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Using the existence of the exponential dichotomy of linear dynamic equations on time scales, a fixed point theorem and the theory of
calculus on time scales, we obtain some sufficient conditions for the existence and exponential stability of almost periodic solutions
for a class of neutral-type BAM neural networks with delays on time scales. Finally, a numerical example illustrates the feasibility
of our results and also shows that the continuous-time neural network and its discrete-time analogue have the same dynamical
behaviors. The results of this paper are completely new even if the time scale T = R or Z and complementary to the previously

known results.

1. Introduction

The bidirectional associative memory (BAM) neural net-
work, which was introduced by Kosko (see [1]), is a special
recurrent neural network that can store bipolar vector pairs
and is composed of neurons arranged in two layers. The
neurons in one layer are fully interconnected to the neurons
in the other layer, while there are no interconnections among
neurons in the same layer.

Recently, due to its wide range of applications, for
instance, pattern recognition, associative memory, and com-
binatorial optimization, BAM neural network has received
much attention. For example, in [2-4], some sufficient condi-
tions were obtained for the stability of the equilibrium points
of BAM neural networks; in [5, 6], authors investigated the
periodic solutions of BAM neural networks by using the
continuation theorem of coincidence degree theory; in [7-9],
authors studied the almost periodic solution for BAM neural
networks by using the exponential dichotomy and fixed point
theorems; for other results about BAM neural networks, the
reader may see [10-13] and reference therein.

Since it is natural and important that systems will contain
some information about the derivative of the past state to
further describe and model the dynamics for such complex
neural reactions [14], many authors investigated the dynam-
ical behaviors of neutral-type neural networks with delays

[15-26]. For example, in [21], under the assumptions that
the activation functions satisfy boundedness and Lipschitz
conditions, authors discussed global asymptotic stability of
neutral-type BAM neural networks with delays as follows:

x; (t)+Ze,»jx} (t—h) = -ax; (t)—Zs,-jfj (yj (t- T))+I,-,
j=1 j=1

i=1,2,...,m,

Y O+ vy (= d) = —¢;y; (=)t (x; (£ = 8))+],
i=1 i=1

j=L2,...,m
M

Also, it is well known that the study of dynamical systems
on time scales is now an active area of research. One of
the reasons for this is the fact that the study on time scales
unifies the study of both discrete and continuous processes,
besides many others. The pioneering works in this direction
are [27-30]. The theory of time scales was initiated by Stefan
Hilger in his Ph.D. thesis in 1988, providing a rich theory
that unifies and extends discrete and continuous analysis [31,
32]. The time scales calculus has a tremendous potential for
applications in some mathematical models of real processes



and phenomena studied in physics, chemical technology,
population dynamics, biotechnology and economics, neural
networks, and social sciences.

In fact, both continuous and discrete systems are very
important in implementation and applications. But, it is trou-
blesome to study the the dynamical properties for continuous
and discrete systems, respectively. Therefore, it is meaningful
to study that on time scale which can unify the continuous
and discrete situations (see [13, 31, 33-40]).

Motivated by the above, in this paper, we propose a
neutral-type BAM neural network with delays on time scales
as follows:

X0 = -a®)x O+ a0 f;(y(t-1:®))
j=1

+ iji (1) g; ()’]‘A (t —0j (t))) +1;(f),

j=1

te T, i=1,2,...,n,
(2)

yi() = —by () y;(t) + ;b,-j OLACAEIAOG)))

+ Y a5 Ok (x (=6 0)) +T; 0,
i=1

teT, j=12,...,m,

where T is an almost periodic time scale; 1, 1 are the number
of neurons in layers; x;(t) and yj(t) denote the activations of
the ith neuron and the jth neuron at time £; a; and b, represent
the rate with which the ith neuron and jth neuron will reset
their potential to the resting state in isolation when they are
disconnected from the network and the external inputs at
time £; f}, g;, h;, and k; are the input-output functions (the
activation functions); Tji» Oji> Cij and ¢;; are transmission
delays at time ¢ and satisfy t — 7;;(t) € T,t - 0;(t) € T,
t - C,-j(t) € T,and t —g;(t) € Tfort € T;ayb; are
elements of feedback templates at time t; p;;, g;; are elements
of feed-forward templates at time £; and I;, /; denote biases of
the ith neuron and the jth neuron at time t,i = 1,2,...,n,
j=L2,...,m

Our main purpose of this paper is, using the exponential
dichotomy of linear dynamic equations on time scales, a fixed
point theorem and the theory of calculus on time scales,
to study the existence and exponential stability of almost
periodic solutions for (2). Our results of this paper are new
and complementary to the previously known results even if
the time scale T = R or Z.

