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By considering an improved tanh function method, we found some exact solutions of Boussinesq and Burgers-like equations. The
main idea of this method is to take full advantage of the Riccati equation which has more new solutions. We found some exact
solutions of the Boussinesq equation and the Burgers-like equation.

1. Introduction

In recent years, nonlinear phenomena play a crucial role in
appliedmathematics and physics. Directly searching for exact
solutions of nonlinear partial differential equations (PDEs)
has become more and more attractive partly due to the
availability of computer symbolic systems like Mathematica
or Maple that allow us to perform some complicated and
tedious algebraic calculation on a computer as well as help
us to find exact solutions of PDEs [1–5] now.

Many explicit exact methods have been introduced in the
literature [6–14]. Some of them are Painlevé method, homo-
geneous balance method, similarity reduction method, sine-
cosine method, Darboux transformation, Cole-Hopf trans-
formation, generalized Miura transformation, tanh method,
Backlund transformation, and others methods [15, 16].

One of themost effectively straightforwardmethods con-
structing exact solution of PDEs is the extended tanh function
method [17]. Let us simply describe the tanh function. For
doing this, one can consider in two variables general form of
nonlinear PDE as follows:

𝐻(𝑢, 𝑢
𝑡𝑡
, 𝑢
𝑥
, 𝑢
𝑥𝑥
, . . .) = 0 (1)

and transform (1) with

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) , 𝜉 = 𝑘 (𝑥 − 𝜆𝑡) , (2)

where 𝑘 and 𝜆 are the wave number and wave speed, respec-
tively. After the transformation, we get a nonlinear ODE for
𝑢(𝜉) as follows:

𝐻
󸀠
(𝑢
󸀠
, 𝑢
󸀠󸀠
, 𝑢
󸀠󸀠󸀠
, . . .) = 0. (3)

The fact that the solutions of many nonlinear equations can
be expressed as a finite series of tanh functions that motivates
us to seek for the solutions of (3) in the form

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) =

𝑚

∑

𝑖=0

𝑎
𝑖
tanh𝑖 (𝜉) =

𝑚

∑

𝑖=0

𝑎
𝑖
𝐹
𝑖
, (4)

where 𝐹𝑖 = tanh𝑖(𝜉), an equation for 𝐹(𝜉), is obtained. 𝑚 is
a positive integer that can be determined by balancing the
linear term of highest order with the nonlinear term in (1),
and 𝑘, 𝜆, 𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑚
are parameters to be determined.

Substituting solution (4) into (3) yields a set of algebraic
equations for 𝐹𝑖, then all coefficients of 𝐹𝑖 have to vanish.
From these relations 𝑘, 𝜆, 𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑚
can be determined.

In this work, we will consider to solve general Boussi-
nesq equation and the Burgers-like equation by using the
improved tanh functionmethodwhich is introduced byChen
and Zhang [18].

2. Method and Its Applications

The main idea of this method is to take full advantage of
the Riccati equation that tanh function satisfies and uses its
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solutions 𝐹 to replace tanh 𝜉. The required Riccati equation is
given as

𝐹
󸀠
= 𝐴 + 𝐵𝐹 + 𝐶𝐹

2
, (5)

where 𝐹 = (𝑑𝐹/𝑑𝜉) and 𝐴, 𝐵, and 𝐶 are constant. In the
following, Chen andZhang [18] have given several cases to get
the solution of (5) in the formof finite series of tanh functions
(4).

Case 1. If 𝐶 = 0, 𝐵 ̸= 0, then (5) has the solutions
exp (𝐵𝜉) − 𝐴

𝐵
. (6)

Case 2. If 𝐴 = 1/2, 𝐵 = 0, and 𝐶 = −1/2, then (5) has the
solutions cot ℎ𝜉 ± csc ℎ𝜉, tan ℎ𝜉 ± 𝑖sec ℎ𝜉 (𝑖2 = −1).

Case 3. If 𝐴 = 𝐶 = ±1/2, 𝐵 = 0, then (5) has the solutions
sec 𝜉 ± tan 𝜉, csc 𝜉 ± cot 𝜉.

