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A characteristic nonconforming mixed finite element method (MFEM) is proposed for the convection-dominated diffusion
problem based on a new mixed variational formulation. The optimal order error estimates for both the original variable 𝑢 and
the auxiliary variable 𝜎 with respect to the space are obtained by employing some typical characters of the interpolation operator
instead of the mixed (or expanded mixed) elliptic projection which is an indispensable tool in the traditional MFEM analysis. At
last, we give some numerical results to confirm the theoretical analysis.

1. Introduction

Consider the following convection-dominated diffusion pro-
blem:

𝑢
𝑡
+ a (𝑥, 𝑦) ⋅ ∇𝑢 − ∇ ⋅ (𝑏 (𝑥, 𝑦) ∇𝑢)

= 𝑓 (𝑥, 𝑦, 𝑡) , (𝑥, 𝑦, 𝑡) ∈ Ω × (0, 𝑇) ,

𝑢 (𝑥, 𝑦, 𝑡) = 0, (𝑥, 𝑦, 𝑡) ∈ 𝜕Ω × (0, 𝑇) ,

𝑢 (𝑥, 𝑦, 0) = 𝑢
0
(𝑥, 𝑦) , (𝑥, 𝑦) ∈ Ω,

(1)

whereΩ is a bounded polygonal domain inR2 with Lipschitz
continuous boundary 𝜕Ω, 𝐽 = (0, 𝑇], 0 < 𝑇 < +∞. ∇ and
∇⋅ denote the gradient and the divergence operators, respec-
tively.

Model (1) has been widely used to describe the conduc-
tion of heat in fluid, the diffusion of soluble minerals or pol-
lutants in groundwater, the incompressiblemiscible displace-
ment in porous media, and so on. The parameters appearing
in (1) satisfy the following assumptions [1, 2]:

(A1) 𝑢 denotes, for example, the concentration or satura-
tion of soluble substances;

(A2) a(𝑥, 𝑦) = (𝑎
1
(𝑥, 𝑦), 𝑎

2
(𝑥, 𝑦)) represents Darcy veloc-

ity of mixed fluid, and 𝑓 a source term;
(A3) 𝑏(𝑥, 𝑦) is sufficiently smooth and there exist constants

𝑏
1
and 𝑏
2
, such that

0 < 𝑏
1
≤ 𝑏 (𝑥, 𝑦) ≤ 𝑏

2
< +∞, ∀ (𝑥, 𝑦) ∈ Ω. (2)

It is well known that convection dominated-diffusion
problem (1) often presents serious numerical difficulties.
The standard numerical methods, such as finite difference
method (FDM), FEMandMFEM, usually produce numerical
diffusion along sharp fronts. In order to overcome this fatal
defect, Douglas et al. [3] combined the method of chara-
cteristics with FE procedures so as to reduce the truncation
error, and it allows us to use large time steps without lose of
accuracy. Moreover, there have appeared many effective dis-
cretization schemes concentrating on the hyperbolic nature
of the equation, for example, characteristic FD streamline dif-
fusion method [4, 5], Eulerian-Lagrangian method [6, 7],
characteristic-finite volume element method [2, 8, 9],
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characteristics-mixed covolume method [10, 11], the mod-
ified method of characteristic-Galerkin FE procedure [12],
characteristic nonconforming FEM [13–15], characteristic
MFEM [16–19] and expanded characteristic MFEM [1, 20],
and so forth.

As for the characteristic MFEM or expanded character-
istic MFEM, the convergence rates of 𝑢 and 𝜎 in existing
literature were suboptimal [11, 18, 21, 22] and the convergence
analysis was valid only to the case of the lowest order MFE
approximation [10, 17]. So far, to our best knowledge
there are few studies on the optimal order error estimates
except for [23], in which a family of characteristic MFEM
with arbitrary degree of Raviart-Thomas-Nédélec space in
[24, 25] for transient convection diffusion equations was
studied.

Recently, based on the low regularity requirement of the
flux variable in practical problems, a new mixed variational
form for second elliptic problem was proposed in [26]. It has
two typical advantages: the flux space belongs to the square
integrable space instead of the traditional𝐻( div ; Ω), which
makes the choices ofMFE spaces sufficiently simple and easy;
the LBB condition is automatically satisfiedwhen the gradient
of approximation space for the original variable is included
in approximation space for the flux variable. Motivated by
this idea, this paper will construct a characteristic noncon-
forming MFE scheme for (1) with a new mixed variational
formulation. Similar to the expanded characteristic MFEM,
the coefficient 𝑏 of (1) in this proposed scheme does not
need to be inverted; therefore, it is also suitable for the case
when 𝑏 is small. By employing some distinct characters of
the interpolation operators on the element instead of the
mixed or expandedmixed elliptic projection used in [1, 17, 20]
which is an indispensable tool in the traditional characteristic
MFEM analysis, the 𝑂(ℎ2) order error estimate in 𝐿

2-norm
for original variable 𝑢, which is one order higher than [1, 20]
and half order higher than [18], is derived, and the optimal
error estimates with order𝑂(ℎ) for auxiliary variable 𝜎 in 𝐿2-
normand for𝑢 in broken𝐻1-normare obtained, respectively.
It seems that the result for 𝑢 in broken 𝐻

1-norm has never
been seen in the existing literature by making full use of the
high-accuracy estimates of the lowest order Raviart-Thomas
element proved by the technique of integral identities in [27]
and the special properties of nonconforming 𝐸𝑄rot

1
element

(see Lemma 1 below).
The paper is organized as follows. Section 2 is devoted

to the introduction of the nonconforming FE approximation
spaces and their corresponding interpolation operators. In
Section 3, we will give the construction of the new charac-
teristic nonconformingMFE scheme and two important lem-
mas, and the existence and uniqueness of the discrete scheme
solutionwill be proved. In Section 4, the convergence analysis
and optimal error estimates for both the original variable
𝑢 and the flux variable 𝜎 are obtained. In Section 5, some
numerical results are provided to illustrate the effectiveness
of our proposed method.

Throughout this paper,𝐶 denotes a generic positive cons-
tant independent of the mesh parameters ℎ and Δ𝑡 with
respect to domainΩ and time 𝑡.

2. Construction of Nonconforming MFEs

As in [28], we frequently employ the space 𝐿2(Ω) of square
integrable functions with scalar product and norm

(𝑢, V) = (𝑢, V)
𝐿
2
(Ω)

= (∫

Ω

𝑢V𝑑𝑥𝑑𝑦)
1/2

,

‖V‖ = ‖V‖
𝐿
2
(Ω)

= (∫

Ω

V
2
𝑑𝑥𝑑𝑦)

1/2

.

