
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 875935, 6 pages
http://dx.doi.org/10.1155/2013/875935

Research Article
An Improved Diagonal Jacobian Approximation via a New
Quasi-Cauchy Condition for Solving Large-Scale Systems of
Nonlinear Equations

Mohammed Yusuf Waziri1,2 and Zanariah Abdul Majid1,3

1 Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2 Department of Mathematical Sciences, Faculty of Science, Bayero University, Kano PMB 3011, Nigeria
3 Institute for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Correspondence should be addressed to Mohammed Yusuf Waziri; mywaziri@gmail.com

Received 8 August 2012; Revised 14 December 2012; Accepted 15 December 2012

Academic Editor: Turgut Öziş
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We present a new diagonal quasi-Newton update with an improved diagonal Jacobian approximation for solving large-scale
systems of nonlinear equations. In this approach, the Jacobian approximation is derived based on the quasi-Cauchy condition.
The anticipation has been to further improve the performance of diagonal updating, by modifying the quasi-Cauchy relation so as
to carry some additional information from the functions.The effectiveness of our proposed scheme is appraised through numerical
comparison with some well-known Newton-like methods.

1. Introduction

Let us consider the systems of nonlinear equations

𝐹 (𝑥) = 0, (1)

where 𝐹 : 𝑅
𝑛

→ 𝑅
𝑛 is a nonlinear mapping. Often,

the mapping 𝐹 is assumed to be satisfying the following
assumptions:
(A1) there exists an 𝑥

∗

∈ 𝑅
𝑛 s.t 𝐹(𝑥∗) = 0;

(A2) 𝐹 is a continuously differentiable mapping in a neigh-
borhood of 𝑥∗;

(A3) 𝐹󸀠(𝑥∗) is invertible.
The well-known method for finding the solution to (1) is
the classical Newton’s method which generates a sequence of
iterates {𝑥

𝑘
} from a given initial point 𝑥

0
via

𝑥
𝑘+1

= 𝑥
𝑘
− (𝐹
󸀠

(𝑥
𝑘
))
−1

𝐹 (𝑥
𝑘
) , (2)

where 𝑘 = 0, 1, 2 . . ..The attractive features of this method are
rapid convergence and being easy to implement. Neverthe-
less, Newton’smethod requires the computation of thematrix

entails the first-order derivatives of the systems. In practice,
computations of some functions derivatives are quite costly,
and sometimes they are not available or could not be done
precisely. In this case, Newton’s method cannot be applied
directly.

Moreover, some substantial efforts have been made by
numerous researchers in order to eliminate the well-known
shortcomings of Newton’s method for solving systems of
nonlinear equations, particularly large-scale systems (see,
e.g., [1, 2]). Notwithstanding, most of these modifications
of Newton’s method still have some shortfalls as Newton’s
counterpart. For example, Broyden’s method and Chord
Newton’s method need to store an 𝑛 × 𝑛 matrix, and their
floating points operations, are 𝑂(𝑛2), respectively.

To tackle these disadvantages, a diagonally Newton’s
method has been suggested by Leong et al. [3] and showed
that their updating formula is significantly cheaper than
Newton’s method and some of its variants. Based on this
fact, it is pleasing to present an approach which will improve
further the diagonal Jacobian approximation, as well as
reducing the computational cost, floating points operations
and number of iterations. This is what leads to the idea of
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this paper. The anticipation has been to further improve the
performance of diagonal updating, by modifying the quasi-
Cauchy relation so as to carry some additional information
from the functions. We organized the paper as follows. In the
next section, we present the details of the proposed method.
Convergence results are present in Section 3. Some numerical
results are reported in Section 4. Finally, conclusions are
made in Section 5.