Case 4. If 𝐴 = 1, 𝐵 = 0, and 𝐶 = −1, then (5) has the
solutions tan ℎ𝜉, cot ℎ𝜉.

Case 5. If 𝐴 = 𝐶 = 1, 𝐵 = 0, then (5) has the solutions tan 𝜉.

Case 6. If𝐴 = 𝐶 = −1, 𝐵 = 0, then (5) has the solutions cot 𝜉.

Case 7. If𝐴 = 𝐵 = 0,𝐶 ̸= 0, then (5) has the solutions−1/(𝑐𝜉+
𝑐
0
).

The solutions of (1) can be expressed in the form

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) =

𝑚

∑

𝑖=0

𝑎
𝑖
𝐹
𝑖
, (7)

where 𝜉 = 𝑘𝑥 − 𝑘𝜔𝑡, 𝑘 and 𝜔 are the wave number and the
wave speed, respectively, 𝑛 is a positive integer that can be
determined by balancing the linear termof highest order with
the nonlinear term in (1), and 𝑎

0
, 𝑎
1
, . . . , 𝑎

𝑛
are parameters to

be determined.
Introducing the similarity variable 𝜉 = 𝑘𝑥 − 𝑘𝜔𝑡, the

travelling wave solutions 𝑢(𝜉) satisfy

𝐻
󸀠
(𝑢
󸀠
, 𝑢
󸀠󸀠
, 𝑢
󸀠󸀠󸀠
, . . .) = 0. (8)

Balancing the highest order of linear term with nonlinear
term in (3), we can determine 𝑛 in (4).

We illustrate the method by considering the Boussinesq
equation and Burgers-like equtions.

Example 1 (The Boussinesq equation). Let’s consider

𝑢
𝑡𝑡
= (𝑐
1
𝑢 + 𝑐
2
𝑢
𝑛
)
𝑥𝑥
+ 𝑢
𝑥𝑥𝑡𝑡

= 0. (9)

If we accept that 𝑐
1
≥ 0, 𝑐

2
≤ 0 and 𝑛 = 2, 𝑐 = −1, we

conclude (10) by (9) as follows:

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
+ 2𝑢 ⋅ 𝑢

𝑥𝑥
− 𝑢
𝑥𝑥𝑡𝑡

= 0 (10)

for doing this example. We could use transformation with (1)
for the Boussinesq equation. Let us consider the Boussinesq
equation as follows:

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) , 𝜉 = 𝑘𝑥 − 𝑘𝑤𝑡. (11)

Substituting (11) into (10), we get

𝑤
2
𝑢
󸀠󸀠
− 𝑢
󸀠󸀠
+ 2(𝑢

󸀠
)
2

+ 2𝑢 ⋅ 𝑢
󸀠󸀠
− 𝑘
2
𝑤
2
𝑢
4
= 0, (12)

and integrating (12) we deduce the following equation:

𝑤
2
𝑢
󸀠
− 𝑢
󸀠
+ 2𝑢 ⋅ 𝑢

󸀠
− 𝑘
2
𝑤
2
𝑢
󸀠󸀠󸀠
= 0. (13)

Balancing (𝑢 ⋅ 𝑢󸀠) with (𝑢󸀠󸀠󸀠) gives 𝑚 = 2. Therefore, we may
choose

𝑢 = 𝑎
0
+ 𝑎
1
𝐹 + 𝑎
2
𝐹
2
. (14)

Substituting (14) into (13) along with (5) and using Mathe-
matica yield a system of equations 𝑤, 𝑡, and 𝐹𝑀. Setting the
coefficients of𝐹𝑀 in the obtained system of equations to zero,
we can deduce the following set of algebraic polynomials with
respect to unknowns 𝑎