(3)

We also employ the Sobolev space 𝐻𝑚(Ω), 𝑚 ≥ 1, of func-
tions V such that 𝐷𝛽V ∈ 𝐿2(Ω) for all |𝛽| ≤ 𝑚, equipped with
the norm and seminorm

‖V‖
𝑚,Ω

= ‖V‖
𝐻
𝑚
(Ω)

= ( ∑

|𝛽|≤𝑚

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝛽
V
󵄩
󵄩
󵄩
󵄩
󵄩

2

)

1/2

,

|V|
𝑚,Ω

= |V|
𝐻
𝑚
(Ω)

= ( ∑

|𝛽|=𝑚

󵄩
󵄩
󵄩
󵄩
󵄩
𝐷
𝛽
V
󵄩
󵄩
󵄩
󵄩
󵄩

2

)

1/2

.

(4)

The space 𝐻1
0
(Ω) denotes the closure of the set of infinitely

differentiable functions with compact supports inΩ. For any
Sobolev space 𝑌, 𝐿𝑝(0, 𝑇; 𝑌) is the space of measurable 𝑌-
valued functions Φ of 𝑡 ∈ (0, 𝑇), such that ∫𝑇

0
‖Φ(⋅, 𝑡)‖

𝑝

𝑌
𝑑𝑡 <

∞ if 1 ≤ 𝑝 < ∞, or such that ess sup
0<𝑡<𝑇

‖Φ(⋅, 𝑡)‖
𝑌
< ∞ if

𝑝 = ∞.
We now introduce the nonconforming MFE space des-

cribed in [29] for and summarize it as follows.
Let Ω ⊂ R2 be a polygon domain with edges parallel to

the coordinate axes on 𝑥𝑦 plane, and let 𝑇
ℎ
be a rectangular

subdivision of Ω satisfying the regular condition [30]. For a
given element 𝑒 ∈ 𝑇

ℎ
, denote the barycenter of element 𝑒 by

(𝑥
𝑒
, 𝑦
𝑒
), denote the length of edges parallel to 𝑥-axis and 𝑦-

axis by 2ℎ
𝑥
𝑒

and 2ℎ
𝑦
𝑒

, respectively, ℎ
𝑒
= max

𝑒∈𝑇
ℎ

{ℎ
𝑥
𝑒

, ℎ
𝑦
𝑒

}, ℎ =

max
𝑒∈𝑇
ℎ

ℎ
𝑒
.

Let 𝑒 = [−1, 1] × [−1, 1] be the reference element on 𝑥𝑦
plane and four vertices ̂

𝑑
1
= (−1, −1), ̂𝑑

2
= (1, −1), ̂𝑑

3
=

(1, 1), and ̂
𝑑
4
= (−1, 1), the four edges ̂𝑙

1
=

̂
𝑑
1
̂
𝑑
2
, ̂𝑙
2
=

̂
𝑑
2
̂
𝑑
3
,

̂
𝑙
3
=
̂
𝑑
3
̂
𝑑
4
, and ̂𝑙

4
=
̂
𝑑
4
̂
𝑑
1
. Then there exists an affine mapping

𝐹
𝑒
: 𝑒 → 𝑒 as

𝑥 = 𝑥
𝑒
+ ℎ
𝑥
𝑒

𝑥,

𝑦 = 𝑦
𝑒
+ ℎ
𝑦
𝑒

𝑦.

(5)

Define the FE spaces (𝑒, ̂𝑃𝑖, ̂∑
𝑖

), (𝑖 = 1, 2, 3) by
̂
∑

1

= {V̂
1
, V̂
2
, V̂
3
, V̂
4
, V̂
5
} , 𝑃̂

1
= span {1, 𝑥, 𝑦, 𝜙 (𝑥) , 𝜙 (𝑦)} ,

̂
∑

2

= {𝑝
1
, 𝑝
2
} , 𝑃̂

2
= span {1, 𝑥} ,

̂
∑

3

= {𝑞
1
, 𝑞
2
} , 𝑃̂

3
= span {1, 𝑦} ,

(6)

where V̂
𝑖
= (1/|

̂
𝑙
𝑖
|) ∫
𝑙̂
𝑖

V̂𝑑𝑠, (𝑖 = 1, 2, 3, 4), V̂
5

= (1/|𝑒|)

∫
𝑒
V̂𝑑𝑥 𝑑𝑦, 𝜙(𝑡) = (1/2)(3𝑡

2
− 1), 𝑝

𝑖
= (1/|

̂
𝑙
2𝑖
|) ∫
𝑙̂
2𝑖

𝑝𝑑𝑠, 𝑞
𝑖
=

(1/|
̂
𝑙
2𝑖−1

|) ∫
𝑙̂
2𝑖−1

𝑞𝑑𝑠, (𝑖 = 1, 2).
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The interpolation operators on 𝑒 are defined as follows:

Π̂
1
: V̂ ∈ 𝐻

1
(𝑒) 󳨀→ Π̂

1
V̂ ∈ 𝑃̂
1
,

∫

𝑙̂
𝑖

(Π̂
1
V̂ − V̂) 𝑑𝑠 = 0, (𝑖 = 1, 2, 3, 4) ,

∫

𝑒

(Π̂
1
V̂ − V̂) 𝑑𝑥 𝑑𝑦 = 0,

Π̂
2
: 𝑝 ∈ 𝐻

1
(𝑒) 󳨀→ Π̂

2
𝑝 ∈ 𝑃̂

2
,

∫

𝑙̂
2𝑖

(Π̂
2
𝑝 − 𝑝) 𝑑𝑠 = 0, (𝑖 = 1, 2) ,

Π̂
3
: 𝑞 ∈ 𝐻

1
(𝑒) 󳨀→ Π̂

3
𝑞 ∈ 𝑃̂
3
,

∫

𝑙̂
2𝑖−1

(Π̂
3
𝑞 − 𝑞) 𝑑𝑠 = 0, (𝑖 = 1, 2) .

(7)

Then the associated nonconforming 𝐸𝑄rot
1

element space𝑀
ℎ

[29] and lowest order Raviart-Thomas element space V
ℎ
[25,

27] are defined as

𝑀
ℎ
= {V
ℎ
: V
ℎ
|
𝑒
= V̂ ∘ 𝐹

−1

𝑒
, V̂ ∈ 𝑃̂

1
,

∫

𝐹

[V
ℎ
] 𝑑𝑠 = 0, 𝐹 ⊂ 𝜕𝑒} ,

V
ℎ
= {w
ℎ
= (𝑤
ℎ1
, 𝑤
ℎ2
) :

w
ℎ
|
𝑒
= (𝑤
1
∘ 𝐹
−1

𝑒
, 𝑤
2
∘ 𝐹
−1

𝑒
) ,

ŵ = (𝑤
1
, 𝑤
2
) ∈ 𝑃̂
2
× 𝑃̂
3
} ,

(8)

respectively, where [𝜑] represents the jump value of 𝜑 across
the boundary 𝐹, and [𝜑] = 𝜑 if 𝐹 ⊂ 𝜕Ω.

