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In intelligent radar, it is an important problem for the transmitted waveform to adapt to the environment in which radar works.
In this paper, we propose mutual information model of adaptive waveform design, which can convert the problem of adaptive
waveform design into the problem of optimization. We consider two situations of no clutter and clutter and use Newton method
and interior point method to solve the optimization problem.Then we can draw the design criterion for the transmitted waveform
in cognitive radar and get a greater mutual information from the simulation results. Finally, the whole paper is summarized.

1. Introduction

The word radar is an acronym for radio detection and
ranging. Today, the technology is so common that the word
has become a standard English noun. The history of radar
extends to the early days of modern electromagnetic theory.
Radar is an electromagnetic system for the detection and
location of reflecting objects such as aircraft, ships, spacecraft,
vehicles, people, and the natural environment. It is widely
used for surveillance, tracking, and imaging applications, for
both civilian and military needs. Early radar development
was driven bymilitary necessity, and nowadays themilitary is
still the dominant user and developer of radar technology. All
early radars use radio waves, but some modern radar today
are based on optical waves and the use of lasers. Radar devel-
opment was accelerated duringWorldWar II. Since that time
development has continued, such that present-day systems
are very sophisticated and advanced. However, traditional
radar systems are lack of adaptivity to the environment in
which it works. Now the radar working conditions are more
and more complex. Modern radar systems should transmit
different waveforms according to different environment. So
we need to consider the problem of adaptive waveform
design.

Cognitive radar is a new framework of radar system
proposed by Haykin [1] in 2006. Cognitive radar is an
advanced form of radar system and it may adaptively and
intelligently interrogate a propagation channel using all

available knowledge including previous measurements, task
priorities, and external databases. In cognitive radar, the
radar continuously learns about the environment through
experience gained from interactions of the receiver with the
environment, the transmitter adjusts its illumination of the
environment in an intelligent manner and the whole radar
system constitutes a closed-loop dynamic system. There are
three basic ingredients in the composition of cognitive radar:
Intelligent signal processing, which itself builds on learning
through interactions of the radar with the surrounding
environment; Feedback from the receiver to the transmitter,
which is a facilitator of intelligence; Preservation of the
information content of radar returns, which is realized by
the Bayesian approach to radar signal processing. Haykin
[2] suggests that such a cognitive radar system can be
represented using a Bayesian formulation whereby many
different channel hypotheses are given a probabilistic rating.
As more information is collected, the parameters of the
channel hypotheses and their relative likelihoods are updated.
The goal of an illumination, therefore, is to efficiently reduce
the uncertainty attributed to each channel hypothesis. Hard
decisions are onlymadewhen confidence is sufficient orwhen
necessity mandates an immediate action. In 2009, Simon
Haykin in another paper introduces the realization methods
of cognitive radar. He suggests that to sense the radar
environment, the receiver uses approximate Bayesian filtering
and to control the radar illumination, the transmitter uses
an incremental dynamic programming. Arasaratnam and
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Haykin [3] have successfully solved the best approximation
to the Bayesian filter in the sense of completely preserving
second-order information, which is called Cubature Kalman
filters. Haykin et al. [4] propose a waveform design method
that efficiently synthesizes waveforms that provide a trade-
off between estimation performance for a Gaussian ensemble
of targets and detection performance for a specific target.
Yang and Blum [5] address the problem of optimum radar
waveform design for both radars employing a single transmit
and receive antenna and the recently proposedmultiple-input
multiple-output radar. Goodman et al. [6] compare two dif-
ferent waveformdesign techniques for use with active sensors
operating in a target recognition application and proposes the
integration of waveform design with a sequential-hypothesis-
testing framework that controls when hard decisions may
be made with adequate confidence. Sira et al. [7] consider
joint sensor configuration and tracking for the problem of
tracking a single target in the presence of clutter using range
and range-rate measurements obtained by waveform-agile,
active sensors in a narrowband environment. An algorithm
to select and configure linear and nonlinear frequency-
modulated waveforms is then proposed. Yang and Blum [8]
use a random target impulse response tomodel the scattering
characteristics of the extended (nonpoint) target, and two
radar waveform design problems with constraints on wave-
form power have been investigated. Leshem et al. [9] describe
the optimization of an information theoretic criterion for
radar waveform design. Romero and Goodman [10] present
illumination waveforms matched to stochastic targets in the
presence of signal-dependent interference. The waveforms
are formed by SNR and MI optimization. Kwon [11] presents
waveform design methods for piezo inkjet dispensers based
on measured meniscus motion. Kershaw and Evans [12]
present an adaptive, waveform selective probabilistic data
association (WSPDA) algorithm for tracking a single target
in clutter. Sira and Cochran [13] propose a method to employ
waveform agility to improve the detection of low radar-
cross section (RCS) targets on the ocean surface that present
low signal-to-clutter ratios due to high sea states and low
grazing angles. Rago et al. [14] investigate the performance
of combined constant and swept frequency waveform fusion
systems. The results indicate that the overall detection-
tracking performance is strongly dependent on the waveform
used, and that the use of the optimal waveform can lead to
dramatic improvement in tracking error.