0
, 𝑎
1
, and 𝑎

2

𝑢
󸀠
= 𝑎
1
𝐴 + 𝑎
1
𝐵𝐹 + 𝑎

1
𝐶𝐹
2

+ 2𝑎
2
𝐴𝐹 + 2𝑎

2
𝐵𝐹
2
+ 2𝑎
2
𝐶𝐹
3
= 0,

𝑢 ⋅ 𝑢
󸀠
= 𝑎
0
𝑎
1
𝐴 + 𝑎
0
𝑎
1
𝐵𝐹 + 𝑎

0
𝑎
1
𝐶𝐹
2

+ 2𝑎
0
𝑎
2
𝐴𝐹 + 2𝑎

0
𝑎
2
𝐵𝐹
2
+ 2𝑎
0
𝑎
2
𝐶𝐹
3

+ 𝑎
2

1
𝐴𝐹 + 𝑎

2

1
𝐵𝐹
2
+ 𝑎
2

1
𝐶𝐹
3

+ 2𝑎
1
𝑎
2
𝐴𝐹
2
+ 2𝑎
1
𝑎
2
𝐵𝐹
3

+ 2𝑎
1
𝑎
2
𝐶𝐹
4
+ 𝑎
1
𝑎
2
𝐴𝐹
2

+ 𝑎
1
𝑎
2
𝐵𝐹
3
+ 𝑎
1
𝑎
2
𝐶𝐹
4

+ 2𝑎
2

2
𝐴𝐹
3
+ 2𝑎
2

2
𝐵𝐹
4
+ 2𝑎
2

2
𝐶𝐹
5
,

𝑢
󸀠󸀠󸀠
= 𝑎
1
𝐵
2
𝐴 + 𝑎
1
𝐵
3
𝐹 + 7𝑎

1
𝐵
2
𝐶𝐹
2

+ 8𝑎
1
𝐴𝐵𝐶𝐹 + 12𝑎

1
𝐵𝐶
2
𝐹
3
+ 2𝑎
1
𝐴
2
𝐶

+ 8𝑎
1
𝐴𝐶
2
𝐹
2
+ 6𝑎
1
𝐶
3
𝐹
4
+ 6𝑎
2
𝐴
2
𝐵

+ 14𝑎
2
𝐴𝐵
2
𝐹 + 52𝑎

2
𝐴𝐵𝐶𝐹

2

+ 16𝑎
2
𝐴
2
𝐶𝐹 + 40𝑎

2
𝐴𝐶
2
𝐹
3

+ 8𝑎
2
𝐵
3
𝐹
2
+ 38𝑎

2
𝐵
2
𝐶𝐹
3

+ 54𝑎
2
𝐵𝐶
2
𝐹
4
+ 24𝑎
2
𝐶
3
𝐹
5
,

𝐹
0
: 𝑤
2
𝑎
1
𝐴 − 𝑎
1
𝐴 + 2𝑎

0
𝑎
1
𝐴 − 𝑘
2
𝑤
2
𝑎
1
𝐵
2
𝐴

− 2𝑘
2
𝑤
2
𝑎
1
𝐴
2
𝐶 − 6𝑘

2
𝑤
2
𝑎
2
𝐴
2
𝐵 = 0,

𝐹
1
: 𝑤
2
𝑎
1
𝐵 + 2𝑤

2
𝑎
2
𝐴 − 𝑎
1
𝐵 − 2𝑎

2
𝐵

+ 2𝑎
0
𝑎
1
𝐵 + 4𝑎

0
𝑎
2
𝐴 + 2𝑎

2

1
𝐴 − 𝑘
2
𝑤
2
𝑎
1
𝐵
3

− 8𝑘
2
𝑤
2
𝑎
1
𝐴𝐵𝐶 − 14𝑘

2
𝑤
2
𝑎
2
𝐴𝐵
2

− 16𝑘
2
𝑤
2
𝑎
2
𝐴
2
𝐶 = 0,
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𝐹
2
: 𝑤
2
𝑎
1
𝐶 + 2𝑤