Similarly, the interpolation operators 𝜋
1

ℎ
and 𝜋

2

ℎ
are

defined as

𝜋
1

ℎ
: 𝐻
1
(Ω) 󳨀→ 𝑀

ℎ
, 𝜋

1

ℎ

󵄨
󵄨
󵄨
󵄨
󵄨𝑒
= 𝜋
1

𝑒
,

𝜋
1

𝑒
V = (Π̂

1
V̂) ∘ 𝐹

−1

𝑒
, ∀V ∈ 𝐻

1
(Ω) ,

𝜋
2

ℎ
: (𝐻
1
(Ω))

2

󳨀→ V
ℎ
, 𝜋
2

ℎ
|
𝑒
= 𝜋
2

𝑒
,

𝜋
2

𝑒
w = ((Π̂

2
𝑤
1
) ∘ 𝐹
−1

𝑒
, (Π̂
3
𝑤
2
) ∘ 𝐹
−1

𝑒
) ,

∀w = (𝑤
1
, 𝑤
2
) ∈ (𝐻

1
(Ω))

2

.

(9)

3. New Characteristic Nonconforming MFE
Scheme and Two Lemmas

Let 𝜓(𝑥, 𝑦) = (1 + |a(𝑥, 𝑦)|2)1/2 and 𝜏 = 𝜏(𝑥, 𝑦) be the chara-
cteristic direction associated with 𝑢

𝑡
+ a(𝑥, 𝑦) ⋅ ∇𝑢, such that

𝜕

𝜕𝜏

=

1

𝜓 (𝑥, 𝑦)

𝜕

𝜕𝑡

+

a (𝑥, 𝑦)
𝜓 (𝑥, 𝑦)

⋅ ∇. (10)

Then (1) can be put in the following system:

𝜓 (𝑥, 𝑦)

𝜕𝑢

𝜕𝜏

− ∇ ⋅ (𝑏 (𝑥, 𝑦) ∇𝑢) = 𝑓 (𝑥, 𝑦, 𝑡) ,

∀ (𝑥, 𝑦, 𝑡) ∈ Ω × (0, 𝑇] ,

𝑢 (𝑥, 𝑦, 𝑡) = 0, (𝑥, 𝑦, 𝑡) ∈ 𝜕Ω × (0, 𝑇] ,

𝑢 (𝑥, 𝑦, 0) = 𝑢
0
(𝑥, 𝑦) , (𝑥, 𝑦) ∈ Ω.

(11)

By introducing 𝜎 = −𝑏(𝑥, 𝑦)∇𝑢 and using Green’s
formula, we obtain the new characteristic mixed form of (11).
Find (𝑢, 𝜎) : (0, 𝑇] → 𝐻

1

0
(Ω) × (𝐿

2
(Ω))

2, such that

(𝜓 (𝑥, 𝑦)

𝜕𝑢

𝜕𝜏

, V) − (𝜎, ∇V) = (𝑓 (𝑥, 𝑦, 𝑡) , V) ∀V ∈ 𝐻
1

0
(Ω) ,

(𝜎,w) + (𝑏 (𝑥, 𝑦) ∇𝑢,w) = 0, ∀w ∈ (𝐿
2
(Ω))

2

.

(12)

Let Δ𝑡 > 0,𝑁 = 𝑇/Δ𝑡 ∈ Z, 𝑡𝑛 = 𝑛Δ𝑡, and 𝜙𝑛 = 𝜙(𝑥, 𝑦, 𝑡
𝑛
).

When solving 𝑢
𝑛+1

ℎ
, we would like to make the scheme as

implicit as possible by using of the characteristic vector 𝜏.
Denote𝑋 = (𝑥, 𝑦) ∈ Ω and

𝑋 = 𝑋 − a (𝑥, 𝑦) Δ𝑡, (13)

similar to [1, 3], and then we have the following approxima-
tion:

𝜓 (𝑥, 𝑦)

𝜕𝑢

𝜕𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑡
𝑛

≈ 𝜓 (𝑥, 𝑦)

𝑢 (𝑋, 𝑡
𝑛
) − 𝑢 (𝑋, 𝑡

𝑛−1
)

√(𝑋 − 𝑋)

2

+ (Δ𝑡)
2

=

𝑢 (𝑋, 𝑡
𝑛
) − 𝑢 (𝑋, 𝑡

𝑛−1
)

Δ𝑡

=

𝑢
𝑛
− 𝑢
𝑛−1

Δ𝑡

.

(14)

This leads to the following characteristic nonconforming
MFE scheme. Find (𝑢

ℎ
, 𝜎
ℎ
) : {𝑡
0
, 𝑡
1
, . . ., 𝑡𝑁} → 𝑀

ℎ
×V
ℎ
, such

that

(

𝑢
𝑛

ℎ
− 𝑢
𝑛−1

ℎ

Δ𝑡

, V
ℎ
) − (𝜎

𝑛

ℎ
, ∇V
ℎ
)
ℎ
= (𝑓
𝑛
, V
ℎ
) , ∀V

ℎ
∈ 𝑀
ℎ
,

(15a)

(𝜎
𝑛

ℎ
,w
ℎ
) + (𝑏∇𝑢

𝑛

ℎ
,w
ℎ
)
ℎ
= 0, ∀w

ℎ
∈ V
ℎ
, (15b)

𝑢
0

ℎ
= 𝜋
1

ℎ
𝑢
0
(𝑥, 𝑦) , 𝜎

0

ℎ
= 𝜋
2

ℎ
(𝑏∇𝑢
0
(𝑥, 𝑦)) , ∀ (𝑥, 𝑦) ∈ Ω,

(15c)

where 𝑢𝑛
ℎ
= 𝑢
ℎ
(𝑋, 𝑡
𝑛
), (𝑢, V)

ℎ
= ∑
𝑒∈𝑇
ℎ

∫
𝑒
𝑢V𝑑𝑥𝑑𝑦. Generally

speaking, 𝑢𝑛−1
ℎ

(𝑛 = 2, . . . , 𝑁) are not node values and should
be derived by interpolation formulas on 𝑢𝑛−1

ℎ
.

Remark 1. In [1], the expanded characteristic MFE scheme
was presented by introducing two new auxiliary variables
which avoided the inversion of the coefficient 𝑏 when 𝑏 is
small.The newmixed schemes (15a), (15b), and (15c) not only
keep the advantage of expanded characteristic MFE scheme,
but also donot need to solve three variables.
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Now, we prove the existence and uniqueness of the solu-
tion of (15a), (15b), and (15c).