For convenience, we denote [a,b]y = {t | t € [a,b] N
T}. For an almost periodic function f : T — R, denote
fT o= sup,plf 0, f~ = inf,or|f(£)l. Set that X = {¢ =
(P12 @202 P V1 Yoo W) 1@ ¥y € CH(TLR), @,y are
almost periodic functions on T,i = 1,2,...,n,j =
1,2,...,m} with the norm [¢| = max{lel;,|yl,}, where

lpl, = max{|go|0,|g0A|0}, lyl, = max{|1//|0,|1//A|0}, lply =

A A
max, <, @/ 197 lo = max, i, (9 ()" lyly = maXlsjng’}
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and [y, = maxlsjsm(u/f(t))J', and C'(T, R) is the set of
continuous functions with continuous derivatives on T, then
X is a Banach space.

The initial condition of (2) is

X; (s) = @; (s), Y (s) = v (s), sel[-0, O]T) (3)

where 0 = max{max(i,j){r;ri,cr;, ;},c;j}}, Py € C'([-6,0]y,
R), i=12,...,n,j=12,...,m.

Throughout this paper, we assume that the following
conditions hold:

(Hy) a;i» pjir bj> 95 I J; € C(T,R), a;,b; € C(T, R™) with
~a,-b; € R, 1;;,0;,(;,and g;; € C(T, TNR") are
all almost periodic functions, where #* denotes the
set of positively regressive functions from T to R, i =
L,2,...,nj=12,...,m

(H,) fj, gj,h,-,k,- € C(R,R), and there exist positive con-
stants HJJ.[, HY, H}', and Hf such that

|f; @) = f; )] < B ju-+,

|9, ) = g; 0] < B Ju =1, @
|h; () — by ()] < H' Ju =1,

ki, () = k; ()] < Hf Ju =],

forall u,veR, i=1,2,...,n,j=12,...,m.

This paper is organized as follows. In Section 2, we
introduce some notations and definitions and state some
preliminary results which are needed in later sections. In
Section 3, we establish some sufficient conditions for the
existence of almost periodic solutions of (2). In Section 4, we
prove that the almost periodic solution obtained in Section 3
is exponentially stable. In Section 5, we give an example to
illustrate the feasibility of our results obtained in previous
sections. We draw a conclusion in Section 6.

2. Preliminaries

In this section, we introduce some definitions and state some
preliminary results.

Definition I (see [32]). Let T be a nonempty closed subset
(time scale) of R. The forward and backward jump operators
0,p: T — T and the graininess y : T — R, are defined,
respectively, by

o(t)=inf{s € T:s>t},
p(t)=sup{seT:s<t}, (5)
ut)y=o() -t

Lemma 2 (see [32]). Assume that p,q : T — R are two
regressive functions, then
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(i) ey(t,s) = 1 and ep(t, t)=1;
(ii) ep(t, s) = l/ep(s, t) = eep(s, t);
(iii) ep(t, s)ep(s, r) = ep(t, r);

(iv) (e,(t,9))" = p(t)e,(t, s).

Lemma 3 (see [32]). Let f, g be A-differentiable functions on
T. Then

(1) (v f +v,9)" = v, f2 + v,9°, for any constants v, v,;

(i) (f9)° (1) = fA(O)g(t) + flo®)g™(t) = f(Og" W) +
fA®gla(t).

Lemma 4 (see [32]). Assume that p(t) > 0 fort > s. Then
ep(t, s) > 1.

Definition 5 (see [32]). A function f: T — R is positively
regressive if 1 + u(t) f(t) > Oforall t € T.

Lemma 6 (see [32]). Suppose that p € R*. Then

(i) ep(t, s) >0, forallt,s € T;

(ii) if p(t) < q(¢t) forallt > s, t,s € T, then ey(t,s) <
eq(t, s) forallt > s.

Lemma 7 (see [32]). If p € R and a,b,c € T, then

[ep @] ==pe, ()]
b (6)
J p()e,(c,o(t) At =e,(c;a) e, (c, b).

a

Lemma 8 (see [32]). Leta € T, b € T, and assume that
f:Tx TF — R is continuous at (t,t), where t € TF with
t > a. Also assume that fA(t, -) is rd-continuous on [a, o(t)].
Suppose that for each € > 0, there exists a neighborhood U of
T € [a, o(t)] such that

Ifc®). 1)~ f(s1) - A0 (1) -9)| < elo(t) -5,
Vs e U,
(7)

where f* denotes the derivative of f with respect to the first
variable. Then,

(i) g(t) = j; f(t, T)AT implies g(t) = j; FAtT)AT +
fla(®),t);

(i) h(t) = [ F(t. T)AT implies K1) = [ FA(t7)AT -
fo(t),1).