2
𝑎
2
𝐵 − 𝑎
1
𝐶 − 2𝑎

2
𝐵

+ 2𝑎
0
𝑎
1
𝐶 + 4𝑎

0
𝑎
2
𝐵 + 2𝑎

2

1
𝐵

+ 6𝑎
1
𝑎
2
𝐴 − 7𝑘

2
𝑤
2
𝑎
1
𝐵
2
𝐶 − 8𝑘

2
𝑤
2
𝑎
1
𝐴𝐶
2

− 52𝑘
2
𝑤
2
𝐴𝐵𝐶 − 8𝑘

2
𝑤
2
𝑎
2
𝐵
3
= 0,

𝐹
3
: 2𝑤
2
𝑎
2
𝐶 − 2𝑎

2
𝐶 + 4𝑎

0
𝑎
2
𝐶 + 2𝑎

2

1
𝐶

+ 4𝑎
1
𝑎
2
𝐵 + 2𝑎

1
𝑎
2
𝐵 + 4𝑎

2

2
𝐴 − 12𝑘

2
𝑤
2
𝑎
1
𝐵𝐶
2

− 40𝑘
2
𝑤
2
𝑎
2
𝐴𝐶
2
− 38𝑘

2
𝑤
2
𝐵
2
𝐶 = 0,

𝐹
4
: −6𝑎
1
𝑎
2
𝐶 + 4𝑎

2

2
𝐵 − 6𝑘

2
𝑤
2
𝑎
1
𝐶
3
− 54𝑘

2
𝑤
2
𝑎
2
𝐵𝐶
2
= 0,

𝐹
5
: 4𝑎
2

2
𝐶 − 24𝑘

2
𝑤
2
𝑎
2
𝐶
3
= 0.

(15)

From the solutions of the system, we can find

𝐵 = 0, 𝑎
0
= 4𝑘
2
𝑤
2
𝐴𝐶 −

1

2
𝑤
2
+
1

2
,

𝑎
1
= 0, 𝑎

2
= 6𝑘
2
𝑤
2
𝐶
2
,

𝑤 =
1

4𝑘2𝐴𝐶 + 1
,

(16)

and with the aid of Mathematica, we find the following.
(i) When we choose𝐴 = 1, 𝐵 = 0, and 𝐶 = 1 in (16), then

we can deduce

𝑎
0
= 4𝑘
2
𝑤
2
−
1

2
𝑤
2
+
1

2
, 𝑎

2
= 6𝑘
2
𝑤
2
. (17)

Therefore, the solution can be found as

𝑢 (𝑥, 𝑡) = (4𝑘
2
𝑤
2
−
1

2
𝑤
2
+
1

2
) + 6𝑘

2
𝑤
2
[tan2 (𝑘𝑥 − 𝑘𝑤𝑡)] .

(18)

(ii) In this case, if we take 𝐴 = −1, 𝐵 = 0, and 𝐶 = −1 in
(16), then we have

𝑎
0
= 4𝑘
2
𝑤
2
−
1

2
𝑤
2
+
1

2
, 𝑎

2
= 6𝑘
2
𝑤
2
,

𝑢 (𝑥, 𝑡) = (4𝑘
2
𝑤
2
−
1

2
𝑤
2
+
1

2
) + 6𝑘

2
𝑤
2cot [𝑘𝑥 − 𝑘𝑤𝑡] .

(19)

(iii) Again, when we choose 𝐴 = 1, 𝐵 = 0, 𝐶 = −1 then
from (16) is

𝑎
0
= −4𝑘

2
𝑤
2
−
1

2
𝑤
2
+
1

2
, 𝑎

2
= 6𝑘
2
𝑤
2
,

𝑢 (𝑥, 𝑡) = (−4𝑘
2
𝑤
2
−
1

2
𝑤
2
+
1

2
) + 6𝑘

2
𝑤
2 tan ℎ2 (𝑘𝑥 − 𝑘𝑤𝑡) ,

𝑢 (𝑥, 𝑡) = (−4𝑘
2
𝑤
2
−
1

2
𝑤
2
+
1

2
) + 6𝑘

2
𝑤
2cot ℎ2 (𝑘𝑥 − 𝑘𝑤𝑡) .

(20)

(iv) When we choose 𝐴 = (1/2), 𝐵 = 0, and 𝐶 = (1/2),
then we can find the coefficients of (16) as

𝑎
0
= 𝑘
2
𝑤
2
−
1

2
𝑤
2
+
1

2
, 𝑎

2
=
3

2
𝑘
2
𝑤
2
, (21)

and using the coefficients, the solutions can be found as

𝑢 (𝑥, 𝑡) = (𝑘
2
𝑤
2
−
1

2
𝑤
2
+
1

2
) +

3

2
𝑘
2
𝑤
2

× [sec (𝑘𝑥 − 𝑘𝑤𝑡) + tan (𝑘𝑥 − 𝑘𝑤𝑡)]2,

𝑢 (𝑥, 𝑡) = (𝑘
2
𝑤
2
−
1

2
𝑤
2
+
1

2
) +

3

2
𝑘
2
𝑤
2

× [csc (𝑘𝑥 − 𝑘𝑤𝑡) + cot (𝑘𝑥 − 𝑘𝑤𝑡)]2.