Theorem 1. Under assumption (A3), there exists a unique
solution (𝑢

ℎ
, 𝜎
ℎ
) ∈ 𝑀

ℎ
× V
ℎ
to the schemes (15a), (15b), and

(15c).

Proof. The linear system generated by (15a), (15b), and (15c)
is square, so the existence of the solution is implied by its uni-
queness. From (15a), (15b), and (15c), we have

(

𝑢
𝑛

ℎ

Δ𝑡

, V
ℎ
) − (𝜎

𝑛

ℎ
, ∇V
ℎ
)
ℎ
= (

𝑢
𝑛−1

ℎ

Δ𝑡

, V
ℎ
) + (𝑓

𝑛
, V
ℎ
) , ∀V

ℎ
∈ 𝑀
ℎ
,

(𝜎
𝑛

ℎ
,w
ℎ
) + (𝑏∇𝑢

𝑛

ℎ
,w
ℎ
)
ℎ
= 0, ∀w

ℎ
∈ V
ℎ
.

(16)

Let 𝑢𝑛
ℎ
and 𝑓 be zero, and thus 𝑢𝑛

ℎ
is zero too; taking V

ℎ
=

𝑢
𝑛

ℎ
, w
ℎ
= (1/𝑏)𝜎

𝑛

ℎ
in (16) and adding them together, we have

1

Δ𝑡

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

ℎ

󵄩
󵄩
󵄩
󵄩

2

+ (

1

𝑏

𝜎
𝑛

ℎ
, 𝜎
𝑛

ℎ
) = 0. (17)

Thus assumption (A3) implies that 𝑢𝑛
ℎ
= 𝜎
𝑛

ℎ
= 0. The proof is

complete.

To get error estimates, we state the following two impor-
tant lemmas.

Lemma 1 (see [27, 29, 31]). Assume that 𝑢 ∈ 𝐻
1
(Ω), p ∈

(𝐻
2
(Ω))

2, for all V
ℎ
∈ 𝑀
ℎ
, w
ℎ
∈ V
ℎ
, and then there hold

(∇ (𝑢 − 𝜋
1

ℎ
𝑢) , ∇V

ℎ
)
ℎ
= 0, (∇ (𝑢 − 𝜋

1

ℎ
𝑢) ,w
ℎ
)
ℎ
= 0,

(18)

(p − 𝜋2
ℎ
p,w
ℎ
) ≤ 𝐶ℎ

2
|p|
2,Ω

󵄩
󵄩
󵄩
󵄩
w
ℎ

󵄩
󵄩
󵄩
󵄩
, (19)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∑

𝑒∈𝑇
ℎ

∫

𝜕𝑒

pV
ℎ
⋅ n 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶ℎ
2
|p|
2,Ω

󵄩
󵄩
󵄩
󵄩
V
ℎ

󵄩
󵄩
󵄩
󵄩1,ℎ

, (20)

where ‖ ⋅ ‖
1,ℎ

= (∑
𝑒∈𝑇
ℎ

| ⋅ |
1,𝑒
)
1/2 is a norm on 𝑀

ℎ
, and n

denotes the outward unit normal vector on 𝜕𝑒.

Lemma 2 (see [1, 3]). Let 𝜑 ∈ 𝐿
2
(Ω), and 𝜑 = 𝜑(𝑋−𝑔(𝑋)Δ𝑡),

where function 𝑔 and its gradient ∇𝑔 are bounded, then
󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑

󵄩
󵄩
󵄩
󵄩−1

≤ 𝐶
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩
Δ𝑡, (21)

where ‖𝜑‖
−1
= sup

𝜙∈𝐻
1
(Ω)
((𝜑, 𝜙)/‖𝜙‖

1,Ω
).

4. Convergence Analysis and Optimal Order
Error Estimates

In this section, we aim to analyze the convergence analysis
and error estimates of characteristic nonconforming MFEM.
In order to do this, let

𝑢
ℎ
− 𝑢 = 𝑢

ℎ
− 𝜋
1

ℎ
𝑢 + 𝜋
1

ℎ
𝑢 − 𝑢 = 𝑒 + 𝜌,

𝜎
ℎ
− 𝜎 = 𝜎

ℎ
− 𝜋
2

ℎ
𝜎 + 𝜋
2

ℎ
𝜎 − 𝜎 = 𝜉 + 𝜂.

(22)

Taking 𝑡 = 𝑡
𝑛 in (12) yields

(𝜓

𝜕𝑢
𝑛

𝜕𝜏

, V
ℎ
) − (𝜎

𝑛
, ∇V
ℎ
)
ℎ
+ ∑

𝑒∈𝑇
ℎ

∫

𝜕𝑒

𝜎
𝑛
V
ℎ
⋅ n𝑑𝑠 = (𝑓

𝑛
, V
ℎ
) ,

∀V
ℎ
∈ 𝑀
ℎ
,

(23a)

(𝜎
𝑛
,w
ℎ
) + (𝑏∇𝑢

𝑛
,w
ℎ
)
ℎ
= 0, ∀w

ℎ
∈ V
ℎ
. (23b)

From (23a), (23b), (15a), (15b), and (15c) we get

(

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

, V
ℎ
) − (𝜉

𝑛
, ∇V
ℎ
)
ℎ

= (𝜓

𝜕𝑢
𝑛

𝜕𝜏

−

𝑢
𝑛
− 𝑢
𝑛−1

Δ𝑡

, V
ℎ
) − (

𝜌
𝑛
− 𝜌
𝑛−1

Δ𝑡

, V
ℎ
)

+ (𝜂
𝑛
, ∇V
ℎ
)
ℎ
+ ∑

𝑒∈𝑇
ℎ

∫

𝜕𝑒

𝜎
𝑛
V
ℎ
⋅ n 𝑑𝑠, ∀V

ℎ
∈ 𝑀
ℎ
,

(24a)

(𝜉
𝑛
,w
ℎ
) + (𝑏∇𝑒

𝑛
,w
ℎ
)
ℎ
= − (𝜂

𝑛
,w
ℎ
) − (𝑏∇𝜌

𝑛
,w
ℎ
)
ℎ
,

∀w
ℎ
∈ V
ℎ
.

(24b)

We are now in a position to prove the optimal order error
estimates.

