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A periodic discrete time three species competition system is investigated. With the aid of differential equations with piecewise
constant arguments, a discrete analogue of continuous nonautonomous three species competition system is proposed. By using
Gaines and Mawhin’s continuation theorem of coincidence degree theory, sufficient conditions for the existence of positive periodic

solutions of the model are obtained.

1. Introduction

During the past decades, the dynamical properties of com-
petitive populations have received great attention from both
theoretical and mathematical biologists due to their universal
prevalence and importance. Numerous excellent results have
been reported for a lot of different continuous or impulsive
competitive models. For example, Kuang [1] analyzed the
permanent coexistence of the following delayed three species
competition system:

% = x, (1) [1—x1 (t)—[ooK(S—t)xz(s)dS
—J.t L(s—1t)x, (s)ds],

d t

% = x, (t) [1 —xz(t)—J_OOL(s—t)xl (s)ds

_ fooK(s— £) x5 (s)ds] ,

d t
% = x5 (t) [l—x3(1f)—J_OoK(s—t)x1 (s)ds

_ ijL(s — 1) x, (s) ds] ,
1)

where x;(t) (i = 1,2,3) stands for the density of competing
species at time t. For the biological meaning of model (1), one
can see [1]. Tang et al. [2, 3] presented sufficient conditions
for the existence and global attractivity of positive periodic
solutions of the following periodic n-species Lotka-Volterra
competition system with delays

x; () =x; ()| r; (t) - Za,-j (t) x; (t - T (t)) . (2)
=1

Bohner et al. [4] focused on the existence of periodic solu-
tions in a predator-prey and competition dynamic systems,
Pao [5] considered the global asymptotic stability of Lotka-
Volterra competition systems with diffusion and time delays,
and Gopalsamy and Weng [6] made a detailed analysis on
the global attractivity for a competition system with feedback
controls. For more related work, one can see [7-10].



In 2011, Zhu and Lu [11] investigated the following delayed
three species competitive system:

d
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t
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where x;(t) (i = 1,2,3) stands for the density of competing
species at time ¢, Ty € C(R,[0,+00)) (i,j = 1,2,3) are
w-periodic functions (w > 0), and Kj; (i,j = 1,2,3) is a
nonnegative function in L, (—00, 0] with

;izlj r(s)ds>0, i=1,23,
w Jo
0
K, = J K;; (6)d > 0, )

% 1 w o
a. = — J aij(a)daj Kij(s—o)ds > 0.
w Jo —00
For more details about the model, one can see [11]. By
applying the theory of coincidence degree theory, Zhu and
Lu [11] established the existence of positive periodic solution
for system (3).

Numerous researchers have argued that discrete time
models governed by difference equations are more appropri-
ate to describe the dynamics relationship among populations
than continuous ones when the populations have nonover-
lapping generations. Moreover, discrete time models can also
provide efficient models of continuous ones for numerical
simulations. Therefore, it is reasonable and interesting to
study discrete time systems governed by difference equations.
Recently, a great deal of work has been devoted to this topics;
see [12-19]. The principle purpose of this paper is to propose
a discrete analogue of system (3) and study the effect of the
periodicity of the ecological and environmental parameters
on the dynamics of discrete time three species competition
system.
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The remainder of the paper is organized as follows. In Sec-
tion 2, with the help of differential equations with piecewise
constant arguments, we first propose a discrete analogue of
system (3), modelling the dynamics of time nonautonomous
competing system where populations have nonoverlapping
generations. In Section 3, based on the coincidence degree
and the related continuation theorem, sufficient conditions
for the existence of positive solutions of difference equations
are given.

2. Discrete Analogue of System (3)

There are several different ways of deriving discrete time
version of dynamical systems corresponding to continu-
ous time formulations. One of the ways of deriving dif-
ference equations modelling the dynamics of populations
with nonoverlapping generations that we will use in the
following is based on appropriate modifications of models
with overlapping generations. For more details about the
approach, we refer to [17, 20].