(22)

(v) When we choose 𝐴 = −(1/2), 𝐵 = 0, and 𝐶 = −(1/2),
then we can find the coefficients of (16) as follows:

𝑎
0
= 𝑘
2
𝑤
2
−
1

2
𝑤
2
+
1

2
, 𝑎

2
=
3

2
𝑘
2
𝑤
2
,

𝑢 (𝑥, 𝑡) = (𝑘
2
𝑤
2
−
1

2
𝑤
2
+
1

2
) +

3

2
𝑘
2
𝑤
2

× [sec (𝑘𝑥 − 𝑘𝑤𝑡) + tan (𝑘𝑥 − 𝑘𝑤𝑡)]2,

𝑢 (𝑥, 𝑡) = (𝑘
2
𝑤
2
−
1

2
𝑤
2
+
1

2
) +

3

2
𝑘
2
𝑤
2

× [csc (𝑘𝑥 − 𝑘𝑤𝑡) + cot (𝑘𝑥 − 𝑘𝑤𝑡)]2.

(23)

(vi) When we choose 𝐴 = (1/2), 𝐵 = 0, and 𝐶 = −(1/2),
then we can find the coefficients of (16) as follows:

𝑎
0
= −𝑘
2
𝑤
2
−
1

2
𝑤
2
+
1

2
, 𝑎

2
=
3

2
𝑘
2
𝑤
2
,

𝑢 (𝑥, 𝑡) = (−𝑘
2
𝑤
2
−
1

2
𝑤
2
+
1

2
) +

3

2
𝑘
2
𝑤
2

× [coth (𝑘𝑥 − 𝑘𝑤𝑡) ± csc ℎ (𝑘𝑥 − 𝑘𝑤𝑡)]2,

𝑢 (𝑥, 𝑡) = (−𝑘
2
𝑤
2
−
1

2
𝑤
2
+
1

2
) +

3

2
𝑘
2
𝑤
2

× [tanh (𝑘𝑥 − 𝑘𝑤𝑡) ± 𝑖 sec ℎ (𝑘𝑥 − 𝑘𝑤𝑡)]2.

(24)

(vii) When we choose 𝐴 = 0, 𝐵 = 0, and 𝐶 ̸= 0, then we
can find the coefficients of (16) as follows:

𝑎
0
= −

1

2
𝑤
2
+
1

2
, 𝑎

2
= 6𝑘
2
𝑤
2
𝐶
2
,

𝑢 (𝑥, 𝑡) = (−
1

2
𝑤
2
+
1

2
) +

3

2
𝑘
2
𝑤
2
𝐶
2
(−

1

(𝑘𝑥 − 𝑘𝑤𝑡) + 𝐶
0

)

2

.

(25)

Figure 1 gives to us 2D and 3D graphics for (25).

Example 2 (Burger-like equations). Let’s consider

𝑢
𝑡
+ 𝑢
𝑥
+ 𝑢𝑢
𝑥
+ 𝜆𝑢
𝑥𝑥

= 0, (26)
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Figure 1: The solution (25) is shown at 𝑘 = 𝑤 = 1, 𝐶 = 0.5, and 𝐶
0
= 0.1, and the second graph represents the exact analytical solution of

(25) for 𝑡 = 0.5.
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Figure 2: The solution (39) is shown at 𝑘 = 𝑤 = 1, and the second graph represents the exact analytical solution of (39) for 𝑡 = 0.5.

where 𝜆 = 1, and in order to obtain Burger-like solution of
equation, we get

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) , 𝜉 = 𝑘 (𝑥 − 𝑤𝑡) . (27)