Definition 9 (see [34]). A time scale T is called an almost
periodic time scale if

M:={reR:t+71€T,VteT}+{0}. (8)

Definition 10 (see [34]). Let T be an almost periodic time
scale. A function f(¢) : T — R” is said to be almost periodic
on T, if for any € > 0, the set

E(ef)={rell:|[ft+1)-f()| <eVteT} (9)

is relatively dense in T; that is, for any ¢ > 0, there exists
a constant I(¢) > 0 such that each interval of length I(¢)
contains at least one 7 € E(e, f) such that

|ft+1)- f(t)| <e VteT. (10)

The set E(e, f) is called the e-translation set of f(t), 7 is
called the e-translation number of f(t), and I(e) is called the
inclusion of E(e, f).

Lemma 11 (see [34]). If f € C(T,R") is an almost periodic
function, then f is bounded on T.

Lemma 12 (see [34]). If f,g € (T,R") are almost periodic
functions, then f + g, fg are also almost periodic.

Definition 13 (see [35]). Letting X € R” and A(t) bean xn
matrix-valued function on T, the linear system

XPH)=A@)X (), teT (1)

is said to admit an exponential dichotomy on T if there exist
positive constants k;, «;, i = 1,2, projection P, and the
fundamental solution matrix X(¢) of (11) satisfying

X () PX7' ()] < kyee, (6:5), steT, t>s,
(12)
|X(t) (I-P)Xx! (s)| <kyeeq, (1), steT, t<s,
then

where | - | is a matrix norm on T; that is, if A = (aij)nxm,

we can take |A] = (Y}, Z;"Zl Ia,-j|2)1/2.

Lemma 14 (see [34]). If (11) admits an exponential dichotomy,
then the following almost periodic system

XA =ANX{t)+g(t), teT (13)
has an almost periodic solution as follows:
X(t) = jt X (O PX" (0(5)) g(5) As
- (14)

+00
| x0u-px @@
t
where X(t) is the fundamental solution matrix of (11).

Lemma 15 (see [35]). If A(t) is a uniformly bounded rd-
continuous n x n matrix-valued function on T, and there is a
0 > 0 such that

2
lay )] = ) |ay; ®) —ly(t) Y ay @] | -8’u@) =29,
2
j#i j=1

teT,i=1,2,...,n,
(15)

then (11) admits an exponential dichotomy on T.



Definition 16. Let z*(t) = (xj(t),x5(t),...,x,(t), y; (£),
(9 y;(t))T be an almost periodic solution of (2) with
initial value ¢* (s) = (@1 (s), 93 (5), ..., @5, (), Wy (8), w5 (), ...,
w,’;(s))T. If there exists a positive constant A with —A €
A" such that for t, € [0, 0]y, there exists M > 1 such that
for an arbitrary solution z(t) = (x;(t), x,(f), ..., x,(t), y,(t),
yz(t),...,ym(t))T of (2) with initial value ¢(s) = (¢,(s),
03()s - o> 9(8)s ¥y (), Y (5), . . ., s, () satisfies

e @) -2 @, = MIg- 4"l (1),

t € [-0,00)y, t >t

(16)

where |z(t) — 2" (¢)]; = max{max, ;. {|x;(t) — x] ()], [(x;(t) -
xF () max, je,, {1y;(t) = y; Ol [(y; (1) = y}‘(t))AI}}, ll¢ —
¢"ll = max{max, i, supse_g oy, {l@i(s) — @/ (), [(g;(s) -
§0i* (5))A|}> maxlgjgmsupsg[76,0]T{|Wj(5) - 1/’; ()l |(1//j(3) -
1//;‘ (s))“[}}. Then, the solution z* (¢) is said to be exponentially
stable.

3. Existence of Almost Periodic Solutions

In this section, we will state and prove the sufficient condi-
tions for the existence of almost periodic solutions of (2).
Let ¢°(t) = (@)1, @53(t)s. ., @o(t), vy (1), y5 (D). ..,
t
o (0)T, where (1) = [*_ e, (t,0(s) x I(s)As, yi(t) =
_[_too e_bj(t, a(s))]j(s)As, i = L,2,...,n,j = L,2,...,m,
and let L be a constant satisfying L > max{II(/)OII,
max, <, {l f;(0)],1g;(0)], max,;,{lh;(0)], k;(0)[}. We have
the following theorem.

Theorem 17. Let (H,) and (H,) hold. Suppose that

(H;) there exists a positive constant § such that

6 (0= Ju ()G (1)~ (1) = 26,

(17)
teT, k=1,2,...,n+m,
where
a(t), k=i i=12,...,n
H=14" 18
%(®) 1bj(t), k=n+j, j=12,...,m; as)

(H,) max{max,_;,{(6;/a;), 1+  (a'/a)6},
max, i, {(y;/0)), (1 + & /b))yl < (1/2),
where 0, = Z;f':l(a;iH{ + ppH] + a; + pp),
Y = YmGiH! + qiHS + b+ qp), i = 1,2
=12 m.

ey

Then, (2) has a unique almost periodic solution in X, =
o e X 1 lp=-¢ll <L} ¢®) = (@10, @,(0) .0, (D),
AORAGRNRMG)E
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Proof. For any given ¢ € X, we consider the following almost
periodic system:

X)) =—a; () x; )+ E(Ly)+ L), i=1,2...,n

yf ) =-b,)y;(O+G,;(t,e)+];(t), j=12...,m,
(19)

where
F(t.y) = Zaji ®) f; (‘/’j (t ~Tji (t)))
=1

+iji(t)gj (Wf(t—aji(t))), i=1,2,...,n,

i

G;(t.9) = Zbij (t) by (S"i (f - & (t)))
i=1

+ Zqij () ki (‘PiA (t —Gij (t))) , j=L2,...,m.
=1
(20)

Since (H;) holds, it follows from Lemma 15 that the linear
system

XA(t) = —a; (1) x; (1), i=1,2...,n
(21)
PO =-b; O y; (O, j=12...m

admits an exponential dichotomy on T. Thus, by Lemma 14,
we obtain that (19) has an almost periodic solution, which is
expressed as follows:

0= ey o) Es)+EO)As

i=1,2,...,n
(22)

W - j ey, (60(9) (G (5,9) +],(9) As,

j=L2,...,m

For ¢ € X, then ||l < ¢ — Gl + Iyl < 2L. Define the
following operator:

DX, — X,

(P1> @25+ P 1//1,1//2,...,1//m)T (23)

T
¢ .9 o V¥ \
—>(xl,xz,...,xn,yl,yz,...,ym) .

We will show that @ is a contraction.
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First, we show that for any ¢ € X, we have ®¢ € X,,.

Note that

|E; ()] = Zaji (s) £ (V/j (5 T (5)))
=1

20995 () (s-0;:9))
=1

M§

a; (£ (i (s =7 9)) = £; 0] + | £; @)

j=1

+2.25(19; (v} (s =051 9)) - 9, 0|
j=1

+|g; )

NgE

< 2 (@] + piH]) v,

-
1l
—

+ (a;|£; 0] + pj]g; 0)])
j=1

Mz

<3 (aH] + pjH?) Il

-
Il
—

3

Z aji |f] (0)| + P |g] (0)|

j=1

s

Il
—

< (aJle +piH] +aj; +pﬂ)2L =20,L,

J

and similarly,

h k
Y (BiH! + qH; + b +q;) 2L == 2y, L,

G:(s.9)| <
6, (P)|<i=1 (25)

j=L2,...,m.

Therefore, we have

t
|(@( ), ®| = J o (0 () F, (s,9) As
I () |F (s, y)| As
SI o (6,0 (5)) 26,LAs
2 .
<—, i=12,...,n,

| ~

(@(6-4"),,, 0| =

ey, (6.0 (5)G; (5.9) s

IN

Jt ey, (t,0(s)) 'Gj (s,(p)| As

—00

t

IN

ey (t,o (s)) 2y;LAs

;L
> j=1,2,...,m.

J

IN
[\

(26)
On the other hand, fori = 1,2,...,

(@ (6-4")); )

n, we have

A

t

= 1(]:0 e_q, (1,0 () Fi (s,) As)

o (T () F (59) As

= le (ty)-a;(t) J_ e

<|F (ty)| +

(27)
|a; (1)]

x j ey, (t,0 (s))|E, (s, )| As

(1 + a—)ZGL
a;

andfor j=1,2,...,m,

In view of (H,), we have

(@ (¢- ¢))nﬂ )| < (1+?>2ij. (28)
)

0,L a;
[0 - ¢°] < max {max{ai_(ua__

1<i<n
2y;L b+
1+-L |2 <L,
w0

(29)
that is, ®¢ € X,. Next, we show that ® is a con-
traction. For ¢ = (9,9, ..., QoW Vas e os V), 9 =
EL& 8. ) € X, fori=1,2,...,n, denote
by

Fi(l) (s w.m)
= 2ai ) (f; (¥ (s =73 9))) = £; (n; (s ~ 7 9))))
=

Fi(Z) (sy.n)

= 205 (9 (v (=051 9)) = 9, (1 (s = 0 9)))..
1

3

~
Il

(30)



Then, we have

|((D¢ - (D()i (t)l

t
| e o) (B (syam) + B2 (s.ym) s

s Jt e, (£,0())
% ( a;H; |V’J( ~15:(9) = (s~ 7 (S))'

i (5-04)

m
.
+ijiH
j=1

~1; (s =05 9))] ) As

1

al

< (a],HJf+pjing) lv-nl, i=12...n

TMs

(@9 - 00); )|

A

=1(rw o (60 () (B (s, 9,7) + (”(s,w,n))As)

t

B lFi(l) (ty,n) + Fi(Z) (ty,n) —a; (1)

t
X J- e, (t,0(5)) (Fi(l) (s,w,n) + E? (s,v, ;1)) As

< |EV (b yan)| + [P (6 wo )| + |a; )]

t
x J e (t,0(5)) |Fi(1) (s,w,1) + E? (s,y, ;1)| As

< (] + 3] ) v =,
j=1
a:— m f
+a_— (a]lH] +P]l )l‘/’—’7|1
i jo1

+\ m
= (1 + %)Z(a],HfprﬁHf)l‘//—Wh’

i=1,2...,n
(1)
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In a similar way, we have

|((D¢ (I)C)n+](t)l< - b H +q1] 1)|(P £|1’