Next, we will discretize the system (3). Assume that the
average growth rates in system (3) change at regular intervals
of time; then we can obtain the following modified system:

L0 = (D) - ay (D) x, (1)

x ()
—ay, ([1]) Y Ky (<1) x, ([t] = D)
1=0
—ay; ([t]) ZKB (=D x5 ([t] =),
1=0
L () = 1, (1) - an, (D) %, (12])
x, ()
—ay () YKy (Dx (111 =) ()
1=0
— a5 ([t]) ) Koy (1) x5 ([t] = 1),
1=0
1 .
o 0= 7 () = s (141) %5 (1]

—ay; ([t]) ) Ky (<D x, ([1] - D)

1=0

—ay, ([t]) Y Kay (-1 x, ([£] - D),
=0

where [t] denotes the integer part of ¢, t € (0,+00)
and t # 0, 1,2,.... Equations of type (5) are known as differ-
ential equations with piecewise constant arguments and these
equations occupy a position midway between differential
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equations and difference equations. By a solution of (5), we
mean a function X = (x,, X, x;)", which is defined for t €
[0, +00) and has the following properties:

(1) x is continuous on [0, +00);

(2) the derivatives dx, (t)/dt, dx,(t)/dt, dx;(t)/dt exist
at each point t € [0, +00) with the possible exception
of the points t € {0,1,2,...}, where left-sided
derivative exists;

(3) the equations in (5) are satisfied on each interval
[k,k+1)withk =0,1,2,....

We integrate (5) on any interval of the form [k, k + 1),
k=0,1,2,..,and obtainfork <t <k+1,k=0,1,2,...

x; (£) = x; (k) exp { [h (k) = ay; (k) x, (k)

—ay, (k) Y Ky (1) x, (k= 1)

1=0

—ay; (k) Y K3 (<1) x; (k= 1)

1=0

X(t_k)}>

x, (t) = x, (k) exp { [rz (k) — ay, (k) x, (k)

—ay, ([1]) D Ky (1), (k=)
1=0

+00 (6)
~ayy (k) Y Kys (<1) x5 (k=)

1=0

><(t—k)},

x5 (t) = x5 (k) exp { [13 (k) — as3 (k) x5 (k)
—ay; (k) ) Ky (<1) %, (k= 1)
1=0

—ay, (k) Y Ky (<1) x, (k= 1)

1=0

x(t—k)}.

3
Lett — k + 1; then (6) reads as
x, (k+ 1) = x, (k) exp {rl (k) = ay, (k) x, (K)
- ay, (k) zKu (=) x, (k=1)
—a, (0 2K3 (D) x, (k- 1)} ,
x, (k+1) = x, (k) exp {1’2 (k) — ay, (k) x, (k)
~ ay ([£) 2191 (1) x, (k-]
a5 (K) nga (1) x, (k- l)} ,
X3 (k+ 1) = x5 (k) exp {@ (k) — ass (K) x5 (K)
—as, (k) szl () x, (k=1)
—a;, (k) ioKﬂ (1) %, (k - 1)}
- %

which is a discrete time analogue of system (3), where k =
0,1,2,....

In order to obtain our main results, we assume that the
following hold.

HD) rpa © Z — R" are positive w-periodic; that is,
r;(k + w) = r;(k) and aij(k +w) = a,-j(k) (i, j = 1,2,3) for any
k € Z, where w, a fixed positive integer, denotes the common
period of the parameters in system (7).

(H2) Consider

+00

0< Y Ky (-]) < +oo,
1=0
+00

0< ) Ky () < +oo,
1=0
+00

0= ) Ky (<)) < +0o,
1=0

+00
0< Z K5 (1) < +o0,
1=0



+00
0< ) Ky (<)) < +0o,
=0

+00
0< ) Ky (-1) < +oo.
1=0

(8)

3. Existence of Positive Periodic Solutions

For convenience and simplicity on the following discussion,
we always use the notations below throughout the paper:

I,:={0,1,2,...,0—1},

_ w-1 )
F=1Y @,
Wiso

where f (k) is an w-periodic sequence of real numbers defined
for k € Z. In order to explore the existence of positive
periodic solutions of (7) and for the reader’s convenience, we
will first summarize below a few concepts and results without
proof, borrowing from [21].