Substituting (27) into (26), we get

−𝑤𝑢
󸀠
+ 𝑢
󸀠
+ 𝑢𝑢
󸀠
+ 𝑘𝑢
󸀠󸀠
= 0. (28)

Balancing (𝑢𝑢
󸀠
) with 𝑢

󸀠󸀠 gives 𝑚 = 1. Therefore, we may
choose the following ansatz:

𝑢 = 𝑎
0
+ 𝑎
1
𝐹. (29)

Substituting (29) into (28) along with (5) and using Mathe-
matica yield the following set of algebraic polynomials with
respect to unknowns 𝑎

0
, 𝑎
1
, 𝑎
2
, and 𝑎

3

𝑢
󸀠
= 𝑎
1
𝐴 + 𝑎
1
𝐵𝐹 + 𝑎

1
𝐶𝐹
2
+ 2𝑎
2
𝐴𝐹

+ 2𝑎
2
𝐵𝐹
2
+ 2𝑎
2
𝐶𝐹
3
= 0,

(30)

𝑢𝑢
󸀠
= (𝑎
0
+ 𝑎
1
𝐹) (𝑎
1
𝐴 + 𝑎
1
𝐵𝐹 + 𝑎

1
𝐶𝐹
2
) ,

𝑢
󸀠󸀠󸀠
= 𝑎
1
𝐵𝐴 + 𝑎

1
𝐵
2
𝐹 + 𝑎
1
𝐶𝐴𝐹

+ 3𝑎
1
𝐵𝐶𝐹
2
+ 2𝑎
1
𝐶
2
𝐹
3
,

𝐹
0
: 𝑤
2
𝑎
1
𝐴 − 𝑎
1
𝐴 + 2𝑎

0
𝑎
1
𝐴 − 𝑘
2
𝑤
2
𝑎
1
𝐵
2
𝐴

− 2𝑘
2
𝑤
2
𝑎
1
𝐴
2
𝐶 − 6𝑘

2
𝑤
2
𝑎
2
𝐴
2
𝐵 = 0,
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𝐹
1
: 𝑤
2
𝑎
1
𝐵 + 2𝑤

2
𝑎
2
𝐴 − 𝑎
1
𝐵 − 2𝑎

2
𝐵 + 2𝑎

0
𝑎
1
𝐵

+ 4𝑎
0
𝑎
2
𝐴 + 2𝑎

2

1
𝐴 − 𝑘
2
𝑤
2
𝑎
1
𝐵
3

− 8𝑘
2
𝑤
2
𝑎
1
𝐴𝐵𝐶 − 14𝑘

2
𝑤
2
𝑎
2
𝐴𝐵
2

− 16𝑘
2
𝑤
2
𝑎
2
𝐴
2
𝐶 = 0,

𝐹
2
: 𝑤
2
𝑎
1
𝐶 + 2𝑤

2
𝑎
2
𝐵 − 𝑎
1
𝐶 − 2𝑎

2
𝐵 + 2𝑎

0
𝑎
1
𝐶

+ 4𝑎
0
𝑎
2
𝐵 + 2𝑎

2

1
𝐵 + 6𝑎

1
𝑎
2
𝐴 − 7𝑘

2
𝑤
2
𝑎
1
𝐵
2
𝐶

− 8𝑘
2
𝑤
2
𝑎
1
𝐴𝐶
2
− 52𝑘

2
𝑤
2
𝑎
2
𝐵
3
= 0,

𝐹
3
: 2𝑤
2
𝑎
2
𝐶 − 2𝑎

2
𝐶 + 4𝑎

0
𝑎
2
𝐶 + 2𝑎

2

1
𝐶 + 4𝑎

1
𝑎
2
𝐵

+ 2𝑎
1
𝑎
2
𝐵 + 4𝑎

2

2
𝐴 − 12𝑘

2
𝑤
2
𝑎
1
𝐵𝐶
2

− 40𝑘
2
𝑤
2
𝑎
2
𝐴𝐶
2
− 38𝑘

2
𝑤
2
𝐵
2
𝐶 = 0.

(31)

From the solutions of the system, we can find
𝑎
0
= 𝑤 − 1, 𝑎

1
= −2𝑘𝑐, (32)

and we obtain the following multiple solution and triangular
periodic solutions of (26).