1

j=L2,...,m,

bt
|(@¢ - @), ()] < <1 + é)

x Y (b3 H; +qiHY) lo - &,

i=1

By (H,), we have

1 : a’
max {gg EQ"’ +Z 0if>
1 b}
11;1jas)r(n Epj’ 1+€ pj <1,

it H}q) and Pj = Zznzl(bz;erh +
qUHk) i=12,...,nj=12,...,m It implies that | D¢ —
@]l < llo — wll. Hence, @ is a contraction. Therefore, ® has
a fixed point in X; that is, (2) has a unique almost periodic
solution in X,. This completes the proof of Theorem 17.  [J

(33)

where ¢; = Y, (a]; H + 2

4. Exponential Stability of Almost
Periodic Solution

In this section, we will study the exponential stability of
almost periodic solution of (2).

Theorem 18. Let (H,)-(H,) hold. Suppose further that

(Hs) o; > (a; —a/a;)/(a +a; ) and pj = (bj_—b;bj_)/(b;Jr
b;), where ¢; = z;”l(a;H]f + p;’iHJ?) and p; =
S G H + g HO, =12, = L2

Then, the almost periodic solution of (2) is exponentially stable.

Proof. By Theorem 17, (2) has an almost periodic solution
w(t) = (ocl(t),ocz(t),...,cxn(t),[s"l(t),[iz(t),...,[3m(t))T with
initial condition ¢*(s) = (9 (s),9;(s),..., ¢ (s), ¥, (s),
w;(s),...,w;,(s))T. Suppose that z(t) = (x,(£), x,(t),...,
x, (), y1(2), o (), ..., ym(t))T is an arbitrary solution of (2)
with initial condition ¢(s) = (¢;(s), 9,(s), ..., @,(s), W, (s),
Y, (s), ...,y/m(s))T. Denote v(t) = (uy(t),uy(t),...,u,(t),
vl(t),vz(t),...,vm(t))T, where u;(t) = x() - o),
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vj(t) = yj(t) - /Sj(t),i =12,... ,m. Then,

it follows from (2) that
—a; () u; ()

DXHOIGACAGEAG))
j=1

n, j = 1,2,...

ul () =

-1 (ﬁJ( -7 (t) )))
(34)
DY IOICHCAEMG))
=1
~9; (B; (=0 ®))),
i=1,2,...,n
v (6) = —b; (1) v; (1)
Zb GICICAGIAO))
—hy (o (t = (¢
me-Go)
30,0 (8 e, 0)
i=1
ki (o (t=;®))),
j=L2,...,m
The initial condition of (34) and (35) is
u; (s) = @; (s) = ¢; (s),
(36)

V() =y () -y; (s), se[-6,0]y,

wherei=1,2,...,n, j=1,2,...,m.
Multiplying both sides of (34) by e,ui(t,a(s)) and inte-
grating on [t,, t]y, where t, € [-0, 0]y, we get

u; (t)

= u; (o) e_q, (t:1)

+ Jt e_q (£,0(5))
. {z O 00y (5= 5 ))
=
)

~05(9))

- fi (ﬁj (5
+ 229 (g; (b5 (s

=

~9; (ﬁJA (s-0:())) } As,

i=1,2,...,n
(37)

Similarly, multiplying both sides of (35) by e_bj(t, o(s)) and
integrating on [¢,, ], we get

Y; (1)

=7 (to) ey, (t:t0)

t
+ L ey, (t,o (s))

{Zb (s)( ( ( —Cij(s)))
—-h, ((xi (s = (5))))
+Z%<S)( (<2 (s -6, 9))

-ofa (=5, @) f s

j=L2,...,m
(38)

For positive constant & < min{min,;,a; , min, _;,,b; } with
—a € R, wehave ey, (t,t,) > 1, where t € [-0,,]y. Take

M > max {e;,¢,}, (39)
where
{ a’a; a; }
€, = max - ,
isisn a7 = (af +a7) o 4 — ¢
(40)
b;'bj_ b;
T e b — (b +b-) o b — ’
si=m | b7 = (b7 +b7) p; by — P
By (H,), we have
a; >(a +a7)e» a >0
_ P _
b; > (b +b;)pj b >p;, (41)
i=12,...,n, j=L2,....m

In view of (Hs), we have M > 1. Hence, it is obvious that
v (Ol < Mege (t.t0) [¢—¢7[|, VE € [-O.50]y.  (42)
We claim that

v (O], < Meg, () |- 7|, Vi € (t,+00);.  (43)