In this paper, we propose mutual information model of
adaptive waveform design, which can convert the problem of
adaptive waveform design into the problem of optimization.
We consider two situations of no clutter and clutter and
use Newton method and interior point method to solve the
optimization problem.Thenwe can draw the design criterion
for the transmitted waveform in cognitive radar from the
simulation results.

2. Mutual Information Model of Adaptive
Waveform Design

Thebasic parts of a radar system are illustrated in the diagram
of Figure 1.The equipment is divided into several subsystems,

Transmitter Duplexer Receiver

Exciter Synchronizer Signal 
processor Display
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Figure 1: Block diagram of a typical radar system.

corresponding to the usual design specialties within the radar
engineering field. A radar system has a transmitter that emits
radio waves called radar signals in predetermined directions.
When they come into contact with an object the signals are
usually reflected and/or scattered in many directions. The
radar signals that are reflected back towards the transmitter
are the desirable ones which make radar work.

Different from traditional radar, cognitive radar is con-
structed using intelligent signal processing, information feed-
back loop, and soft information processing. In cognitive
radar, the radar continuously learns about the environment
through experience gained from interactions of the receiver
with the environment, the transmitter adjusts its illumination
of the environment in an intelligent manner, and the whole
radar system constitutes a closed-loop dynamic system.
Figure 2 is the block diagram of cognitive radar [1].

From the block diagram of cognitive radar, we can see
that constructing a waveform library is very important in
cognitive radar. Through sensing the environment, cognitive
radar transmits waveform suited to the working conditions.
The radar returns, and environment factors can help to
reconstruct the waveform library. Then the radar can select
different waveforms to transmit. It forms a feedback loop,
and the cycle goes on and on. Figure 3 is block diagram of
waveform library.

Waveform library can store many kinds of waveforms.
The design of radar waveforms has been a topic of consider-
able research interest for several decades. In traditional radar
systems, the radar transmits single waveform. The radar is
difficult to adapt to different environments. Modern radar
is required to transmit different waveforms according to
different environments. So a more flexible design framework
is required, which should be able to synthesize waveforms
that provide a smooth trade-off between competing design
criteria.

Cognitive radar is the next generation radar system.
Figure 4 is a basic signal-processing cycle in cognitive radar.
Cognitive radar has the capability to observe and learn
from the environment. It operates in closed loop, and the
transmitted waveform will be adaptive. In order to achieve
objectives more efficiently, the waveforms should be adapted
in response to prior measurements.

Generally speaking, the waveform design is different as
a result of different tasks of radar. For detection task, the
optimal radar waveform should be able to put as much
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Figure 2: Block diagram of cognitive radar.
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Figure 4: Basic signal-processing cycle in cognitive radar.

transmitted energy as possible into the largest mode of the
target to maximize the output signal-to-noise ratio (SNR).
For estimation task, the optimal radar waveform should
allocate the energy between the received signal and the target
signature. For other tasks, other performance is required.

Cognitive radar is an intelligent system. In different radar
environments, it can synthesize different waveforms. One
possible scheme is tomake a trade-off amongdifferent perfor-
mances. Efficient algorithms are required in the construction
of cognitive radar systems. Such algorithms should provide
a flexible framework that can synthesize waveforms that
provide different trade-offs between a variety of performance
objectives which themselves may also be adapted to the
perceived nature of the environment.

We consider two situations of no clutter and clutter and
set up their mutual information model, respectively.

Figure 5 is the signal model of a target in which there is
no clutter.

𝑥(𝑡)
𝑔(𝑡)

𝑧(𝑡)

𝑛(𝑡)

𝑦(𝑡)

Figure 5: Signal model of a target in which there is no clutter.

We want to find the mutual information 𝐼(g, y | x),
that is, the mutual information between the random target
impulse response and the received radar waveform. Those
functions x that maximize 𝐼(y, z | x) also maximize 𝐼(g, y |
x). So we maximize 𝐼(y, z | x) firstly. Assume that target is
Rayleigh type and noise is Gaussian type.They are statistically
independent.

Assume that 𝐾 represents frequency domain sampling
point, 𝑓𝑘 is a frequency point. Let x𝑘 correspond to the
component of 𝑥(𝑡) with frequency components in 𝐹𝑘, let
z𝑘 correspond to the component of 𝑧(𝑡) with frequency
components in 𝐹𝑘, and let y𝑘 correspond to the component of
𝑦(𝑡) with frequency components in 𝐹𝑘. So the overall mutual
information is

𝐼 (y, z | x) =
𝐾

∑

𝑘=1

𝐼 (y𝑘, z𝑘 | x) . (1)