2. Derivation Process

This section presents a new diagonal quasi-Newton-like
method for solving large-scale systems of nonlinear equa-
tions. The quasi-Newton method is an iterative method that
generates a sequence of points {𝑥

𝑘
} from a given initial guess

𝑥
0
via the following form:

𝑥
𝑘+1

= 𝑥
𝑘
− 𝛼
𝑘
𝐵
𝑘
𝐹 (𝑥
𝑘
) 𝑘 = 0, 1, 2 . . . , (3)

where 𝛼
𝑘
is a step length and 𝐵

𝑘
is an approximation to the

Jacobian inverse which can be updated at each iteration for
𝑘 = 0, 1, 2 . . .; the updated matrix 𝐵

𝑘+1
is chosen in such a

way that it satisfies the secant equation, that is,

𝐵
𝑘+1

𝑠
𝑘
= 𝑦
𝑘
. (4)

It is clear that the only Jacobian information we have
is 𝑦, and this is only approximation information. To this
end, we incorporate more information from 𝑠

𝑘
and 𝐹

𝑘
to 𝑦

in order to present a better approximation to the Jacobian
matrix. We consider the modification on 𝑦 presented by Li
and Fukushima [4]:

̆𝑦 = 𝑦
𝑘
+ 𝑣
𝑘

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩 𝑠𝑘, (5)

where 𝑣
𝑘
= 1 +max{−𝑠𝑇

𝑘
𝑦
𝑘
/‖𝑠
𝑘
‖
2

, 0}.
Our aim here is to build a square matrix, say 𝐵, using

diagonal updating scheme which is an approximation to the
Jacobian inverse, and we let 𝐵

𝑘+1
satisfy the quasi-Cauchy

equation, that is,

̆𝑦
𝑘

𝑇

𝑠
𝑘
= ̆𝑦
𝑘

𝑇

𝐵
𝑘+1

̆𝑦
𝑘
. (6)

In addition, the deviation between 𝐵
𝑘+1

and 𝐵
𝑘
is mini-

mized under some norms; hence, in the following theorem,
we state the resulting update formula for 𝐵

𝑘
.

Theorem 1. Assume that 𝐵
𝑘+1

be the diagonal update of a
diagonalmatrix𝐵

𝑘
. Let us denote the deviation between𝐵

𝑘
and

𝐵
𝑘+1

as Ψ
𝑘
= 𝐵
𝑘+1

− 𝐵
𝑘
. Suppose that ̆𝑦

𝑘
̸= 0 which is defined

by (5). Consider the following problem:

min 1

2

󵄩󵄩󵄩󵄩Ψ𝑘
󵄩󵄩󵄩󵄩

2

𝐹

s.t ̆𝑦
𝑘

𝑇

(𝐵
𝑘
+ Ψ
𝑘
) ̆𝑦
𝑘
= ̆𝑦
𝑘

𝑇

𝑠
𝑘
,

(7)

where ‖ ⋅ ‖
𝐹
denotes the Frobenius norm. Hence, the optimal

solution of (7) is given by

Ψ
𝑘
=

( ̆𝑦
𝑘

𝑇

𝑠
𝑘
− ̆𝑦
𝑘

𝑇

𝐵
𝑘
̆𝑦
𝑘
)

tr (𝑉2
𝑘
)

𝑉
𝑘
, (8)

where𝑉
𝑘
= diag(( ̆𝑦

𝑘

(1)

)
2

, ( ̆𝑦
𝑘

(2)

)
2

, . . . , ( ̆𝑦
𝑘

(𝑛)

)
2

),∑𝑛
𝑖=1

( ̆𝑦
𝑘

(𝑖)

)
4

=

tr(𝑉2
𝑘
), and Tr is the trace operation.