To prove this claim, we show that for any p > 1, the following
inequality holds:

v (D)) < pMegy (1) |6 — 7|, Vt € (£, +00)y,  (44)



which means that, fori = 1,2,...,n, we have

[u; (1)] < pMeg, (t,1,) |0 - ¢°| >
|uf ()] < pMegy (t:to) |6 - 67 »

Vt € (ty,+00);,  (45)

Vt € (g, +00);, (46)

and for j = 1,2,...,m, we have

[v; (0] < PMegy (1,10) |6~ 67,
[v; 0] < pMeo (1.1) |6~ ¢°

Vt € (tg, +00);, (47)

|, Vte(ty+00);. (48)

By way of contradiction, assume that (44) does not hold.
Firstly, we consider the following four cases.

Case 1. Equation (45) is not true and (46)—(48) are all true.
Then, there exists t; € (t;,+00)y and i, € {1,2,...,n} such
that

|ui0 (t1)| > pMeg, (t1:t0) ¢ = ¢7 ||
|, (8)] < pMegy (t,t0) ¢ — ¢

» L€ (tO’tl)T’

(49)
Jur ()] < pMeg, (t:to) [l - ¢,
for I+#iy, t € (tgt]p I=1,2,...,m.
Therefore, there must be a constant §; > 1 such that
|”i0 (t1)| =8, pMeg, (t1,to) ¢ = ¢7 ||
|”i0 (t)| < 8 pMeg, (t,10) |6~ 7|, € (tg,t1)s (50)

|ty (£)] < 8, pMeg, (t:to) ¢ — 67| »

for I#ig, t € (tgty]y 1=1,2,...,m.

Note that, in view of (37), we have

U, (t1)|

ty
u;, (o) eq (£ to) + J; ey (£,0(5))
0
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) { j_i“ﬁo © (f; (3 (s =75, )
- £ (Bi (s =751, 9)))

+ 2.2, ) (95 (07 (s - 5, 9))

=

~9j (/3]A (5 = i, (5)))) } As

<e, (tito) ¢ - 67|

+ Jtl e, (t1,0(s))
to 0
m .S B
x| YapHi (s =75, )]
=i

+Zp;.0ng 'vf (s - 0j;, (s))|> As
=1

< e,% (t1>t0) ”‘/’ - ‘15*

f
+ J e, (t1,0(5))
to 0
X (Za;ioH{(SlpMeea (5 = Tji, (s)» to) o -
=1

+) P H] 8 pMegg (s=051, (). 10) ¢ - ¢*||> As
j=1

= |~ ¢l eca (t1:10) € g, o (t1- 1)
0

+ 8, pMeg, (t1, ) ”¢ -¢ "

tl
X J e q, (t,0(9))
)
m
X Za;ioneea (s - Tji, (8)> tl)
=1

+Zp;.'iongeea (s - 0j;, (s) ,t1)> As
j=1
< "¢ - qb* “ eeoc (tl’ tO) e—uigﬂx (tl’ tO)
+ 8, pMegg (t1:to) ¢ — ¢ |

X J: e (t;,0(5))
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<Za Hf exp {—aT} + Zp;OH}q exp {—occ?}) As
=1

< ¢ - 97| een (t1:t0) + &, pMeg, (81,
X L: (—ai_o) ey (t,0(s)) As

<Za Hf exp {- ipﬂ HY exp { oca})

" 1
= "‘/’ -¢ ” €on (tl’to) - a__81pMee(—a) (tl’to)

x|l¢ - ¢" (e—a,;) (t1,ty) — 1)
<Za Hf exp {—aT} + ip;ion exp {—oc&})
=1

<6, pM ”¢ -¢° " eaq (15 1)

x[ pM = <Za erxp{—oc%“}
1 o

+Zp;.0Hf exp {—oc&}) ]
=1

<6, pM ||¢ -¢° " eaq (15 1)

T
<_ + a_Z(a]’OHJf +p;loH]g)>

ig j=1

< 8, pMeg, (t),ty) ”¢ -¢° " > (51)

where 7 = min; 7;;, & = min ;0;. In the proof, we use the
inequality e_,- (¢,,1,) < 1. Thus, we get a contradiction.
io

Case 2. Equation (46) is not true and (45), (47), and (48) are
all true. Then, there exists t, € (t,, +oo)yandi; € {1,2,...,n}
such that

|u ()| = PMe, (t2,1) |6 - ¢
| (8)] < pMeg, (o) ¢ - 67
Jup )

for I#i), t € (to,ty] [=1,2,...,m

t e (tety)p )

9
Hence, there must be a constant §, > 1 such that
|“2 (t2)| = 8,pMeg, (t2.10) [l = ¢7|
'Uﬁ (t)| < 8,pMeg, (t:1)) [P - 9", t € (to,t2)y
(53)

| ()] < 0, pMeg, (t.1,) ¢ - ¢°||,

for I+i), t € (tpty]p I=1,2,...,m

Note that, in view of (37), we have

u (t)