Theorem 2. Let (𝑢, 𝜎) and (𝑢
𝑛

ℎ
, 𝜎
𝑛

ℎ
) be the solutions of (12),

(15a), (15b), and (15c), respectively, (𝜕2𝑢/𝜕𝜏2) ∈ 𝐿
2
(0, 𝑇;

𝐿
2
(Ω)), 𝑢

𝑡
∈ 𝐿
2
(0, 𝑇;𝐻

2
(Ω)), 𝑢 ∈ 𝐿

∞
(0, 𝑇;𝐻

2
(Ω)), 𝜎 ∈

𝐿
∞
(0, 𝑇;𝐻

2
(Ω)) and assume that Δ𝑡 = 𝑂(ℎ

2
). Then under

assumption (A3), we have

max
0≤𝑛≤𝑁

󵄩
󵄩
󵄩
󵄩
(𝑢
ℎ
− 𝑢) (𝑡

𝑛
)
󵄩
󵄩
󵄩
󵄩1,ℎ

≤ 𝐶 (Δ𝑡 + ℎ) , (25)

max
0≤𝑛≤𝑁

󵄩
󵄩
󵄩
󵄩
(𝑢
ℎ
− 𝑢) (𝑡

𝑛
)
󵄩
󵄩
󵄩
󵄩
≤ 𝐶 (Δ𝑡 + ℎ

2
) , (26)

max
0≤𝑛≤𝑁

󵄩
󵄩
󵄩
󵄩
(𝜎
ℎ
− 𝜎) (𝑡

𝑛
)
󵄩
󵄩
󵄩
󵄩
≤ 𝐶 (Δ𝑡 + ℎ) . (27)

Proof. Taking V
ℎ
= 𝑒
𝑛 in (24a) and w

ℎ
= ∇𝑒
𝑛 in (24b), and

adding them, we have

(

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

, 𝑒
𝑛
) + (𝑏∇𝑒

𝑛
, ∇𝑒
𝑛
)
ℎ

= (𝜓

𝜕𝑢
𝑛

𝜕𝜏

−

𝑢
𝑛
− 𝑢
𝑛−1

Δ𝑡

, 𝑒
𝑛
) − (

𝜌
𝑛
− 𝜌
𝑛−1

Δ𝑡

, 𝑒
𝑛
)

− (

𝜌
𝑛−1

− 𝜌
𝑛−1

Δ𝑡

, 𝑒
𝑛
)

+ ∑

𝑒∈𝑇
ℎ

∫

𝜕𝑒

𝜎
𝑛
𝑒
𝑛
⋅ n 𝑑𝑠 − (𝑏∇𝜌𝑛, ∇𝑒𝑛)

ℎ

=

5

∑

𝑖=1

(Err)
𝑖
.

(28)
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On the one hand, we consider the right hand of (28).
Using the method similar to [3], we have

(Err)
1
≤ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜓

𝜕𝑢
𝑛

𝜕𝜏

−

𝑢
𝑛
− 𝑢
𝑛−1

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+

𝜀
1

2

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

≤ 𝐶Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
2
𝑢

𝜕𝜏
2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(𝑡
𝑛−1
,𝑡
𝑛
;𝐿
2
(Ω))

+

𝜀
1

2

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

.

(29)

(Err)
2
can be estimated as

󵄨
󵄨
󵄨
󵄨
(Err)
2

󵄨
󵄨
󵄨
󵄨
≤

1

Δ𝑡

(∫

Ω

(∫

𝑡
𝑛

𝑡
𝑛−1

𝜌
𝑡
𝑑𝑠)

2

𝑑𝑥 𝑑𝑦)

1/2

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

≤

1

√Δ𝑡

(∫

Ω

∫

𝑡
𝑛

𝑡
𝑛−1

𝜌
2

𝑡
𝑑𝑠 𝑑𝑥 𝑑𝑦)

1/2

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

≤

𝐶

Δ𝑡

∫

𝑡
𝑛

𝑡
𝑛−1

󵄩
󵄩
󵄩
󵄩
𝜌
𝑡

󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠 +

𝜀
1

2

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

≤

𝐶ℎ
4

Δ𝑡

∫

𝑡
𝑛

𝑡
𝑛−1

󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

2

2,Ω
𝑑𝑠 +

𝜀
1

2

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

.

(30)

By Lemma 2, we obtain

󵄨
󵄨
󵄨
󵄨
(Err)
3

󵄨
󵄨
󵄨
󵄨
≤

1

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
𝜌
𝑛−1

− 𝜌
𝑛−1󵄩󵄩

󵄩
󵄩
󵄩−1

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩1,ℎ

≤ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝜌
𝑛−1󵄩󵄩

󵄩
󵄩
󵄩

2

+

𝑏
1

6

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

1,ℎ

≤ 𝐶ℎ
4󵄩󵄩
󵄩
󵄩
󵄩
𝑢
𝑛−1󵄩󵄩

󵄩
󵄩
󵄩

2

2,Ω
+

𝑏
1

6

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

1,ℎ
.

(31)

It follows from Lemma 1 that

󵄨
󵄨
󵄨
󵄨
(Err)
4

󵄨
󵄨
󵄨
󵄨
≤ 𝐶ℎ
4󵄩
󵄩
󵄩
󵄩
𝜎
𝑛󵄩
󵄩
󵄩
󵄩

2

2,Ω
+

𝑏
1

6

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

1,ℎ
. (32)

Let 𝑏 = (1/|𝑒|) ∫
𝑒
𝑏(𝑥, 𝑦)𝑑𝑥 𝑑𝑦. By Lemma 1, we have

󵄨
󵄨
󵄨
󵄨
(Err)
5

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
−((𝑏 − 𝑏) ∇𝜌

𝑛
, ∇𝑒
𝑛
)
ℎ

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶ℎ|𝑏|
𝑊
1,∞
(Ω)

󵄩
󵄩
󵄩
󵄩
𝜌
𝑛󵄩
󵄩
󵄩
󵄩1,ℎ

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩1,ℎ

≤ 𝐶ℎ
4󵄩
󵄩
󵄩
󵄩
𝑢
𝑛󵄩
󵄩
󵄩
󵄩

2

2,Ω
+

𝑏
1

6

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

1,ℎ
.

(33)

On the other hand, the left hand of (28) can be bounded by

(

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

, 𝑒
𝑛
) + (𝑏∇𝑒

𝑛
, ∇𝑒
𝑛
)
ℎ

≥

1

2Δ𝑡

((𝑒
𝑛
, 𝑒
𝑛
) − (𝑒

𝑛−1
, 𝑒
𝑛−1

)) + 𝑏
1

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

1,ℎ

≥

1

2Δ𝑡

(
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

− (1 + 𝐶Δ𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1󵄩󵄩

󵄩
󵄩
󵄩

2

) + 𝑏
1

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

1,ℎ
,

(34)

where the inequality ‖𝑒𝑛−1‖2 ≤ (1+𝐶Δ𝑡)‖𝑒
𝑛−1

‖

2 proved in [3]
is used in the last step.