Proof. Consider the Lagrangian function of (7):

𝐿 (Ψ
𝑘
, 𝛼) =

1

2

󵄩󵄩󵄩󵄩Ψ𝑘
󵄩󵄩󵄩󵄩

2

𝐹
+ 𝛼 ( ̆𝑦

𝑘

𝑇

Ψ
𝑘
̆𝑦
𝑘
− ̆𝑦
𝑘

𝑇

𝑠
𝑘
+ ̆𝑦
𝑘

𝑇

𝐵
𝑘
̆𝑦
𝑘
) ,

(9)

where 𝛼 is the corresponding Lagrangian multiplier. By
differentiating 𝐿 with respect to each Ψ

(1)

𝑘
, Ψ
(2)

𝑘
, . . . , Ψ

(𝑛)

𝑘
, and

setting them all equal to zero, we obtain

Ψ
(𝑖)

𝑘
= −𝛼( ̆𝑦

𝑘

(𝑖)

)
2

∀𝑖 = 1, 2, . . . , 𝑛. (10)

Multiplying both sides of (10) by ( ̆𝑦
𝑘

(𝑖)

)
2 and summing

them all give

𝑛

∑

𝑖=1

( ̆𝑦
𝑘

(𝑖)

)
2

Ψ
(𝑖)

𝑘
= −𝛼

𝑛

∑

𝑖=1

( ̆𝑦
𝑘

(𝑖)

)
4

for every 𝑖 = 1, 2, . . . , 𝑛.

(11)

Differentiating 𝐿 with respect to 𝛼, and since ̆𝑦
𝑘

𝑇

Ψ
𝑘
̆𝑦
𝑘
=

∑
𝑛

𝑖=1
( ̆𝑦
𝑘

(𝑖)

)
2

Ψ
(𝑖), then we have

𝑛

∑

𝑖=1

(( ̆𝑦
𝑘

(𝑖)

)
2

Ψ
(𝑖)

𝑘
) = ̆𝑦
𝑘

𝑇

𝑠
𝑘
− ̆𝑦
𝑘

𝑇

𝐵
𝑘
̆𝑦
𝑘
. (12)

Equating (11) and (12) and substituting the relation into
(10), finally we have

Ψ
(𝑖)

𝑘
=

̆𝑦
𝑘

𝑇

𝑠
𝑘
− ̆𝑦
𝑘

𝑇

𝐵
𝑘
̆𝑦
𝑘

∑
𝑛

𝑖=1
( ̆𝑦
𝑘

(𝑖)

)
4

( ̆𝑦
𝑘

(𝑖)

)
2

∀𝑖 = 1, 2, . . . , 𝑛. (13)

Since 𝐵
(𝑖)

𝑘
is a diagonal component of 𝐵

𝑘
, ̆𝑦
𝑘

(𝑖) is the
𝑖th component of vector ̆𝑦

𝑘
, then 𝑉

𝑘
= diag(( ̆𝑦

𝑘

(1)

)
2

, ( ̆𝑦
𝑘

(2)

)
2

,

. . . , ( ̆𝑦
𝑘

(𝑛)

)
2

) and∑𝑛
𝑖=1

(𝑦
(𝑖)

𝑘
)
4

= tr(𝑉2
𝑘
). We further rewrite (13)

as

Ψ
𝑘
=

( ̆𝑦
𝑘

𝑇

𝑠
𝑘
− ̆𝑦
𝑘

𝑇

𝐵
𝑘
̆𝑦
𝑘
)

tr (𝑉2
𝑘
)

𝑉
𝑘
, (14)

which completes the proof.

Hence, the best possible updating formula for diagonal
matrix 𝐵

𝑘+1
is given by

𝐵
𝑘+1

= 𝐵
𝑘
+

( ̆𝑦
𝑘

𝑇

𝑠
𝑘
− ̆𝑦
𝑘

𝑇

𝐵
𝑘
̆𝑦
𝑘
)

tr (𝑉2
𝑘
)

𝑉
𝑘
. (15)

Now, we can describe the algorithm for our proposed
method as follows.
Algorithm IDJA

Step 1. Choose an initial guess 𝑥
0
, 𝜎 ∈ (0, 1), 𝛾 > 1, 𝐵

0
= 𝐼
𝑛
,

𝛼
0
> 0, and let 𝑘 := 0.
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Table 1: Numerical results of NM, CN, BM, DQNM, and IDJA methods.