Assume that the frequency interval 𝐹𝑘 = [𝑓𝑘, 𝑓𝑘 + Δ𝑓] is
sufficiently small, so for𝑓 ∈ 𝐹𝑘,𝑋(𝑓) ≈ 𝑋(𝑓𝑘),𝑍(𝑓) ≈ 𝑍(𝑓𝑘),
𝑌(𝑓) ≈ 𝑌(𝑓𝑘). Δ𝑓 is the bandwidth.
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Next, we definemutual information. In probability theory
and information theory, the mutual information of two
random variables is expressed as the dependence of them.
Mutual information can be defined from mathematics as

𝐼 (𝑌; 𝑍) = 𝐸𝑌,𝑍 [log
𝑝 (𝑌, 𝑍)

𝑝 (𝑌) 𝑝 (𝑍)
] , (2)

where 𝑝(𝑌, 𝑍) is joint probability distribution function, and
𝑝(𝑌) and 𝑝(𝑍) are marginal probability distribution function
of 𝑌 and 𝑍, respectively. Intuitively, mutual information
contains the total information of 𝑌 and𝑍. Assume that𝐻(𝑌)
represents themarginal entropy of𝑌,𝐻(𝑌 | 𝑍) represents the
conditional entropy of 𝑌 given 𝑍. So the mutual information
can also be expressed as

𝐼 (𝑌; 𝑍) = 𝐻 (𝑌) − 𝐻 (𝑌 | 𝑍) . (3)

Since 𝑍,𝑁 are statistically independent, so the variance of 𝑌
is

𝜎
2

𝑌
= 𝜎
2

𝑍
+ 𝜎
2

𝑁
. (4)

We will now solve𝐻(𝑌) and𝐻(𝑌 | 𝑍), respectively.

𝐻(𝑌) = 𝐸 [ln𝑝 (𝑌)] = 1
2
ln 2𝜋𝜎2

𝑌
=
1

2
ln 2𝜋 (𝜎2

𝑍
+ 𝜎
2

𝑁
) ,

𝐻 (𝑌 | 𝑍) =
1

2
ln 2𝜋𝜎2

𝑁
.

(5)

So the mutual information 𝐼(𝑌; 𝑍) is given by

𝐼 (𝑌; 𝑍) = 𝐻 (𝑌) − 𝐻 (𝑌 | 𝑍)

=
1

2
ln 2𝜋 (𝜎2

𝑍
+ 𝜎
2

𝑁
) −

1

2
ln 2𝜋𝜎2

𝑁

=
1

2
ln(

𝜎
2

𝑍
+ 𝜎
2

𝑁

𝜎
2

𝑁

)

=
1

2
ln(1 +

𝜎
2

𝑍

𝜎
2

𝑁

) .

(6)

Referring again to the signals z𝑘, y𝑘, n𝑘, and d𝑘 with
frequency components confined to the interval 𝐹𝑘 = [𝑓𝑘, 𝑓𝑘+
Δ𝑓], we have from the sampling theory that each of the
signals can be represented by a sequence of samples taken
at a uniform sampling rate of 2Δ𝑓. Since we assume that the
spectra𝑋(𝑓),𝑍(𝑓), and𝑌(𝑓) are smooth and have a constant
value (at least approximately) for all 𝑓 ∈ 𝐹𝑘, the samples
of the Gaussian process sampled at a uniform rate 2Δ𝑓 are
statistically independent.

The samples z𝑘 are independent, identically distributed
random variables with zero mean and variance 𝜎2

𝑍
; we note

that the total energy 𝐸𝑍 in z𝑘 is

𝐸𝑍 =
󵄨󵄨󵄨󵄨𝑍 (𝑓𝑘)

󵄨󵄨󵄨󵄨

2
∗ 2Δ𝑓

= 2Δ𝑓
󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)

󵄨󵄨󵄨󵄨

2
𝜎
2

𝐺
(𝑓𝑘) .

(7)

Over the time interval 𝑇, this energy is evenly spread
among 2Δ𝑓𝑇 statistically independent samples. Hence, the
variance of each sample, 𝜎2

𝑍
, is

𝜎
2

𝑍
=

𝐸𝑍

2𝑇Δ𝑓

=
2Δ𝑓

󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)
󵄨󵄨󵄨󵄨

2
𝜎
2

𝐺
(𝑓𝑘)

2𝑇Δ𝑓

=

󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)
󵄨󵄨󵄨󵄨

2
𝜎
2

𝐺
(𝑓𝑘)

𝑇
.