Let X, Y be normed vector spaces, L : DomL c X — Y
a linear mapping, and N : X — Y a continuous mapping.
The mapping L will be called a Fredholm mapping of index
zero if dimKerL = codimImL < +oo and Im L is closed in
Y. If L is a Fredholm mapping of index zero and there exist
continuous projectors P : X — XandQ : Y — Y such
that ImnP = KerL, ImL = KerQ = Im(I — Q), it follows
that L | DomLNKerP: (I - P)X — ImL isinvertible. We
denote the inverse of that map by K. If Q) is an open bounded
subset of X, the mapping N will be called L-compact on Q if
QN(Q) is bounded and Kp(I - Q)N : Q — X is compact.
Since Im Q is isomorphic to Ker L, there exist isomorphisms
J:ImQ — KerlL.

Lemma 1 (see [21] continuation theorem). Let L be a Fred-
holm mapping of index zero and let N be L-compact on Q.
Suppose

(a) for each A € (0,1), every solution x of Lx = ANx is
such that x ¢ 0Q;

(b) QNx #0 for each x €
deg {JQN, Q) Ker L, 0} # 0.

Ker L(0Q and

Then the equation Lx = Nx has at least one solution lying in
Dom L Q.

Lemma 2 (see [17]). Let g : Z — R be w periodic; that is,
gk + w) = g(k); then for any fixed k,,k, € 1, and any k € Z,
one has

w-1
gk)<g(k)+ Y |gs+1)-g@s),
s=0 (10)

w-1
gk)=g(ky) =Y |gls+1)—g(s)|.
s=0
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Lemma 3. (x,(k),x,(k),X;(k)) is an w periodic solution
of (7) with strictly positive components if and only if
(In{x, (K)}, In{X, (k)}, In{X5(k)}) is an w periodic solution of

x, (k+1) = x; (k) =, (k) — ay, (k) exp (x, (k))

—ay, (k) ZKIZ (=) exp (x, (k= 1))

1=0

—ay3 (k) Y Ky5 (<D exp (x5 (k-1D)),

1=0

x, (k+1) = x, (k) = r, (k) — ay, (k) exp (x, (k))

— ay (k) Y Ky (-1 exp (x; (k—1))

1=0

= ay; (k) D Ky (1) exp (x5 (k= 1)),

1=0

x5 (k+ 1) — x5 (k) = r3 (k) — as5 (k) exp (x5 (k))

— ay (k) Y Ky (-1 exp (x, (k—1))

1=0

+00

— a3, (k) Y Ky (-1 exp (x, (k= 1)).
1=0
(1)

The proofs of Lemma 3 are trivial, so we omitted the details
here.
Define

L={z={z(k)}:z(k) e R’ ke Z}. (12)

Fora = (al,ag,a3)T € R?, define|a| = max{|a, |, |a,], las}.
Let I c I, denote the subspace of all w periodic sequences
equipped with the usual supremum norm | - |; that is, |z|| =
maxkdwlz(k)l, forany z = {z(k) : k € Z} € 1. It is easy to
show that [ is a finite-dimensional Banach space.

Let

w-1
Iy = {z= fz()} el Y z(k) =0},

k=0 (13)

P={z={z(k)}el®:z(k)=heR, keZl,

then it follows that Ij and [’ are both closed linear subspaces
of I’ and

I° =1y +17, diml =3. (14)

Next, we will be ready to establish our result.
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Theorem 4. Let B,, By, By}, Bys, By, By, Bss, Bss, Bsg, and
By, be defined by (33), (37), (49), (57), (61), (73), (81), (86),
(94), and (98), respectively, and set

0, =a,, exp (B;) + a122K12 (1) exp (Bs) »
1=1

0, = @y, exp (B;) + @3 ) Kys (<1) exp (By,),
=1

05 =a,; exp (By;) + a122K12 (=D exp (By5),
I=1

0, = alZZKu (1) exp (Bys)

=1

+ alSZKB (-1 exp (By,), (15)
=1

05 = @,y exp (Bss) + a13ZK13 (-1 exp (Bs3),
I=1

96 = aBZKB (_l) exp (339) >

I=1

0, = a122,K12 (1) exp (Bso)

I=1

+ alsZKl'j (~1) exp (By;) -

I=1

Suppose that (H1), (H2) and (H3) 7, > {0,,0,,05,0,,0s,
06,0} hold, then system (7) has at least an w periodic solution
with positive components.