prob Dim NM CN BM DQNM IDJA
NI CPU NI CPU NI CPU NI CPU NI CPU

1 50 7 0.046 55 0.031 15 0.031 14 0.016 2 0.011
2 50 9 0.078 344 0.062 15 0.031 15 0.031 13 0.031
3 50 10 0.062 — — — — 20 0.016 10 0.016
4 50 — — — — — — 19 0.031 9 0.031
5 50 12 0.078 — — 42 0.031 16 0.016 8 0.015
6 50 8 0.064 — — 16 0.032 14 0.031 7 0.014
7 50 8 0.094 — — — — 25 0.031 14 0.010
8 50 11 0.064 — — 11 0.0312 11 0.016 9 0.016

Step 2. Compute 𝐹(𝑥
𝑘
), and If ‖𝐹(𝑥

𝑘
)‖ ≤ 10

−8 stop.

Step 3. Compute 𝑑 = −𝐹(𝑥
𝑘
)𝐵
𝑘
.

Step 4. If ‖𝐹(𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
)‖ ≤ 𝜎‖𝐹(𝑥

𝑘
)‖, retain 𝛼

𝑘
and go to

Step 5. Otherwise set 𝛼
𝑘+1

= 𝛼
𝑘
/2 and repeat Step 4.

Step 5. If ‖𝐹(𝑥
𝑘
+𝛼
𝑘
𝑑
𝑘
) −𝐹(𝑥

𝑘
)‖ ≥ ‖𝐹(𝑥

𝑘
+𝛼
𝑘
𝑑
𝑘
)‖ − ‖𝐹(𝑥

𝑘
)‖,

retain 𝛼
𝑘
and go to Step 6. Otherwise set 𝛼

𝑘+1
:= 𝛼
𝑘
× 𝛾 and

repeat Step 5.

Step 6. Let 𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
.

Step 7. If ‖𝑥
𝑘+1

− 𝑥
𝑘
‖
2
+ ‖𝐹(𝑥

𝑘
)‖
2
≤ 10
−8 stop. Also go to

Step 8.

Step 8. If ‖Δ𝐹
𝑘
‖
2
≥ 𝜖
1
where 𝜖

1
= 10
−4, compute 𝐵

𝑘+1
as

defined by (15); if not, 𝐵
𝑘+1

= 𝐵
𝑘
.

Step 9. Set 𝑘 := 𝑘 + 1 and go to Step 2.

3. Convergence Result

This section presents local convergence results of the IDJA
methods. To analyze the convergence of these methods, we
will make the following assumptions on nonlinear systems 𝐹.

Assumption 2. (i) 𝐹 is differentiable in an open convex set 𝐸
inR𝑛.

(ii) There exists 𝑥∗ ∈ 𝐸 such that 𝐹(𝑥∗) = 0; 𝐹
󸀠

(𝑥) is
continuous for all 𝑥.

(iii) 𝐹󸀠(𝑥) satisfies the Lipschitz condition of order one
that is there exists a positive constant 𝜇 such that

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥) − 𝐹
󸀠

(𝑦)
󵄩󵄩󵄩󵄩󵄩
≤ 𝜇

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , (16)

for all 𝑥, 𝑦 ∈ R𝑛.

(iv) There exist constants 𝑐
1

≤ 𝑐
2
such that 𝑐

1
‖𝜔‖
2

≤

𝜔
𝑇

𝐹
󸀠

(𝑥)𝜔 ≤ 𝑐
2
‖𝜔‖
2 for all 𝑥 ∈ 𝐸 and 𝜔 ∈ R𝑛.

We can state the following result on the boundedness
of {‖Ψ

𝑘
‖
𝐹
} by assuming that, without loss of generality,

the updating matrix (15) is always used, then we have the
following.

Theorem 3. Suppose that {𝑥
𝑘
} is generated by Algorithm IDJA

where 𝐵
𝑘
is defined by (15). Assume that Assumption 2 holds.