(8)

Similarly, the noise process n𝑘 has total energy 𝐸𝑁 on the
interval 𝑇 given by

𝐸𝑁 = Δ𝑓𝑃𝑁 (𝑓𝑘) 𝑇. (9)

This energy is evenly distributed among the 2𝑇Δ𝑓 sta-
tistically independent, zero-mean samples of n𝑘. Hence, the
variance 𝜎2

𝑁
of each sample is

𝜎
2

𝑁
=
Δ𝑓𝑃𝑁 (𝑓𝑘) 𝑇

2𝑇Δ𝑓
=
𝑃𝑁 (𝑓𝑘)

2
. (10)

Substituting (8) and (10) into (6), we have that for each
sample 𝑍𝑚 of z𝑘 and corresponding sample 𝑌𝑚 of y𝑘, the
mutual information between 𝑍𝑚 and 𝑌𝑚 is

𝐼 (𝑌𝑚; 𝑍𝑚) =
1

2
ln(1 +

𝜎
2

𝑍

𝜎
2

𝑁

)

=
1

2
ln[1 +

󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)
󵄨󵄨󵄨󵄨

2
𝜎
2

𝐺
(𝑓𝑘) /𝑇

𝑃𝑁 (𝑓𝑘) /2
]

=
1

2
ln[1 +

2
󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)

󵄨󵄨󵄨󵄨

2
𝜎
2

𝐺
(𝑓𝑘)

𝑃𝑁 (𝑓𝑘) 𝑇
] .

(11)

Now these are 2𝑇Δ𝑓 statistically independent sample
values for both z𝑘 and y𝑘 in the observation interval 𝑇. Thus,

𝐼 (y𝑘, z𝑘 | x) = 2Δ𝑓𝑇𝐼 (𝑌𝑚; 𝑍𝑚)

= 𝑇Δ𝑓 ln[1 +
2
󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)

󵄨󵄨󵄨󵄨

2
𝜎
2

𝐺
(𝑓𝑘)

𝑃𝑁 (𝑓𝑘) 𝑇
] .

(12)

The overall mutual information is

𝐼 (y, z | x) =
𝐾

∑

𝑘=1

𝐼 (y𝑘, z𝑘 | x)

=

𝐾

∑

𝑘=1

𝑇Δ𝑓 ln[1 +
2
󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)

󵄨󵄨󵄨󵄨

2
𝜎
2

𝐺
(𝑓𝑘)

𝑃𝑁 (𝑓𝑘)
] .

(13)

Following we will consider the situation that there is
clutter. Figure 6 is the signal model of a target ensemble in
ground clutter. Assume that target is Rayleigh type, noise
is Gaussian type, and clutter is Rayleigh type. They are
statistically independent.



Journal of Applied Mathematics 5

𝑥(𝑡)
𝑔(𝑡)

𝑧(𝑡)

𝑛(𝑡)

𝑦(𝑡)

𝑑(𝑡)
𝑐(𝑡)

Figure 6: Signal model of a target ensemble in ground clutter.
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Wewant to find themutual information 𝐼(g, y | x), that is,
the mutual information between the random target impulse
response and the received radar waveform. Those functions
x that maximize 𝐼(y, z | x) also maximize 𝐼(g, y | x). So we
maximize 𝐼(y, z | x) firstly. Assume that target is Rayleigh
type, noise is Gaussian type, and clutter is Rayleigh type.

The probability density distribution function of Rayleigh
distribution is

𝜌 (𝑥) =
𝑥

𝜎
2

𝑉

exp(− 𝑥
2

2𝜎
2

𝑉

) , 𝑥 ≥ 0, (14)

where 𝑥 is clutter amplitude, and 𝜎V is standard deviation of
clutter. Curve of probability distribution of Rayleigh clutter is
in Figure 7. Figure 8 is Rayleigh distribution clutter.

Assume that 𝐾 represents frequency domain sampling
point, 𝑓𝑘 is a frequency point. Let x𝑘 correspond to the
component of 𝑥(𝑡) with frequency components in 𝐹𝑘, let
z𝑘 correspond to the component of 𝑧(𝑡) with frequency
components in 𝐹𝑘, and let y𝑘 correspond to the component of
𝑦(𝑡) with frequency components in 𝐹𝑘. So the overall mutual
information is

𝐼 (y, z | x) =
𝐾

∑

𝑘=1

𝐼 (y𝑘, z𝑘 | x) . (15)
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Figure 8: Rayleigh distribution clutter.

Assume that the frequency interval 𝐹𝑘 = [𝑓𝑘, 𝑓𝑘 + Δ𝑓] is
sufficiently small, so for𝑓 ∈ 𝐹𝑘,𝑋(𝑓) ≈ 𝑋(𝑓𝑘),𝑍(𝑓) ≈ 𝑍(𝑓𝑘),
𝑌(𝑓) ≈ 𝑌(𝑓𝑘), and𝐷(𝑓) ≈ 𝐷(𝑓𝑘). Δ𝑓 is the bandwidth.

Since 𝑍, 𝑁, and 𝑉 are statistically independent, so the
variance of 𝑌 is

𝜎
2

𝑌
= 𝜎
2

𝑍
+ 𝜎
2

𝑁
+ 𝜎
2

𝐷
. (16)

We will now solve 𝐻(𝑌) and 𝐻(𝑌 | 𝑍), respectively, as
follows:

𝐻(𝑌) = 𝐸 [ln𝑝 (𝑌)]= 1
2
ln 2𝜋𝜎2

𝑌
=
1

2
ln 2𝜋 (𝜎2

𝑍
+ 𝜎
2

𝑁
+ 𝜎
2

𝐷
) ,

𝐻 (𝑌 | 𝑍) =
1

2
ln 2𝜋 (𝜎2

𝑁
+ 𝜎
2

𝐷
) .