(i) When we choose 𝐴 = 𝐶 = 1, 𝐵 = 0 in (31), then
𝑎
1
= −2𝑘, 𝑎

0
= 𝑤 − 1. (33)

Therefore, the solution can be found as
𝑢 (𝑥, 𝑡) = (𝑤 − 1) − 2𝑘 tan [𝑘 (𝑥 − 𝑤𝑡)] . (34)

(ii) In the case if we take 𝐴 = 𝐶 = −1, 𝐵 = 0 in (31), then
we have

𝑎
1
= 2𝑘, 𝑎

0
= 𝑤 − 1,

𝑢 (𝑥, 𝑡) = (𝑤 − 1) + 2𝑘 cot [𝑘 (𝑥 − 𝑤𝑡)] .
(35)

(iii) Again, when we choose 𝐴 = 1, 𝐵 = 0, and 𝐶 = −1,
𝑎
0
= 𝑤 − 1, 𝑎

1
= −2𝑘,

𝑢 (𝑥, 𝑡) = (𝑤 − 1) + 2𝑘 tanh [𝑘 (𝑥 − 𝑤𝑡)] ,

𝑢 (𝑥, 𝑡) = (𝑤 − 1) + 2𝑘 coth [𝑘 (𝑥 − 𝑤𝑡)] .

(36)

(iv) When we choose 𝐴 = (1/2), 𝐵 = 0, and𝐶 = −(1/2),
𝑎
0
= 𝑤 − 1, 𝑎

1
= −𝑘,

𝑢 (𝑥, 𝑡) = (𝑤 − 1) − 𝑘 [sec [𝑘 (𝑥 − 𝑤𝑡)] + tan [𝑘 (𝑥 − 𝑤𝑡)]] ,

𝑢 (𝑥, 𝑡) = (𝑤 − 1) − 𝑘 [cos 𝑒𝑐 [𝑘 (𝑥 − 𝑤𝑡)] + cot [𝑘 (𝑥 − 𝑤𝑡)]] .
(37)

(v) When we choose𝐴 = 𝐶 = −(1/2), 𝐵 = 0, then we can
find the coefficients of (31) as follows:

𝑎
0
= 𝑘, 𝑎

0
= 𝑤 − 1,

𝑢 (𝑥, 𝑡) = (𝑤 − 1) + 𝑘 [sec [𝑘 (𝑥 − 𝑤𝑡)] − tan [𝑘 (𝑥 − 𝑤𝑡)]] ,

𝑢 (𝑥, 𝑡) = (𝑤 − 1)+ 𝑘 [cos 𝑒𝑐 [𝑘 (𝑥 − 𝑤𝑡)] − cot [𝑘 (𝑥 − 𝑤𝑡)]] .
(38)

(vi) When we choose 𝐴 = (1/2), 𝐵 = 0, and 𝐶 = −(1/2),
then we can find the coefficients of (31) as follows:

𝑢 (𝑥, 𝑡)= (𝑤 − 1)+𝑘 [coth [𝑘 (𝑥 − 𝑤𝑡)]±cos 𝑒𝑐ℎ [𝑘 (𝑥 − 𝑤𝑡)]],

𝑢 (𝑥, 𝑡)= (𝑤 − 1) + 𝑘 [tanh [𝑘 (𝑥 − 𝑤𝑡)]± 𝑖sec ℎ [𝑘 (𝑥 − 𝑤𝑡)]].

(39)

Figure 2 gives to us 2D and 3D graphics for (39).

3. Conclusion

We have presented a generalized tanh function method and
used it to solve the Boussinesq equation and the Burgers-like
equation. In fact this method is readily applicable to a large
variety of nonlinear PDEs.

Firstly, all the nonlinear PDEs which can be solved by
other tanh function method can be solved easily by this
method. Secondly we have used only the special solutions
of (4). If we use only the special solutions of (4), we can
obtain more solutions. We are also aware of the fact that not
all fundamental equations can be treated with the method.

We also obtain some new and more general solutions at
the same time. Furthermore, this method is also computer-
izable, which allows us to perform complicated and tedious
algebraic calculation on a computer.
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