There exists 𝛽 > 0, 𝛿 > 0, 𝛼 > 0 and 𝛾 > 0, such that if 𝑥
0
∈ 𝐸

and 𝐵
0
satisfies ‖𝐼 − 𝐵

0
𝐹
󸀠

(𝑥
∗

)‖
𝐹
< 𝛿 for all 𝑥

𝑘
∈ 𝐸 then

󵄩󵄩󵄩󵄩󵄩
𝐼 − 𝐵
𝑘
𝐹
󸀠

(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩𝐹

< 𝛿
𝑘
, (17)

for some constant 𝛿
𝑘
> 0, 𝑘 ≥ 0.

Proof. Since ‖𝐵
𝑘+1

‖
𝐹
= ‖𝐵
𝑘
+ Ψ
𝑘
‖
𝐹
, it follows that

󵄩󵄩󵄩󵄩𝐵𝑘+1
󵄩󵄩󵄩󵄩𝐹

≤
󵄩󵄩󵄩󵄩𝐵𝑘

󵄩󵄩󵄩󵄩𝐹
+
󵄩󵄩󵄩󵄩Ψ𝑘

󵄩󵄩󵄩󵄩𝐹
. (18)

For 𝑘 = 0 and assuming 𝐵
0
= 𝐼, we have

󵄨󵄨󵄨󵄨󵄨
Ψ
(𝑖)

0

󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

̆𝑦
0

𝑇

𝑠
0
− ̆𝑦
0

𝑇

𝐵
0
̆𝑦
0

tr (𝑉2
0
)

( ̆𝑦
0

(𝑖)

)
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨
̆𝑦
0

𝑇

𝑠
0
− ̆𝑦
0

𝑇

𝐵
0
̆𝑦
0

󵄨󵄨󵄨󵄨󵄨

tr (𝑉2
0
)

( ̆𝑦
0

(max)
)
2

,

(19)

where ( ̆𝑦
0

(max)
)
2 is the largest element among ( ̆𝑦

0

(𝑖)

)
2

, 𝑖 =

1, 2, . . . , 𝑛.
After multiplying (19) by ( ̆𝑦

0

(max)
)
2

/( ̆𝑦
0

(max)
)
2 and substi-

tuting tr(𝑉2
0
) = ∑
𝑛

𝑖=1
( ̆𝑦
0

(𝑖)

)
4, we have

󵄨󵄨󵄨󵄨󵄨
Ψ
(𝑖)

0

󵄨󵄨󵄨󵄨󵄨
≤

󵄨󵄨󵄨󵄨󵄨
̆𝑦
0

𝑇

𝑠
0
− ̆𝑦
0

𝑇

𝐵
0
̆𝑦
0

󵄨󵄨󵄨󵄨󵄨

( ̆𝑦
0

(max)
)
2

∑
𝑛

𝑖=1
( ̆𝑦
0

(𝑖)

)
4
( ̆𝑦
0

(max)
)
4

. (20)

Since ( ̆𝑦
0

(max)
)
4

/∑
𝑛

𝑖=1
( ̆𝑦
0

(𝑖)

)
4

≤ 1, then (20) turns into

󵄨󵄨󵄨󵄨󵄨
Ψ
(𝑖)

0

󵄨󵄨󵄨󵄨󵄨
≤

󵄨󵄨󵄨󵄨󵄨
̆𝑦
0

𝑇

𝐹
󸀠

(𝑥) ̆𝑦
0
− ̆𝑦
0

𝑇

𝐵
0
̆𝑦
0

󵄨󵄨󵄨󵄨󵄨

( ̆𝑦
0

(max)
)
2

. (21)

From Assumption 2 and 𝐵
0
= 𝐼, (21) becomes

󵄨󵄨󵄨󵄨󵄨
Ψ
(𝑖)

0

󵄨󵄨󵄨󵄨󵄨
≤

|𝑐 − 1| ( ̆𝑦
0

𝑇

̆𝑦
0
)

( ̆𝑦
0

(max)
)
2

, (22)

where 𝑐 = max{|𝑐
1
|, |𝑐
2
|}.