(17)

So the mutual information 𝐼(𝑌; 𝑍) is given by

𝐼 (𝑌; 𝑍) = 𝐻 (𝑌) − 𝐻 (𝑌 | 𝑍)

=
1

2
ln 2𝜋 (𝜎2

𝑍
+ 𝜎
2

𝑁
+ 𝜎
2

𝐷
) −

1

2
ln 2𝜋 (𝜎2

𝑁
+ 𝜎
2

𝐷
)

=
1

2
ln(

𝜎
2

𝑍
+ 𝜎
2

𝑁
+ 𝜎
2

𝐷

𝜎
2

𝑁
+ 𝜎
2

𝐷

)

=
1

2
ln(1 +

𝜎
2

𝑍

𝜎
2

𝑁
+ 𝜎
2

𝐷

) .

(18)

The total energy 𝐸𝑍 in z𝑘 is

𝐸𝑍 =
󵄨󵄨󵄨󵄨𝑍 (𝑓𝑘)

󵄨󵄨󵄨󵄨

2
∗ 2Δ𝑓

= 2Δ𝑓
󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)

󵄨󵄨󵄨󵄨

2
𝜎
2

𝐺
(𝑓𝑘) .

(19)
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Over the time interval 𝑇, this energy is evenly spread
among 2Δ𝑓𝑇 statistically independent samples. Hence, the
variance of each sample, 𝜎2

𝑍
, is

𝜎
2

𝑍
=

𝐸𝑍

2𝑇Δ𝑓

=
2Δ𝑓

󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)
󵄨󵄨󵄨󵄨

2
𝜎
2

𝐺
(𝑓𝑘)

2𝑇Δ𝑓

=

󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)
󵄨󵄨󵄨󵄨

2
𝜎
2

𝐺
(𝑓𝑘)

𝑇
.

(20)

Similarly, the noise process n𝑘 has total energy 𝐸𝑁 on the
interval 𝑇 given by

𝐸𝑁 = Δ𝑓𝑃𝑁 (𝑓𝑘) 𝑇. (21)

This energy is evenly distributed among the 2𝑇Δ𝑓 sta-
tistically independent, zero-mean samples of n𝑘. Hence, the
variance 𝜎2

𝑁
of each sample is

𝜎
2

𝑁
=
Δ𝑓𝑃𝑁 (𝑓𝑘) 𝑇

2𝑇Δ𝑓
=
𝑃𝑁 (𝑓𝑘)

2
. (22)

Similarly,

𝐸𝑉 =
󵄨󵄨󵄨󵄨𝑉 (𝑓𝑘)

󵄨󵄨󵄨󵄨

2
∗ 2Δ𝑓

= 2Δ𝑓
󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)

󵄨󵄨󵄨󵄨

2
𝜎
2

𝐷
(𝑓𝑘) ,

(23)

𝜎
2

𝐷
=

𝐸𝐷

2𝑇Δ𝑓

=
2Δ𝑓

󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)
󵄨󵄨󵄨󵄨

2
𝜎
2

𝑉
(𝑓𝑘)

2𝑇Δ𝑓

=

󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)
󵄨󵄨󵄨󵄨

2
𝜎
2

𝑉
(𝑓𝑘)

𝑇
.

(24)

Substituting (20), (22), and (24) into (18), we have that for
each sample𝑍𝑚 of z𝑘 and corresponding sample𝑌𝑚 of y𝑘, the
mutual information between 𝑍𝑚 and 𝑌𝑚 is

𝐼 (𝑌𝑚; 𝑍𝑚) =
1

2
ln(1 +

𝜎
2

𝑍

𝜎
2

𝑁
+ 𝜎
2

𝐷

)

=
1

2
ln[1 +

󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)
󵄨󵄨󵄨󵄨

2
𝜎
2

𝐺
(𝑓𝑘) /𝑇

𝑃𝑁 (𝑓𝑘) /2 +
󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)

󵄨󵄨󵄨󵄨

2
𝜎
2

𝑉
(𝑓𝑘) /𝑇

]

=
1

2
ln[1 +

2
󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)

󵄨󵄨󵄨󵄨

2
𝜎
2

𝐺
(𝑓𝑘)

𝑃𝑁 (𝑓𝑘) 𝑇 + 2
󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)

󵄨󵄨󵄨󵄨

2
𝜎
2

𝑉
(𝑓𝑘)

] .

(25)

Now these are 2𝑇Δ𝑓 statistically independent sample
values for both z𝑘 and y𝑘 in the observation interval 𝑇. Thus,

𝐼 (y𝑘, z𝑘 | x) = 2Δ𝑓𝑇𝐼 (𝑌𝑚; 𝑍𝑚)

= 𝑇Δ𝑓 ln[1 +
2
󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)

󵄨󵄨󵄨󵄨

2
𝜎
2

𝐺
(𝑓𝑘)

𝑃𝑁 (𝑓𝑘) 𝑇 + 2
󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)

󵄨󵄨󵄨󵄨

2
𝜎
2

𝑉
(𝑓𝑘)

] .