= =4, (1)1 (to) ey, (110)

+[ Cawe, @o©)
to
x {Z“ﬁ &) (f; (7 (s -7 )
=

~ £ (Bi (s 73 (9)))
¢ 305 (0 (52 (s- 03 9))

2
%@ﬂ“%®m}mwg
e, (@(0),00)
{zammmoawm
5 ©)

-0, (1))

£ (B; (1~
+ 00 (g; (b5 (¢

=

—M@wmmmf

i=1,2,...,n
Thus, we have

i 22)

<a € a (fz,to) “(/5 ¢ ”
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t
+ aZ J e, (ty0(s))
ty !
X <Za}'ilH{ |vj (s - Tji, (s))|
=1
m
+ le;—lle 'V (S - ]’1 (S))'>
=
+ Y an H |y (=75 (1)
=
m
+ Zp;.’ilng 'vf (t2 -0y (tz))|
=1
< ‘1 6-ar (tz’to "‘/’ ¢ "
+a; jtz e, (t0())
to !
<Za HS 62pMee(_a) (s—‘rﬁ1 (s) ,to) ||¢> - gb*"

m
+ ZP;IHfészeea (s -0 (s),to)
=

s )m
+ 82pMeetx (t2 ]zl (t2 tO) "¢ (P " Zu]le]f
+8,pMeg, (tz —0jj (t2), to) o - o7 ZP;I H}q
=1

< a;:e_ai—l (tarto) [ — 7|
+ a:(SZPMeea (tanto) ¢ - 67|

2}
X J €y (ty,0(5))
to
m
X (Za}ilH{ee(_M (s —7j;, (s)» tz)
j=1
m
+ Zp;ile Con (s —0j; (s) ,tz) ) As
=1

+8,pMeg, (ty,ty) |6 — ¢
x Z (a;ilijeea (tz ~ Tji, (tz))tz)
=1

+P;1H}?eea (tz -0 (t2), tz))
< a;:e_ai-l (t2t0) [l = &
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+ a;:(?szee‘x (tt0) |6 — 97|
t
X J e_y (t,0(9)
to 1
m
Za Hf exp {—a7} + Zp;ile exp {—ad} | As
=1

+ 8, pMeg, (ty:ty) [ — ¢°||

X

Mz

(a Hf exp {- (x‘r}+pﬂ Hg exp {- oco*})
1

-
I

+
S @6 q (t,,

:52PMee¢x (tato) 16— ¢°||

X L_ Jtz (_“i_l) e a; (ty,0(s)) As
<Za Hf exp {—aT} + ip;lH]g exp {—a5}>
=

+8,pPMegy (t:t0) |6 - ¢ HZ(a Hf+p;ilng)
= ai: "‘/’ —¢" “ e (t219) €-a; aa (t2tp)

+

a; .
- a__(SZPMeeoc (t2t0) ”¢ -¢ " (e—a,fl (tato) = 1)

<Za Hf X exp {—aT} + Zp;ile exp {—a&})
=1

+ 8, pMeg, (t55to) ¢ — 67| Z (“ Hf + p;ilng)

< 8,pMeg, (t),ty) "‘/’ -¢° ”

{ ZPM + Z (a]’lHJf +p;’1Hf)

Jj=1

Tm

+ - % Z (a Hf exp {-aT}
allj 1

+pji Hi exp {-a5}) }

< 8,pMeg, (ty,to) | - ¢°|

X{zaw ( )Ji( wa}aH?)}

< 8, pMeg, (t5,ty) "‘/’ -¢° ” . (55)

We also get a contradiction.
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Case 3. Equation (47) is not true and (45), (46), and (48)
are all true. Then, there exists t; € (t,,+00)y and j, €
{1,2,...,m} such that

'Vjo (t3)' > pMeg, (t5,10) |6 — 97,

|vj0 (t)| < pMeg, (t,to) o= ¢"||, € (toot3)r

(56)
[, (O] < pMeaq (t,t0) [ ¢ = ¢,
for 1# jo, t € (tg,ts]p t=1,2,...,m.
Therefore, there must be a constant §; > 1 such that
|Vj0 (t3)| = 83 pMeg, (t5,10) |9 — 97,
"Vjo (t)' < 83pMegy (t.1y) ¢~ ¢7[, € (t,t3)ps 57)

v, (D] < 85 pMeg, (t:10) ¢ = 67,
for 1#jy, t € (tgts]p t=1,2,...,m.

Then, in a similar way, in view of (38), we have that

v, (85)] < 85pM ¢ — ¢ eaq (£3: o)

1 1¢
X (M + b_‘z (bi;UHih + q;;oHik)> (58)

Jo i=1
< 8;pMeg, (t3,t)) ”ﬁb -¢° " >
which is also a contradiction.