Since ( ̆𝑦
0

(𝑖)

)
2

≤ ( ̆𝑦
0

(max)
)
2 for 𝑖 = 1, . . . , 𝑛, it follows that

󵄨󵄨󵄨󵄨󵄨
Ψ
(𝑖)

0

󵄨󵄨󵄨󵄨󵄨
≤

𝑛 |𝑐 − 1| ( ̆𝑦
0

(max)
)
2

( ̆𝑦
0

(max)
)
2

. (23)
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Hence, we obtain
󵄩󵄩󵄩󵄩Ψ0

󵄩󵄩󵄩󵄩𝐹
≤ 𝑛
3/2

|𝑐 − 1| . (24)

Suppose 𝛼 = 𝑛
3/2

|𝑐 − 1|, then
󵄩󵄩󵄩󵄩Ψ0

󵄩󵄩󵄩󵄩𝐹
≤ 𝛼. (25)

From the fact that ‖𝐵
0
‖
𝐹
= √𝑛, it follows that

󵄩󵄩󵄩󵄩𝐵1
󵄩󵄩󵄩󵄩𝐹

≤ 𝛽, (26)

where 𝛽 = √𝑛 + 𝛼 > 0.
Therefore, if we assume that ‖𝐼 − 𝐵

0
𝐹
󸀠

(𝑥
∗

)‖
𝐹
< 𝛿, then

󵄩󵄩󵄩󵄩󵄩
𝐼 − 𝐵
1
𝐹
󸀠

(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩𝐹

=
󵄩󵄩󵄩󵄩󵄩
𝐼 − (𝐵

0
+ Ψ
0
) 𝐹
󸀠

(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩𝐹

≤
󵄩󵄩󵄩󵄩󵄩
𝐼 − 𝐵
0
𝐹
󸀠

(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩𝐹

+
󵄩󵄩󵄩󵄩󵄩
Ψ
0
𝐹
󸀠

(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩𝐹

≤
󵄩󵄩󵄩󵄩󵄩
𝐼 − 𝐵
0
𝐹
󸀠

(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩𝐹

+
󵄩󵄩󵄩󵄩Ψ0

󵄩󵄩󵄩󵄩𝐹

󵄩󵄩󵄩󵄩󵄩
𝐹
󸀠

(𝑥
∗

)
󵄩󵄩󵄩󵄩󵄩𝐹
;

(27)

therefore, ‖𝐼 − 𝐵
1
𝐹
󸀠

(𝑥
∗

)‖
𝐹
< 𝛿 + 𝛼𝜙 = 𝛿

1
.

Hence, by induction, ‖𝐼 − 𝐵
𝑘
𝐹
󸀠

(𝑥
∗

)‖
𝐹
< 𝛿
𝑘
for all 𝑘.

4. Numerical Results

In this section, the performance of IDJA method has been
presented, when compared with Broyden’s method (BM),
Chord Newton’s method (CN), Newton’s method (NM), and
(DQNM)method proposed by [3], respectively.The codes are
written inMATLAB7.4with a double precision computer; the
stopping condition used is

󵄩󵄩󵄩󵄩𝑠𝑘
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐹 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩 ≤ 10

−8

. (28)

The identity matrix has been chosen as an initial approx-
imate Jacobian inverse.

We further design the codes to terminates whenever one
of the following happens:

(i) the number of iteration is at least 200 but no point of
𝑥
𝑘
that satisfies (28) is obtained;

(ii) CPU time in seconds reaches 200;
(iii) Insufficient memory to initial the run.

The performance of thesemethods are compared in terms
of number of iterations and CPU time in seconds. In the
following, some details on the benchmarks test problems are
presented.

Problem 1. Spares 1 function of Shin et al. [5]:

𝑓
𝑖
(𝑥) = 𝑥

2

𝑖
− 1 𝑖 = 1, 2, . . . , 𝑛, 𝑥

0
= (5, 5, . . . , 5) . (29)

Problem 2. Trigonometric function of Spedicato [6]

𝑓
𝑖
(𝑥) = 𝑛 −

𝑛

∑

𝑗=1

cos𝑥
𝑗
+ 𝑖 (1 − cos𝑥

𝑖
) − sin𝑥

𝑖
,

𝑖 = 1, . . . , 𝑛 , 𝑥
0
= (

1

𝑛
,
1

𝑛
, . . . ,

1

𝑛
) .