(26)

The overall mutual information is

𝐼 (y, z | x)

=

𝐾

∑

𝑘=1

𝐼 (y𝑘, z𝑘 | x)

=

𝐾

∑

𝑘=1

𝑇Δ𝑓 ln[1 +
2
󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)

󵄨󵄨󵄨󵄨

2
𝜎
2

𝐺
(𝑓𝑘)

𝑃𝑁 (𝑓𝑘) 𝑇 + 2
󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)

󵄨󵄨󵄨󵄨

2
𝜎
2

𝑉
(𝑓𝑘)

] .

(27)

3. Optimal Waveform Design Using Newton
Method and Interior Point Method

Considering the situation that there is no clutter, we can get

𝐼 (g, y | x) =
𝐾

∑

𝑘=1

𝑇Δ𝑓 ln[1 +
2
󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)

󵄨󵄨󵄨󵄨

2
𝜎
2

𝐺
(𝑓𝑘)

𝑃𝑁 (𝑓𝑘) 𝑇
] . (28)

We can write in another form

𝐼 (g, y | x) = 𝑇Δ𝑓
𝐾

∑

𝑘=1

ln (1 + 𝛽 (𝑓𝑘)𝑀
𝑇

𝑓𝑘
R𝑥𝑥) , (29)

where 𝐿𝑥 is the length of discrete transmitted signal, and R𝑥𝑥
is the autocorrelation function of the transmitted signal as
follows:

𝛽 (𝑓) =
2𝜎
2

𝐺
(𝑓)

𝑃𝑁 (𝑓) 𝑇
,

𝑀𝑓𝑘
= [1, 2 cos (2𝜋𝑓𝑘) , 2 cos (4𝜋𝑓𝑘) , . . . ,

2 cos (2𝜋 (𝐿𝑥 − 1) 𝑓𝑘)]
𝑇

𝑘 = 1, . . . , 𝐾,

𝑅𝑥𝑥 (𝑗) =

𝐿𝑥−1

∑

𝑛=0

𝑥 (𝑛 + 𝑗) 𝑥 (𝑛) ,

R𝑥𝑥 = [𝑅𝑥𝑥 (0) , 𝑅𝑥𝑥 (1) , . . . , 𝑅𝑥𝑥 (𝐿𝑥 − 1)]
𝑇
.

(30)

Following we will consider some constraints.
First, in order to guarantee that radar can detect target,

SNR needs to be greater than a certain threshold; that is,

1

𝜎2
𝑛

𝐸signal ≥ SNR0. (31)

Second, the energy of transmitted signal should be a fixed
value; that is,

∫

𝑇𝑥

0

𝑥
2
(𝑡) 𝑑𝑡 = 𝐸𝑥.

(32)

Third, the power of transmitted signal should be greater
than a certain threshold; that is,

∫

𝑓0+𝑊

𝑓

󵄨󵄨󵄨󵄨𝑋 (𝑓)
󵄨󵄨󵄨󵄨

2
𝑑𝑓 ≥ 𝑃𝑥. (33)
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Finally, the PSD of transmitted signal should be nonneg-
ative for all frequencies; that is,

𝑆𝑥𝑥 (𝑓) ≥ 0. (34)

Let the four constraints convert the constraint that con-
tains R𝑥𝑥, then the optimization problem can be expressed as

min
R𝑥𝑥

−

𝐾

∑

𝑘=1

ln (1 + 𝛽̃ (𝑓𝑘) 𝑀̃
𝑇

𝑓𝑘
R̃𝑥𝑥) ,

s.t. − [𝐺̃
𝑇

, 01×(𝐿𝑥−𝐿𝑔)] R̃𝑥𝑥 ≤ g𝑇g𝐸𝑥 −
𝜎
2

𝑛

𝑇2
𝑠

𝑆𝑁𝑅0

− 𝑝̃
𝑇R̃𝑥𝑥 ≤ 𝑊𝐸𝑥 − 𝑃𝑥

− 𝑀̃
𝑇

𝑓𝑘
R̃𝑥𝑥 ≤ 𝐸𝑥,

(35)

where

R𝑥𝑥 = [𝑅𝑥𝑥 [0] , R̃𝑥𝑥] ,

𝛽̃ (𝑓𝑘) =

2𝜎
2

𝑔
(𝑓𝑘)

𝜎2
𝑛
𝑇 + 2𝜎2

𝑛
(𝑓𝑘) 𝐸𝑥

,

𝐺̃
𝑇

= 2g𝑇 [
←󳨀

𝐿
1
(g𝑇)
𝑇

, . . . ,
←󳨀
𝐿
𝐿𝑔−1

(g𝑇)
𝑇

] ,

g = [𝑔 (1) , 𝑔 (2) , . . . , 𝑔 (𝐿𝑔)]
𝑇

,

𝑝̃ = [
1

𝜋
((sin 2𝜋)|𝑓0+𝑊

𝑓0
) , . . . ,

1

(𝐿𝑥 − 1) 𝜋

× ( sin 2𝜋 (𝐿𝑥 − 1) 𝑓
󵄨󵄨󵄨󵄨

𝑓0+𝑊

𝑓0
) ]

𝑇

,

𝑀̃𝑓𝑘
= [2 cos (2𝜋𝑓𝑘) , 2 cos (4𝜋𝑓𝑘) , . . . ,

2 cos (2𝜋 (𝐿𝑥 − 1) 𝑓)]
𝑇
.

