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Simulations of interface evolution and stress distribution near weld line in the viscoelastic melt mold filling process are achieved
according to the viscoelastic-Newtonian two-phase model. The finite volume methods on nonstaggered grids are used to solve the
model. The level set method is used to capture the melt interface. The interface evolution of the viscoelastic melt in the mold filling
process with an insert in is captured accurately and compared with the result obtained in the experiment. Numerical results show
that the stress distribution is anisotropic near the weld line district and the stress distribution varies greatly at different positions of
the weld line district due to the complicated flow behavior after the two streams of melt meet. The stress increases quickly near the
weld line district and then decreases gradually until reaching the tail of the mold cavity. The maximum value of the stress appears
at some point after the insert.

1. Introduction

The plastic mold filling process produces large numbers of
parts of high quality. Plasticmaterial in the formof granules is
melted until it is soft enough to be injected under pressure to
fill a mold. Early simulations of mold filling process mostly
used the Hele-Shaw model coupled with the finite element
method, which is based on the creeping flow lubrication
model [1–4]. With the development of computer hardware,
3D simulations of mold filling process have been realized
by using Navier-Stokes equations and different numerical
methods [5–10]. The papers mentioned above studied the
mold filling process without the consideration of the inter-
face motion. The development of the interface capturing
or tracking techniques, such as volume of fluid method
(VOF) and the level set method has propelled greatly the
development of mold filling simulation techniques. Many
papers studying mold filling process coupled with interface
tracking techniques can be found [11–20]. In these papers, the
viscoelastic properties of materials were ignored. However,
themelt formold filling process is often viscoelasticmaterials.
Some papers made a study on mold filling problems with
viscoelastic free surfaces [21, 22]. However, these papers

studied the problem with only viscoelastic fluid phase con-
sidered and the gas phase in the cavity ignored, in which case
complex boundary conditions must be properly dealt with.
Yang et al. [23] proposed a model for mold filling process in
which the governing equations for the viscoelastic fluid (melt
phase) and the Newtonian fluid (gas phase) are successfully
united into a system of generalized Navier-Stokes equations,
avoiding dealing with complex boundary conditions.

The viscoelastic behaviour in mold filling process has
been tested in [23], in which the die swelling phenomenon
and the influences of elasticity and viscosity on velocity,
stresses, pressure, stretch, and the first normal-stress dif-
ference have been discussed in detail. However, it is well
known that weld line is unavoidable in most products of even
moderate complexity by mold filling process and influences
weightily the quality of the products and the stress distribu-
tion near the weld line influences the mechanical property
of the products greatly. This paper uses the viscoelastic-
Newtonian two-phase flow model established in [23] and
finite volume method on nonstaggered grids to study the
mold filling process with an insert in the cavity and analyze
the stress distribution near the weld line. The comparison
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Figure 1: Sketch map of the mold with an insert in.
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Figure 2: Computational domain of the mold.

between the numerical results and those obtained from
experiments shows the correctness of the model and the
numerical methods.

2. Mathematical Model (see [23])

2.1. Interface Capturing Equations. Weuse the corrected level
set method proposed by Sussman et al. [27] to capture the
interface. The level set and its reinitialization equations are
described as follows:

𝜕𝜑

𝜕𝑡
+ u ⋅ ∇𝜑 = 0 (1)
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where 𝜑 is the interface, u = (𝑢, V) is the velocity vector of the
melt, 𝑡 is the time, 𝜔 is the weight coefficient, 𝑡

𝑟
is a pseudo

time, and sign(𝜑
0
) is the sign function of 𝜑 which is defined

as
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Here, Δ𝑥 and Δ𝑦 are the grid widths along 𝑥 and 𝑦

direction, respectively, and [min(Δ𝑥, Δ𝑦)]2 is used to avoid
denominator’s dividing by zero. 𝛿
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(4)

Here, 𝜀 is a small positive number about a grid width. See
Sussman et al. [27] for more details.

2.2. Governing Equations for Flow Field. Thegoverning equa-
tions for the flow field with the consideration of fibers are
given as follows.
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where the Reynolds number Re = 𝜌
𝑙
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, 𝛽

is the ratio of the Newtonian viscosity and the total viscosity.
Since isothermalmold filling process is considered here,𝛽 is a
constant. The subscripts 𝑙 and 𝑔 denote the liquid phase and
the gas phase, respectively, and 𝐿 and 𝑈 are parameters for
nondimensionalization.

Constitutive

𝜛
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𝜓
. (8)

Here, the extended Pom-Pom (XPP) constitutive equation
developed by Verbeeten et al. [28] is used as the constitutive
relationship.The constants and functions in (8) are defined in
Table 1 [24, 25], where 𝑓(𝜆, 𝜏) = 2𝜆

0𝑏
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0𝑠
𝑒
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, ] = 2/𝑞, and the

Weissenberg number is defined as We = 𝜆
0𝑏
𝑈/𝐿. Here 𝜆 is

the backbone stretch used to represent the stretched degree
of the polymer molecule, 𝜆

0𝑏
and 𝜆

0𝑠
denote the orientation

and backbone stretch relaxation time scales of the polymer
chains, respectively, 𝐺

0
is the linear relaxation modulus, 𝛼 is

an adjustable parameter, which controls the anisotropic drag,
I is the identity tensor, 𝑞 is the number of arms of polymer
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Figure 3: Continued.
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Figure 3: Melt positions at different time in the mold filling process.

chains and d is the strain tensor. Some hints on choosing
meaningful values of the parameters in XPP model can be
found in [25]; in this paper, we take 𝛽 = 1.0/9.0, 𝛼 = 0.15,
𝑞 = 2.0, 𝜀 = 1.0/3.0.