(30)

Problem 3. System of 𝑛 nonlinear equations

𝑓
𝑖
(𝑥) = sin (1 − 𝑥

𝑖
)

×

𝑛

∑

𝑖=1

𝑥
2

𝑖
+ 2𝑥
𝑛−1

− 3𝑥
𝑛−2

−
1

2
𝑥
𝑛−4

+
1

2
𝑥
𝑛−5

− 𝑥
𝑖
ln (9 + 𝑥

𝑖
)

−
9

2
exp (1 − 𝑥

𝑛
) + 2

𝑖 = 1, 2, . . . , 𝑛, 𝑥
0
= (0, 0, . . . , 0)

𝑇

.

(31)

Problem 4. System of 𝑛 nonlinear equations

𝑓
𝑖
(𝑥) = 𝑥

2

𝑖
− 4 exp (sin (4 − 𝑥

2

𝑖
))

+ sin (4 − 𝑥
𝑖
)
2

+ 𝑖(𝑥
𝑛
− 𝑥
𝑖
)
2

+
2𝑛 − ∑

𝑛

𝑖=1
𝑥
𝑖

cos𝑥
𝑖

𝑖 = 1, . . . , 𝑛, 𝑥
0
= (2.8, 2.8, 2.8, . . . , 2.8) .

(32)

Problem 5. System of 𝑛 nonlinear equations

𝑓
𝑖
(𝑥) = (

𝑛

∑

𝑖=1

𝑥
𝑖
)(𝑥
𝑖
− 2) + (cos𝑥

𝑖
− 2) − 1

𝑖 = 1, . . . , 𝑛, 𝑥
0
= (1, 1, 1, . . . , 1) .

(33)

Problem 6. System of 𝑛 nonlinear equations

𝑓
𝑖
(𝑥) =

𝑛

∑

𝑖=1

𝑥
2

𝑖
− (sin (𝑥

𝑖
) − 𝑥
4

𝑖
+ sin𝑥2

𝑖
)

𝑖 = 1, . . . , 𝑛, 𝑥
0
= (.5, .5, .5, . . . , .5) .

(34)

Problem 7. System of 𝑛 nonlinear equations

𝑓
𝑗
(𝑥) = (

𝑛

∑

𝑖=1

𝑥
2

𝑖
− 1) (𝑥

𝑗
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+𝑥
𝑗
(

𝑛

∑

𝑖=1

(𝑥
𝑖
− 1)) − 𝑛 + 1

𝑓
𝑛
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𝑛
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𝑥
2

𝑖
− 1) (𝑥

𝑛
− 1) + (cos𝑥

𝑛
− 1) − 1

𝑗 = 2, . . . , 𝑛 − 1, 𝑥
0
= (.5, .5, .5, . . .) .

(35)

Problem 8. System of 𝑛 nonlinear equations

𝑓
𝑖
(𝑥) = (1 − 𝑥

2

𝑖
) + 𝑥
𝑖
+ 𝑥
2

𝑖
𝑥
𝑛−2

𝑥
𝑛−1

𝑥
𝑛
− 2

𝑖 = 1, 2, . . . , 𝑛, 𝑥
0
= (.5, .5, . . . , .5) .