Combining (29)–(34) with (28) gives

1

2Δ𝑡

(
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1󵄩󵄩

󵄩
󵄩
󵄩

2

) + 𝑏
1

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

1,ℎ

≤ 𝐶(Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
2
𝑢

𝜕𝜏
2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(𝑡
𝑛−1
, 𝑡
𝑛
; 𝐿
2
(Ω))

+

ℎ
4

Δ𝑡

∫

𝑡
𝑛

𝑡
𝑛−1

󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

2

2,Ω
𝑑𝑠

+ℎ
4
(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛−1󵄩󵄩

󵄩
󵄩
󵄩

2

2,Ω
+
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛󵄩
󵄩
󵄩
󵄩

2

2,Ω
+
󵄩
󵄩
󵄩
󵄩
𝜎
𝑛󵄩
󵄩
󵄩
󵄩

2

2,Ω
))

+ 𝜀
1

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

+ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1󵄩󵄩

󵄩
󵄩
󵄩

2

+

𝑏
1

2

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩1,ℎ

.

(35)

Taking 1 − 2Δ𝑡𝜀
1
> 0, multiplying (35) by 2Δ𝑡, summing over

from 𝑖 = 1 to 𝑖 = 𝑛, and noticing that 𝑒0 = 0, we obtain

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

+ Δ𝑡

𝑛

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑖󵄩󵄩
󵄩
󵄩
󵄩

2

1,ℎ

≤ 𝐶((Δ𝑡)
2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
2
𝑢

𝜕𝜏
2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(0,𝑡
𝑛
;𝐿
2
(Ω))

+ ℎ
4
∫

𝑡
𝑛

0

󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

2

2,Ω
𝑑𝑠

+Δ𝑡ℎ
4

𝑛

∑

𝑖=1

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑖󵄩󵄩
󵄩
󵄩
󵄩

2

2,Ω
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝜎
𝑖󵄩󵄩
󵄩
󵄩
󵄩

2

2,Ω
)) + 𝐶

𝑛−1

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑖󵄩󵄩
󵄩
󵄩
󵄩

2

.

(36)

It follows from discrete Gronwall’s lemma that

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

+ Δ𝑡

𝑛

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑖󵄩󵄩
󵄩
󵄩
󵄩

2

1,ℎ

≤ 𝐶((Δ𝑡)
2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
2
𝑢

𝜕𝜏
2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(0,𝑡
𝑛
;𝐿
2
(Ω))

+ ℎ
4
(
󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(0,𝑡
𝑛
;𝐻
2
(Ω))

+ ‖𝑢‖
2

𝐿
∞
(0,𝑡
𝑛
;𝐻
2
(Ω))

+‖𝜎‖
2

𝐿
∞
(0,𝑡
𝑛
;(𝐻
2
(Ω))
2

)
)) .

(37)

From (37) we get the optimal order error estimate of ‖𝑒𝑛‖
rather than ‖𝑒

𝑛
‖
1,ℎ
. So we start to reestimate ‖𝑒𝑛‖

1,ℎ
in the

following manner and derive the estimation of ‖𝜉𝑛‖ simul-
taneously.

Firstly, choosing V
ℎ
= ((𝑒
𝑛
− 𝑒
𝑛−1

)/Δ𝑡) in (24a) and w
ℎ
=

∇((𝑒
𝑛
− 𝑒
𝑛−1

)/Δ𝑡) in (24b), and adding them, we have

(

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

,

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

) + (𝑏∇𝑒
𝑛
, ∇

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

)

ℎ

= (𝜓

𝜕𝑢
𝑛

𝜕𝜏

−

𝑢
𝑛
− 𝑢
𝑛−1

Δ𝑡

,

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

)

− (

𝜌
𝑛
− 𝜌
𝑛−1

Δ𝑡

,

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

)
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− (

𝜌
𝑛−1

− 𝜌
𝑛−1

Δ𝑡

,

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

)

+ ∑

𝑒∈𝑇
ℎ

∫

𝜕𝑒

𝜎
𝑛 𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

⋅ n 𝑑𝑠 − (𝑏∇𝜌𝑛, ∇𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

)

ℎ

=

5

∑

𝑖=1

(Err)󸀠
𝑖
.

(38)
The left hand can be estimated as

(

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

,

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

) + (𝑏∇𝑒
𝑛
, ∇

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

)

ℎ

≥

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+

1

2Δ𝑡

[(𝑏∇𝑒
𝑛
, ∇𝑒
𝑛
) − (𝑏∇𝑒

𝑛−1
, ∇𝑒
𝑛−1

)]

+ (

𝑒
𝑛−1

− 𝑒
𝑛−1

Δ𝑡

,

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

) ,

(39)

and (Err)󸀠
𝑖
, (𝑖 = 1, 2, 3, 4, 5) can be bounded by

󵄨
󵄨
󵄨
󵄨
󵄨
(Err)󸀠
1

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
2
𝑢

𝜕𝜏
2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(𝑡
𝑛−1
,𝑡
𝑛
;𝐿
2
(Ω))

+

1

4

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

,

󵄨
󵄨
󵄨
󵄨
󵄨
(Err)󸀠
2

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝐶ℎ
4

Δ𝑡

∫

𝑡
𝑛

𝑡
𝑛−1

󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

2

2,Ω
𝑑𝑠 +

1

4

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

,

󵄨
󵄨
󵄨
󵄨
󵄨
(Err)󸀠
3

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝐶ℎ
4

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛−1󵄩󵄩

󵄩
󵄩
󵄩

2

2,Ω
+

𝜀

3

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

1,ℎ

,

󵄨
󵄨
󵄨
󵄨
󵄨
(Err)󸀠
4

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝐶ℎ
4

Δ𝑡

󵄩
󵄩
󵄩
󵄩
𝜎
𝑛󵄩
󵄩
󵄩
󵄩

2

2,Ω
+

𝜀

3

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

1,ℎ

,

󵄨
󵄨
󵄨
󵄨
󵄨
(Err)󸀠
5

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝐶ℎ
4

Δ𝑡

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛󵄩
󵄩
󵄩
󵄩

2

2,Ω
+

𝜀

3

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

1,ℎ

.