(36)

Writing the optimization problem in a simple form, we
can get

min
𝑥

−

𝐾

∑

𝑘=1

ln (1 + 𝑐𝑇
𝑘
𝑥) ,

s.t. 𝑎
𝑇

1
𝑥 ≤ 𝑏1

𝑎
𝑇

2
𝑥 ≤ 𝑏2

𝑎
𝑇

𝑖+2
𝑥 ≤ 𝑏𝑖+2, 𝑖 = 1, . . . , 𝐾,

(37)

where

𝑥 = R̃𝑥𝑥,

𝑐
𝑇

𝑘
= 𝛽̃ (𝑓𝑘) 𝑀̃

𝑇

𝑓𝑘
, 𝑘 = 1, . . . , 𝐾,

𝑎
𝑇

1
= − [𝐺̃

𝑇

, 01×(𝐿𝑥−𝐿𝑔)] ,

𝑏1 = g𝑇g𝐸𝑥 −
𝜎
2

𝑛

𝑇2
𝑠

SNR0,

𝑎
𝑇

2
= −𝑝̃
𝑇
,

𝑏2 = 𝑊𝐸𝑥 − 𝑃𝑥,

𝑎
𝑇

𝑘+2
= −𝑀̃

𝑇

𝑓𝑘
, 𝑘 = 1, . . . , 𝐾,

𝑏𝑘+2 = 𝐸𝑥, 𝑘 = 1, . . . , 𝐾.

(38)

Following we will use Newton method and interior point
method to solve the optimization problem. Using a log-
barrier function, the optimization can be changed into the
following form:

min
𝑥
𝑓 (𝑥) = −𝑡br

𝐾

∑

𝑘=1

ln (1 + 𝑐𝑇
𝑘
𝑥) −

𝐾+2

∑

𝑖=1

ln (𝑏𝑖 − 𝑎
𝑇

𝑖
𝑥) . (39)

The gradient and Hessian of 𝑓(𝑥) can be calculated by

∇𝑓 (𝑥) = −𝑡br

𝐾

∑

𝑘=1

1

1 + 𝑐
𝑇

𝑘

𝑐𝑘 +

𝐾+2

∑

𝑖=1

1

𝑏𝑖 − 𝑎
𝑇

𝑖
𝑥
𝑎𝑖,

∇
2
𝑓 (𝑥) = 𝑡br

𝐾

∑

𝑘=1

1

(1 + 𝑐
𝑇

𝑘
)
2
𝑐𝑘𝑐
𝑇

𝑘
−

𝐾+2

∑

𝑖=1

1

(𝑏𝑖 − 𝑎
𝑇

𝑖
𝑥)
2
𝑎𝑖𝑎
𝑇

𝑖
.

(40)

Using Newton method to find the optimal solution,
Newton step size andNewton descent are needed to calculate.
The formula of Newton step size is

𝑡nt = −∇
2
𝑓(𝑥)
−1
∇𝑓 (𝑥)

=

∑
𝐾+2

𝑖=1
(1/ (𝑏𝑖−𝑎

𝑇

𝑖
𝑥)) 𝑎𝑖−𝑡br ∑

𝐾

𝑘=1
(1/ (1+𝑐

𝑇

𝑘
)) 𝑐𝑘

∑
𝐾+2

𝑖=1
(1/(𝑏𝑖−𝑎

𝑇

𝑖
𝑥)
2
) 𝑎𝑖𝑎
𝑇

𝑖
−𝑡br ∑

𝐾

𝑘=1
(1/(1+𝑐

𝑇

𝑘
)
2
) 𝑐𝑘𝑐
𝑇

𝑘

.

(41)

The formula of Newton descent is

𝜆 (𝑥) = √− (∇𝑓(𝑥)
𝑇
∇2𝑓(𝑥)

−1
∇𝑓 (𝑥)). (42)

Then we will use interior point method to solve the
optimization problem. Interior pointmethod contains double
loop. The outer loop step size is 𝑡br, and the inner loop
(Newton loop) step size is 𝑡nt.The algorithm can be described
as follows:

(1) given an initial value 𝑡br 0, execute Newton loop;
(2) given an initial value𝑥0 ∈ dom 𝑓, and allowable error

𝜀nt > 0;
(3) calculate Newton step size

𝑡nt = −∇
2
𝑓(𝑥)
−1
∇𝑓 (𝑥) ; (43)

(4) calculate Newton descent

𝜆 (𝑥) = √− (∇𝑓(𝑥)
𝑇
∇2𝑓(𝑥)

−1
∇𝑓 (𝑥)); (44)
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Figure 9: PSD of Rayleigh target impulse.