2.3. Boundary Conditions. Proper boundary conditionsmust
be posed on the solid walls of the cavity. In this paper, no-
slip boundary conditions are used for the velocities, that is,
𝑢 = V = 0. As for the pressure boundary conditions, for the air
in the cavity, we use no-slip boundary conditions, that is, 𝑝 =

0, while for the melt in the cavity, no-penetration boundary
conditions are used, that is, 𝜕𝑝/𝜕n = 0.

3. Numerical Methods

Level set evolution equation (1) and the reinitialization
equation (2) are solved by the finite difference method on
a rectangular grid. The spatial derivatives are discretized by
the 5th-order weighted essentially non-oscillatory (WENO)
scheme [29, 30] and the temporal derivatives are discretized
by the 3rd-order total variation diminishing Runge-Kutta
(TVD-R-K) scheme [31].

The finite volume SIMPLE methods on a nonstaggered
grid are used to solve the governing equations (5)–(8).

The validity of the methods has been verified in [23].

4. Numerical Results and Analysis

4.1. Mold Filling Process. Figure 1 shows the sketch map of
the mold with an insert in. Figure 2 gives the top view of the
mold, which also represents the computational area. In this
paper, we take 𝑥 = 16.2, 𝑦 = 11.6, 𝑎 = 3.3, 𝑏 = 3.4, 𝑐 = 4.9,
𝑑 = 1.8, which are the same as those in [26]. The inlet lies in
the middle of the left wall of the computational area.The grid
number is 200 × 120.

Figure 3 gives the melt interface positions at different
times in mold filling process.

From Figure 3 we can see that the melt is divided into two
streams when it reaches the insert. The two streams move

forward until they pass the insert; then they begin to move
toward each other until they meet at some point behind the
insert, from where the weld line begins to form, and a hole
appears between the insert and the meet point of the two
streams of melt. After meeting, the melt moves toward two
opposite directions. One direction is moving forward and the
other direction is moving backward to fill in the hole formed
between the insert and the meeting point. The hole is finally
filled with melt and two streams of melt reunion into one
stream and move forward. Figure 4 gives the comparison
between the interface evolution after the insert and that
obtained in te experiment [26].Thewell agreement shows the
validity of our model and method.

4.2. Distribution of the Stress Birefringence. In order to get the
stress distribution and make a comparison with the experi-
mental results given by the stress birefringence distribution,
we use the formula in [32] to compute the numerical stress
birefringence, which is given as follows:

Δ𝑛 = 𝐶[(𝜏
𝑥𝑥
− 𝜏
𝑦𝑦
)
2

+ 4𝜏
2

𝑥𝑦
]
1/2

. (9)

Here, Δ𝑛 is the stress birefringence. 𝐶 is the stress-optical
coefficient, which is a constant for linear stress-optical prin-
ciple, and we take 𝐶 = 1.

Figure 5 shows the distribution of the stress birefrin-
gence at 𝑡 = 1.05 in the simulation. We can see that
the stress birefringence distribution is anisotropic near the
weld line district and varies greatly at different positions
of the weld line district. This phenomenon is induced by
the complicated flow behavior after the two streams of melt
meet. Since the melt moves toward two opposite directions,
the stress birefringence distribution decreases progressively
along the two opposite directions. The stress distribution
birefringence obtained in experiment after the product is
completely produced is given in Figure 6 [26], Since only the
mold filling process is considered in the simulation, while
the birefringence is obtained after the cooling stage, some
difference exists between the numerical and experimental
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Figure 4: Comparison between the interface evolution after the insert and that obtained in experiment.
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Table 1: Definition of the constants and functions in the constitutive equation [24, 25].
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Figure 5: The distribution of the stress birefringence at 𝑡 = 1.05 in
the simulation.

Figure 6: The stress distribution birefringence obtained in experi-
ment [26] after the product is completely produced.

results. However, both the numerical and the experimental
results are qualitative agreeable.

Figure 7 gives the change of the stress birefringence from
the tail of the insert until the end of the cavity, which is in
accordance qualitatively with the experiment in [26], that
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Figure 7: The change of the stress birefringence from the tail of the
insert until the end of the cavity.

is, the stress birefringence increases quickly near the weld
line district and then decreases gradually until reaching the
tail of the mold cavity. The maximum value of the stress
birefringence appears at some point after the insert.

5. Conclusion

In this paper, simulations of interface evolution and stress
distribution nearweld line in the viscoelasticmeltmold filling
process are achieved according to the viscoelastic-Newtonian
two-phasemodel established by Yang et al. [23].The interface
evolution of the viscoelastic melt in the mold filling process
with an insert in is captured accurately. The distribution
of the stress birefringence is qualitative agreeable with that
of experiment. The stress increases quickly near the weld
line district and then decreases gradually until reaching the



Journal of Applied Mathematics 7

tail of the mold cavity. The maximum value of the stress
birefringence appears at some point after the insert.
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