(40)
From (38)–(40), we get

1

2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+

1

2Δ𝑡

[(𝑏∇𝑒
𝑛
, ∇𝑒
𝑛
)
ℎ
− (𝑏∇𝑒

𝑛−1
, ∇𝑒
𝑛−1

)
ℎ
]

≤ 𝐶[Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
2
𝑢

𝜕𝜏
2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(𝑡
𝑛−1
,𝑡
𝑛
;𝐿
2
(Ω))

+

ℎ
4

Δ𝑡

(∫

𝑡
𝑛

𝑡
𝑛−1

󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

2

2,Ω
𝑑𝑠 +

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛󵄩
󵄩
󵄩
󵄩

2

2,Ω
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛−1󵄩󵄩

󵄩
󵄩
󵄩

2

2,Ω

+
󵄩
󵄩
󵄩
󵄩
𝜎
𝑛󵄩
󵄩
󵄩
󵄩

2

2,Ω
)] + 𝜀Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

1,ℎ

+ (

𝑒
𝑛−1

− 𝑒
𝑛−1

Δ𝑡

,

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

) .

(41)

Multiplying (41) by 2Δ𝑡 and summing over in time from 𝑖 = 1

to 𝑖 = 𝑛 yield

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝑏
1

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

1,ℎ

≤ 𝐶[(Δ𝑡)
2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
2
𝑢

𝜕𝜏
2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(0,𝑡
𝑛
;𝐿
2
(Ω))

+ ℎ
4󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(0,𝑡
𝑛
;𝐻
2
(Ω))

+ℎ
4

𝑛

∑

𝑖=1

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑖󵄩󵄩
󵄩
󵄩
󵄩

2

2,Ω
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝜎
𝑖󵄩󵄩
󵄩
󵄩
󵄩

2

2,Ω
)]

+ 𝜀(Δ𝑡)
2

𝑛

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
𝑖
− 𝑒
𝑖−1

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

1,ℎ

+

𝑛

∑

𝑖=1

(

𝑒
𝑖−1

− 𝑒
𝑖−1

Δ𝑡

, 𝑒
𝑖
− 𝑒
𝑖−1
) .

(42)
Secondly, we takeΔ𝑡 → 0 andΔ𝑡must approach zero in such
a way that Δ𝑡 and ℎ satisfy

Δ𝑡 = 𝑂 (ℎ
2
) , (43)

and by inverse inequality, we have

(Δ𝑡)
2

𝑛

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
𝑖
− 𝑒
𝑖−1

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

1,ℎ

≤ 𝐶Δ𝑡

𝑛

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
𝑖
− 𝑒
𝑖−1

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

. (44)

At the same time, using Lemma 2, we obtain
𝑛

∑

𝑖=1

(

𝑒
𝑖−1

− 𝑒
𝑖−1

Δ𝑡

, 𝑒
𝑖
− 𝑒
𝑖−1
)

= (

𝑒
𝑛−1

− 𝑒
𝑛−1

Δ𝑡

, 𝑒
𝑛
) +

𝑛−1

∑

𝑖=1

(

𝑒
𝑖−1

− 𝑒
𝑖
− (𝑒
𝑖−1

− 𝑒
𝑖
)

Δ𝑡

, 𝑒
𝑖
)

≤ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1󵄩󵄩

󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩1,ℎ

+

𝑛−1

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑖
− 𝑒
𝑖−1󵄩󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑖󵄩󵄩
󵄩
󵄩
󵄩1,ℎ

≤ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1󵄩󵄩

󵄩
󵄩
󵄩

2

+

𝑏
1

2

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

1,ℎ
+ Δ𝑡

𝑛−1

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
𝑖
− 𝑒
𝑖−1

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝐶Δ𝑡

𝑛−1

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑖󵄩󵄩
󵄩
󵄩
󵄩

2

1,ℎ
.

(45)
From (42)–(45), taking suitable small 𝜀 such that 1 − 𝜀𝐶 > 0,
we have

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
𝑛
− 𝑒
𝑛−1

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

1,ℎ

≤ 𝐶[(Δ𝑡)
2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
2
𝑢

𝜕𝜏
2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(0,𝑡
𝑛
;𝐿
2
(Ω))

+ ℎ
4󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(0,𝑡
𝑛
;𝐻
2
(Ω))

+ℎ
4

𝑛

∑

𝑖=1

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝑖󵄩󵄩
󵄩
󵄩
󵄩

2

2,Ω
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝜎
𝑖󵄩󵄩
󵄩
󵄩
󵄩

2

2,Ω
)]

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛−1󵄩󵄩

󵄩
󵄩
󵄩

2

+ 𝐶Δ𝑡

𝑛−1

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑒
𝑖
− 𝑒
𝑖−1

Δ𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 𝐶Δ𝑡

𝑛−1

∑

𝑖=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑒
𝑖󵄩󵄩
󵄩
󵄩
󵄩

2

1,ℎ
.

(46)
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Finally, applying discrete Gronwall’s lemma yields

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
󵄩
󵄩

2

1,ℎ
≤ 𝐶[(Δ𝑡)

2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕
2
𝑢

𝜕𝜏
2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(0,𝑡
𝑛
;𝐿
2
(Ω))

+ ℎ
4󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(0,𝑡
𝑛
;𝐻
2
(Ω))

+ ℎ
2
(‖𝑢‖
2

𝐿
∞
(0,𝑡
𝑛
;𝐻
2
(Ω))

+ ‖𝜎‖
2

𝐿
∞
(0,𝑡
𝑛
;𝐻
2
(Ω))

) ] .

(47)

In order to derive (27), set w
ℎ
= 𝜉
𝑛 in (24b) and employ

Lemma 1 and assumption (A3) to give

󵄩
󵄩
󵄩
󵄩
𝜉
𝑛󵄩
󵄩
󵄩
󵄩

2

= −(𝑏∇𝑒
𝑛
, 𝜉
𝑛
)
ℎ
− (𝜂
𝑛
, 𝜉
𝑛
) − (𝑏∇𝜌

𝑛
, 𝜉
𝑛
)
ℎ

≤ 𝐶 (
󵄩
󵄩
󵄩
󵄩
𝑒
𝑛󵄩
󵄩
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𝑢
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1

2

󵄩
󵄩
󵄩
󵄩
𝜉
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󵄩
󵄩
󵄩

2

.

(48)

Combining (47) with (48) yields
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󵄩
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4󵄩
󵄩
󵄩
󵄩
𝑢
𝑡

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(0,𝑡
𝑛
;𝐻
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2
(|𝑢|
2

𝐿
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(0,𝑡
𝑛
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(Ω))

+ ‖𝜎‖
2

𝐿
∞
(0,𝑡
𝑛
;𝐻
2
(Ω))

) ] .

(49)

By using of interpolation theory and the triangle inequality,
(37), (47), and (49) lead to (25), (26), and (27), respectively,
which are the desired results.

Remark 2. From (37), we have
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)) .

(50)

This byproduct can be regarded as the superclose result
between 𝜋1

ℎ
𝑢 and 𝑢

ℎ
in mean broken𝐻1-norm. It seems that

both (25) and (50) have never been seen in the existing stud-
ies. At the same time, by employing the new characteristic
nonconforming MFE scheme, we can also obtain the same
error estimate of (27) as traditional characteristicMFEM[10].