(36)
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Table 2: Numerical Results of NM, CN, BM, DQNM, and IDJA methods.

prob Dim NM CN BM DQNM IDJA
NI CPU NI CPU NI CPU NI CPU NI CPU

1 100 7 0.156 98 0.094 15 0.043 14 0.016 2 0.011
2 100 10 0.187 — — 18 0.062 16 0.032 13 0.032
3 100 7 0.203 — — 24 0.140 15 0.031 7 0.015
4 100 — — — — — — 13 0.031 10 0.030
5 100 13 0.265 — — 53 0.109 17 0.031 12 0.031
6 100 8 0.203 — — 16 0.047 14 0.031 7 0.017
7 100 8 0.185 — — — — 26 0.031 16 0.030
8 100 11 0.234 — — 11 0.094 11 0.032 10 0.016

Table 3: Numerical Results of NM, CN, BM, DQNM, and IDJA methods.

prob Dim NM CN BM DQNM IDJA
NI CPU NI CPU NI CPU NI CPU NI CPU

1 250 7 0.359 100 0.109 15 0.101 14 0.034 2 0.032
2 250 11 0.640 — — 21 0.218 18 0.032 8 0.031
3 250 8 0.499 — — 29 0.250 16 0.016 9 0.016
4 250 — — — — — — 15 0.031 10 0.032
5 250 14 0.827 — — — — 19 0.031 8 0.016
6 250 8 0.686 — — 24 0.250 14 0.031 10 0.031
7 250 8 0.499 — — — — 27 0.031 14 0.031
8 250 11 0.484 — — 11 0.125 11 0.031 10 0.016

Table 4: Numerical results of NM, CN, BM, DQNM, and IDJA methods.

prob Dim NM CN BM DQNM IDJA
NI CPU NI CPU NI CPU NI CPU NI CPU

1 500 7 0.796 101 0.702 15 0.671 14 0.016 2 0.011
2 500 13 1.997 — — 23 0.972 19 0.031 9 0.032
3 500 7 1.4352 — — — — 17 0.031 9 0.031
4 500 — — — — — — 12 0.030 10 0.031
5 500 15 2.449 — — — — 21 0.031 9 0.031
6 500 8 2.184 — — 23 0.998 14 0.032 10 0.045
7 500 8 1.498 — — — — 32 0.047 15 0.047
8 500 11 1.451 — — 11 0.515 11 0.031 9 0.031

Table 5: Numerical results of NM, CN, BM, DQNM, and IDJA methods.

prob Dim NM CN BM DQNM IDJA
NI CPU NI CPU NI CPU NI CPU NI CPU

1 1000 7 2.730 103 3.167 38 9.438 14 0.016 2 0.011
2 1000 — — — — 31 7.722 20 0.032 8 0.043
3 1000 9 5.819 — — — — 17 0.031 9 0.031
4 1000 — — — — — — 11 0.064 10 0.064
5 1000 16 8.705 — — — — 22 0.031 10 0.031
6 1000 8 6.474 — — — — 14 0.062 11 0.061
7 1000 8 4.321 — — — — 38 0.062 31 0.047
8 1000 11 4.882 — — 11 2.418 11 0.032 10 0.031
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The numerical results presented in Tables 1, 2, 3, 4, and
5 demonstrate clearly the proposed method (IDJA) shows
good improvements, when compared withNM, CN, BM, and
DQNM, respectively. In addition, it is worth mentioning, the
IDJA method does not require more storage locations than
classic diagonal quasi-Newton’s methods. One can observe
from the tables that the proposed method (IDJA) is faster
than DQNM methods and required little time to solve the
problems when compared to the other Newton-like methods
and still keeping memory requirement and CPU time in
seconds to only 𝑂(𝑛).

5. Conclusions

In this paper, we present an improved diagonal quasi-Newton
update via new quasi-Cauchy condition for solving large-
scale Systems of nonlinear equations (IDJA). The Jacobian
inverse approximation is derived based on the quasi-Cauchy
condition. The anticipation has been to further improve the
diagonal Jacobian, bymodifying the quasi-Cauchy relation so
as to carry some additional information from the functions.
It is also worth mentioning that the method is capable of
significantly reducing the execution time (CPU time), as
compared to NM, CN, BM, and DQNM methods while
maintaining good accuracy of the numerical solution to some
extent. Another fact that makes the IDJA method appealing
is that throughout the numerical experiments it never fails to
converge. Hence, we can claim that our method (IDJA) is a
good alternative to Newton-type methods for solving large-
scale systems of nonlinear equations.
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