(5) when 𝜆
2
/2 ≤ 𝜀nt, stop Newton loop and return

optimal point 𝑥0; otherwise, given initial value 𝑡nt0,
renew variable 𝑥0 = 𝑥0 + 𝑡nt 0 ∗ 𝑡nt;

(6) for the 𝑥0 Newton loop returns, certify in the outer
loop. If𝑀/𝑡br ≤ 𝜀br, the 𝑥0 Newton loop returns are
the global optimal point; otherwise, calculate 𝑡br =
𝜇𝑡br and execute Newton loop.

For the situation there is clutter, and we can get

𝐼 (g, y | x)

=

𝐾

∑

𝑘=1

𝑇Δ𝑓 ln[1 +
2
󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)

󵄨󵄨󵄨󵄨

2
𝜎
2

𝐺
(𝑓𝑘)

𝑃𝑁 (𝑓𝑘) 𝑇 + 2
󵄨󵄨󵄨󵄨𝑋 (𝑓𝑘)

󵄨󵄨󵄨󵄨

2
𝜎
2

𝑉
(𝑓𝑘)

] .

(45)

Using the previous method, we can solve the optimization
problem when there is clutter.

4. Simulations

We consider a point target in the radar’s surveillance region
with a known impulse response. Suppose that the frequency
of the signal is normalized to be (0, 1). In order to satisfy the
Shannon sampling theorem, the sampling frequency is set
to 2. The lengths of target impulse response and waveform
vector are 63 and 63, respectively. The energy constraint
is 1, and power percentage is 0.9. This frequency interval
is divided into 2048 non-overlapping frequency bins. The
tolerance of Newton method is 10−5. The noise variance is
0.1.The SNR threshold is−5 dB. Tolerance ofNewtonmethod
and barrier method are 10−5 and 10−5, respectively. The step
size increment factor for the barrier method loop is 5. Initial
step size for outer loop and inner loop is 5 and 1, respectively.
Parameters in backtracking line search method are 0.3 and
0.7, respectively. We use Rayleigh-type radar signature in this
paper.

Figure 9 is PSD of Rayleigh target impulse. Figure 10 is
PSD of transmitted waveform. Figure 11 is the superposition
of PSD of Rayleigh target impulse and transmitted waveform
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Figure 10: PSD of transmitted waveform.
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Figure 11: Superposition of PSD of Rayleigh target impulse and
transmitted waveform (no clutter).

(no clutter). The figure shows that the optimal radar wave-
forms will spread its energy amongmost of the spectral peaks
of the target response. When mutual information reaches
maximum, the peak of PSD of transmitted waveform changes
with the peak of PSD of target impulse. So in order to
maximize the mutual information in the waveform design of
cognitive radar, we should transmit thewaveformwhose peak
of PSD changes with that of target impulse.

Figure 12 is mutual information for all central points.
It can be seen that when the central point can accurately
approximate the optimal point, themutual information tends
to reach the maximum. The mutual information is greater
than that of Bell proposed in [15].

Figure 13 is superposition of PSD of Rayleigh target
impulse and transmitted waveform (in clutter). The figure
shows that the optimal radar waveformswill spread its energy
among most of the spectral peaks of the target response.
When mutual information reaches maximum, the peak of
PSD of transmitted waveform changes with the peak of PSD
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Figure 12: Mutual information for all central points.
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Figure 13: Superposition of PSD of Rayleigh target impulse and
transmitted waveform (no clutter).

of target impulse. However, as a result of clutter influence,
the trend level of the peak of PSD of transmitted waveform
to that of target impulse in clutter is weak than no clutter.
So the design of transmitted waveform should consider the
influence of clutter. The quantitative analysis of clutter to the
trend level is necessary.

Figure 14 is mutual information for all central points.
It can be seen that when the central point can accurately
approximate the optimal point, themutual information tends
to reach the maximum. The mutual information is also
greater than that of Bell proposed in [15]. However, the
mutual information is lower than that in Figure 11 due to the
influence of clutter. So we should consider the quantitative
analysis of clutter to the mutual information.

5. Conclusions

Cognitive radar can optimally decide or select the radar
waveform for next transmission based on the observations of
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Figure 14: Mutual information for all central points.

past radar returns. Adaptive waveform design is an important
problem in cognitive radar. In this paper, we propose mutual
information model of adaptive waveform design, which can
convert the problem of adaptive waveform design into the
problem of optimization. We consider two situations of no
clutter and clutter and use Newton method and interior
point method to solve the optimization problem. From the
simulation results, we can see that using the IPM, the mutual
information tends to reach the maximum when the central
point can accurately approximate the optimal point, and the
mutual information is greater than that proposed before. In
the next step we should consider the quantitative analysis of
clutter to the trend level and the mutual information.
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