Remark 3. From the analysis of Theorem 2 in this paper,
we may see that Lemma 1 is the key result leading to the

Table 1: Numerical results of ‖𝑢 − 𝑢
ℎ
‖
1,ℎ
.

𝑚 × 𝑛 𝑡 = 0.2 𝛼 𝑡 = 0.3 𝛼 𝑡 = 0.4 𝛼

8 × 8 0.75277 / 0.75017 / 0.66433 /
16 × 16 0.42984 0.81 0.41849 0.84 0.35474 0.91
32 × 32 0.21758 0.99 0.21412 0.97 0.17552 1.02
𝑚 × 𝑛 𝑡 = 0.5 𝛼 𝑡 = 0.8 𝛼 𝑡 = 0.9 𝛼

8 × 8 0.55291 / 0.42211 / 0.40937 /
16 × 16 0.29234 0.92 0.23117 0.87 0.21120 0.96
32 × 32 0.14466 1.02 0.10807 1.10 0.09343 1.18

Table 2: Numerical results of ‖𝑢 − 𝑢
ℎ
‖.

𝑚 × 𝑛 𝑡 = 0.4 𝛼 𝑡 = 0.5 𝛼 𝑡 = 0.7 𝛼

8 × 8 0.0298190 / 0.0276370 / 0.0223240 /
16 × 16 0.0073087 2.03 0.0062445 2.15 0.0048038 2.22
32 × 32 0.0020769 1.82 0.0017926 1.80 0.0013309 1.85
𝑚 × 𝑛 𝑡 = 0.8 𝛼 𝑡 = 0.9 𝛼 𝑡 = 1.0 𝛼

8 × 8 0.0198730 / 0.0175900 / 0.0154090 /
16 × 16 0.0044472 2.16 0.0041982 2.07 0.0039150 1.98
32 × 32 0.0011894 1.90 0.0010738 1.97 0.0009466 2.05

successful optimal order error estimations. If we want to
get higher order accuracy, similar to Lemma 1, the non-
conforming finite elements for approximating 𝑢 should also
possess a very special property, that is, the consistency error
estimates with 𝑂(ℎ

2
) order, and satisfy (18). For the famous

nonconformingWilson element [32] whose shape function is
span{1, 𝑥, 𝑦, 𝑥2, 𝑦2}, by a counter-example, it has been proven
in [32] that its consistency error estimate is of𝑂(ℎ) order and
cannot be improved any more. For the rotated bilinear 𝑄

1

element [33] whose shape function is span{1, 𝑥, 𝑦, 𝑥2 − 𝑦
2
},

although its consistency error with 𝑂(ℎ
2
) order and (∇(𝑢 −

𝜋
1

ℎ
𝑢), ∇V

ℎ
)
ℎ
= 0 on squaremeshes is satisfied, the second term

of (18) is not valid. Thus when they are applied to (1) on new
characteristic mixed finite element scheme, up to now, the
optimal order error estimates of (25), (26), and (27) cannot
be obtained directly.

5. Numerical Example

In order to verify our theoretical analysis in previous sections,
we consider the convection-dominated diffusion problem (1)
as follows:

𝑢
𝑡
+ 𝑢
𝑥
+ 𝑢
𝑦
− 10
−4
(𝑢
𝑥𝑥
+ 𝑢
𝑦𝑦
)

= 𝑓 (𝑥, 𝑦, 𝑡) , (𝑥, 𝑦, 𝑡) ∈ Ω × (0, 𝑇) ,

𝑢 (𝑥, 𝑦, 𝑡) = 0, (𝑥, 𝑦, 𝑡) ∈ 𝜕Ω × (0, 𝑇) ,

𝑢 (𝑥, 𝑦, 0) = 𝑢
0
(𝑥, 𝑦) , (𝑥, 𝑦) ∈ Ω

(51)

withΩ = [0, 1] × [0, 1], a(𝑥, 𝑦) = (1, 1), and 𝑏(𝑥, 𝑦) = 10
−4.

The right hand term 𝑓(𝑥, 𝑦, 𝑡) is taken such that 𝑢 =

𝑒
−𝑡 sin(𝜋𝑥) sin(2𝜋𝑦), 𝜎 = −10

−4
𝑒
−𝑡
(𝜋 cos(𝜋𝑥) sin(2𝜋𝑦),

2𝜋 sin(𝜋𝑥) cos(2𝜋𝑦)) are the exact solutions.
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Table 3: Numerical results of ‖𝜎 − 𝜎
ℎ
‖.

𝑚 × 𝑛 𝑡 = 0.1 𝛼 𝑡 = 0.4 𝛼 𝑡 = 0.5 𝛼

8 × 8 4.9528𝑒 − 005 / 4.2661𝑒 − 005 / 3.8292𝑒 − 005 /
16 × 16 2.3945𝑒 − 005 1.05 1.8843𝑒 − 005 1.18 1.6806𝑒 − 005 1.19
32 × 32 1.1749𝑒 − 005 1.03 9.0029𝑒 − 006 1.07 8.0521𝑒 − 006 1.06
𝑚 × 𝑛 𝑡 = 0.7 𝛼 𝑡 = 0.8 𝛼 𝑡 = 0.9 𝛼

8 × 8 3.0714𝑒 − 005 / 2.7735𝑒 − 005 / 2.524𝑒 − 005 /
16 × 16 1.3326𝑒 − 005 1.20 1.224𝑒 − 005 1.18 1.1443𝑒 − 005 1.14
32 × 32 6.455𝑒 − 006 1.05 5.8353𝑒 − 006 1.07 5.3751𝑒 − 006 1.09
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We first divide the domainΩ into𝑚 and 𝑛 equal intervals
along 𝑥-axis and 𝑦-axis and the numerical results at different
times are listed in Tables 1, 2, and 3 and pictured in Figures
1, 2, 3, and 4, respectively. (𝑢

ℎ
, p
ℎ
) denotes the characteristic

nonconformingMFE solution of the problem (15a), (15b), and
(15c). Δ𝑡 represents the time step and the experiment is done
with Δ𝑡 = ℎ

2. 𝛼 stands for the convergence order.
It can be seen from the above Tables 1, 2, and 3 that

‖𝑢 − 𝑢
ℎ
‖
1,ℎ

and ‖𝜎−𝜎
ℎ
‖ are convergent at optimal rate of𝑂(ℎ)

and ‖𝑢 − 𝑢
ℎ
‖ is convergent at optimal rate of 𝑂(ℎ2), respec-

tively, which coincide with our theoretical investigation in
Section 4.
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