Case 4. Equation (48) is not true and (45), (46), and (47)
are all true. Then, there exists t, € (f;,+00); and j, €
{1,2,...,m} such that

|5 (t4)] = pMeo (tsto) | - 67|,

4 ()] < pMeoy (1) [ ¢~ 67 [, t € (tgr 1)

(59)
[ (0] < pMeoy (1,8) &~ 9",
for t#jy, t € (tg,ty]p t=1,2,...,m.
Hence, there must be a constant §, > 1 such that
[, (82)] 2 84pMecy (t1r10) |6 - ¢°
|7/]41 (t)| < 8ypMegy (t.1o) ¢ = 7|, t € (tor ) 60)

7 0] < 8upMea (t:t0) [~ ¢
for 1#j, t € (tgty]p 1=1,2,...,m.

Similarly, in view of (38), we obtain that
|V?1 (t4)| < 84pMeg, (tysto) [ - ¢7|
7 7 h k
A (10 8) S g
N 1=
< 8y pMegy (tyrty) |6 — 67|
(61)

It is also a contradiction.

1

By the above four cases, for other cases of negative
proposition of (44), we can obtain a contradiction. Therefore,
(44) holds. Let p — 1, then (43) holds. We can take -\ = e,
then A > 0 and -1 € #". Hence, we have that

@)l < M|p-¢"[e,(tt), te[-6,00), t2t,

(62)

which means that the almost periodic solution w(t) of (2) is
exponentially stable. This completes the proof of Theorem 18.
O

5. An Example

In this section, we present an example to illustrate the
feasibility of our results obtained in previous sections.

Example 1. Let n = m = 2. Consider the following neutral-
type BAM neural networks with delays on a time scale T

2
X0 =—aOx O+ Ya; O f;(y(t-7;0))
j=1

2
+ 22 0g; (5] (-0 ) + L),
a (6

2
YR = —by () y; () + ;bij O (x; (- ;@)

2
+ Y a; Ok (x5 (£ -6 0)) +1; @),
i=1

wheret € T, i, j = 1,2 and the coefficients are as follows:

a, (t) =0.975+0.025sint, a, (t) = 0.93 + 0.01 cost,
ap; (t) =0.003sint, ay, (t) = 0.002 cost,
ay, (t) = 0.004sint, a,, (t) = 0.001sint,
py; (¢) = 0.001 +0.003 cost, p;, () =0.001sint,
Py () = 0.006 +0.001sint,  p,, () = 0.003 cost,
fi(w) =02sinu, f,(u) =2cosu,
g, () =02cosu, g, (u)=2sinu,

b, (t) = 0.95+0.01sin V3t, b, (f) = 0.92 + 0.01 cos V2t,

b, (t) = 0.002sin V2t, by, () = 0.003 cost,

by, (t) = 0.001sint, by, (t) = 0.004 cost,
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qy; (t) = 0.001 cos V3t, gy, () = 0.004sint,

q»; (t) =0.003sint, gy, (t) = 0.004 cost,
h, (u) =sinu, h, (u)=1.5cosu,
ky () = cosu, k,(u)=1.5sinu,
I, (t) = I, (t) = 0.6 sin V3t,

J, (t) =], (t) = 0.5cost, Tjj (t) = oji (t) = 0.12sint,

C,-j (t) =¢; (t) =037sint, i,j=1,2.
(64)
By calculating, we have
a;r =1, a, =0.95,
a, =094,  a, =092,
bl =096, b =094,
b, =093, b, =091,
a;, =0.003,  a;, =0.002,
a, =0.004,  a,, =0.001,
p;, =0.004,  p;, =0.001,
Py =0.007,  p3, =0.003, (©)
b/, =0.002, b, =0.003,
b, =0.001, b, =0.004,
q;, =0.001, gy, =0.004,
g, =0.003, g, =0.004,
H{ =H=02, H/=H!=2,
Hl'=H'=1, H'=Hf=15.

IfT = R, then u(t) = 0, and if T = Z, then u(f) = 1. We can
verify for the above two cases, and all conditions of Theorems
17 and 18 are satisfied. Therefore, whether T = Ror T = Z,
(63) has an almost periodic solution, which is exponentially
stable. That is, the continuous-time neural network and its
discrete-time analogue have the same dynamical behaviors.

6. Conclusion

In this paper, we establish some sufficient conditions ensuring
the existence and exponential stability of almost periodic
solutions for a class of neutral-type BAM neural networks
with delays on time scales. Our results obtained in this paper
are completely new even in case of the time scale T = R
or Z and complementary to the previously known results.
Besides, our method used in this paper may be used to
study many other neutral-type neural networks with delays

Journal of Applied Mathematics

such as shunting inhibitory cellular neural networks, Cohen-
Grossberg neural networks, and so on.
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