
󵄨
) 𝑑𝑠.

(62)

Let
𝜙 (𝑥, 𝑦) :=

󵄨
󵄨
󵄨
󵄨
𝑢 (𝑥, 𝑦) − V (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
,

(𝑥, 𝑦) ∈ [𝛽 (𝑥
0
) − ℎ, 𝑥

1
] × [𝑦

0
, 𝑦
1
] .

(63)

Because max
𝜉∈[𝛼(𝑠),𝛽(𝑠)]

𝑢(𝜉, 𝑦) ≤ max
𝜉∈[𝛽(𝑠)−ℎ,𝛽(𝑠)]

𝑢(𝜉, 𝑦), from
(62), we obtain

𝜙 (𝑥, 𝑦) ≤ ∫

𝑥

𝑥0

∫

𝑦

𝑦0

ℎ
1
(𝑠, 𝑡) 𝜇

1
(𝜙 (𝑠, 𝑡)) 𝑑𝑡 𝑑𝑠

+ ∫

𝛽(𝑥)

𝛽(𝑥0)

∫

𝑦

𝑦0

ℎ
2
(𝛽
−1
(𝜂) , 𝑡) (𝛽

−1
(𝜂))

󸀠

× 𝜇
2
( max
𝜉∈[𝜂−ℎ,𝜂]

𝜙 (𝜉, 𝑡)) 𝑑𝑡 𝑑𝜂,

(𝑥, 𝑦) ∈ [𝑥
0
, 𝑥
1
) × [𝑦

0
, 𝑦
1
) ,

𝜙 (𝑥, 𝑦) ≤ 0, (𝑥, 𝑦) ∈ [𝛽 (𝑥
0
) − ℎ, 𝑥

0
] × [𝑦

0
, 𝑦
1
) .

(64)

Applying Theorem 1 to specified 𝑚 = 𝑛 = 1, 𝜑(𝑢) = 𝑢,
𝑓
1
(𝑠, 𝑡) = ℎ

1
(𝑠, 𝑡), 𝛼

1
(𝑡) = 𝑡, 𝛼

2
(𝑡) = 𝛽(𝑡), 𝑓

2
(𝑠, 𝑡) =

ℎ
2
(𝛽
−1
(𝑡), 𝑠)(𝛽

−1
(𝑡))

󸀠, 𝑔(𝑡) = 𝑡, 𝑎(𝑥, 𝑦) = 0, and 𝜔
𝑖
(𝑡) =

𝜇i(𝑡), 𝑖 = 1, 2, from (64), we obtain

𝜙 (𝑥, 𝑦) ≤ 𝑄̂

−1

2
(𝑄̂
2
(𝛾
2
(𝑠, 𝑡)) + ∫

𝑥

𝑥0

∫

𝑦

𝑦0

ℎ
2
(𝑠, 𝑡) 𝑑𝑡 𝑑𝑠) ,

(65)

for all (𝑥, 𝑦) ∈ [𝑥
0
, 𝑋
1
] × [𝑦

0
, 𝑌
1
], where

𝑄̂
1
(𝑢) := ∫

𝑢

1

𝑑𝑠

𝜇
1
(𝑠)

, 𝑄̂
2
(𝑢) := ∫

𝑢

1

𝑑𝑠

𝜇
2
(𝜏)

, (66)

𝑟
1
(𝑥, 𝑦) := 0, (67)

𝑟
2
(𝑥, 𝑦) := 𝑄̂

−1

1
(𝑄̂
1
(𝑟
1
(𝑥, 𝑦)) + ∫

𝑥

𝑥0

∫

𝑦

𝑦0

ℎ
1
(𝑠, 𝑡) 𝑑𝑡 𝑑𝑠) .

(68)

By the definition of 𝑄̂
𝑖
and properties of 𝜇

𝑖
, noting that

∫

1

0
𝑑𝑠/𝜇
𝑖
(𝑠) = +∞ (𝑖 = 1, 2), we obtain

lim
𝑢→0

+

𝑄̂
𝑖
(𝑢) = −∞, lim

𝑢→−∞

𝑄̂

−1

𝑖
(𝑢) = 0, 𝑖 = 1, 2. (69)

Since ∫𝑥
𝑥0

∫

𝑦

𝑦0

ℎ
1
(𝑠, 𝑡)𝑑𝑡𝑑𝑠 is finite on a finite interval, [𝑥

0
, 𝑥
1
]

and [𝑦
0
, 𝑦
1
], by (67), we obtain

𝑄̂
1
(𝑟
1
(𝑥, 𝑦)) + ∫

𝑥

𝑥0

∫

𝑦

𝑦0

ℎ
1
(𝑠, 𝑡) 𝑑𝑡 𝑑𝑠 = −∞. (70)
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Thus, we obtain 𝛾
2
(𝑥, 𝑦) = 0 from (68), (69), and (70)

immediately. Similarly, noting that ∫𝑥
𝑥0

∫

𝑦

𝑦0

ℎ
2
(𝑠, 𝑡)𝑑𝑡𝑑𝑠 is finite

on finite interval, [𝑥
0
, 𝑥
1
] and [𝑦

0
, 𝑦
1
], from (69), we obtain

𝑄̂
2
(𝑟
2
(𝑥, 𝑦)) + ∫

𝑥

𝑥0

∫

𝑦

𝑦0

ℎ
2
(𝑠, 𝑡) 𝑑𝑡 𝑑𝑠 = −∞. (71)

Thus, we conclude from (65), (69), and (71) that |𝑢(𝑥, 𝑦) −
V(𝑥, 𝑦)| ≤ 0, which implies that 𝑢(𝑥, 𝑦) = V(𝑥, 𝑦), for all
(𝑥, 𝑦) ∈ [𝑥

0
, 𝑋
1
) × [𝑦

0
, 𝑌
1
), where 𝑋

1
, 𝑌
1
are given as in

Theorem 1. The uniqueness is proved.
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