Proof. Let X =Y =1°,

(Lz) (k) =z(k+1) -z (k),

f1 (k) (16)
(Nz) (k) = f, (k) |,
15 (k)

wherez € X, k € Z, and

Sfi (k) =1 (k) —ay, (k) exp (xl (k))

—ay, (k) Y Ky, (=) exp (x, (k1))

1=0

—ay5 (k) Y Kys (D exp (x5 (k= 1)),
1=0

5
o (k) =1, (k) — ay, (k) exp (xz (k))
— a5, (k) ) K,y (<) exp (x, (k—1))
=0
— a5 (k) Y Koy (=) exp (x5 (k = 1)),
1=0
3 (k) = 13 (k) — az; (k) exp (x5 (k)
— a5, (k) Y Ky (1) exp (x, (k - 1))
1=0
— ay, (k) Y Ky, (=) exp (x, (k= 1)).
1=0
(17)

Then it is trivial to see that L is a bounded linear operator and

KerL =17, ImL =,

(18)
dimKerL = 3 = codimIm L,

then it follows that L is a Fredholm mapping of index zero.
Define

1w—1
Py==3y(s), yeX
ws:O
(19)

lw—l
Qz = —Zz(s), zeY.
ws:O

It is not difficult to show that P and Q are continuous
projectors such that

ImP =KerlL, ImL=KerQ=Im(I -Q). (20)

Furthermore, the generalized inverse (to L) Kp : ImL —
Ker P() Dom L exists and is given by

w-1 w-1
KP(z)=Zz(s)—$Z(w—s)z(s). (21)
s=0 s=0

Obviously, QN and Kp(I — Q)N are continuous. Since X is
a finite-dimensional Banach space, it is not difficult to show
that Kp(I - Q)N (Q) is compact for any open bounded set
Q ¢ X. Moreover, QN(Q) is bounded. Thus, N is L-compact
on Q with any open bounded set Q ¢ X.

Now we are at the point to search for an appropriate open,
bounded subset Q) for the application of the continuation
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theorem. Corresponding to the operator equation Lz = ANz, <« <

A (0.1), we have Y | ass (k) exp (x5 (k) + asy (k) Y Ky (-1) exp (x; (k- 1))
k=0 =0

+azy (k) ), Ksy (D exp (x, (k= 1) | = P
1+ 1) =, (R) = Ay ) = ay (k) exp (v, (k) - 5)

+00 It follows from (22), (23), (24), and (25) that
—ay, (k) Y Ky (1) exp (x, (k=1))

1=0

w-1
Z |x; (k+1) - x; (k)] < 270,
k=0

—ay; (k) Y Ky3 (1) exp (x5 (k=D)) |,

w-1

1=0
D |x, (e + 1) = x, ()] < 27,0, (26)
y (k+1) =2, (k) = A | 1y (K) = ayy (K) exp (x, (k) kj
D |xs (ke + 1) = x5 (0)| < 2F;0.
k=0

—ay (k) ) Ky (D exp (x; (k= D)
1=0 In view of the hypothesis that z = {z(k)} € X, there exist
&, n; € I, such that

—ay; (k) Y Kys (1) exp (x5 (k-1))|,
23 I=ZO 23 (x5 ) N (Ei)=IkIéiIn{xi ")}

(27)
x5 (k+1) = x5 (k) = A | r3 (k) — az5 (k) exp (x5 (k)) x; () = max {x;(k)} (=1,23).
+oo By (23), (24), and (25), we have
= agy (k) Y Ky (1) exp (x, (k=1)) ’
1=0 w-1
+co ay (k) exp (x; (&) < Zall (k) exp (x; (k) < 710,
—as, (k) Y Ky, (1) exp (x, (k=1))| . k=0
1=0 w-1
(22) Ay, (k) exp (x, (§,)) < ) ay, (k) exp (x, (k) < Fpw, (28)
k=0
w-1
Suppose that 2(k) = (x, (k) x, (), x, (k)T € Xisanarbitrary 223 W) exP (%3 (§)) < kzo as; (k) exp (x; (k) < T30
solution of system (22) for a certain A € (0, 1); summing both -
sides of (22) from 0 to w — 1 with respect to k, respectively, we  Thys
obtain —
-
In|—|,
x; (&) <In &N
w—1 +00 r—
D [an (k) exp (x; (k) + ay, (k) Y Ky, (1) exp (x, (k= 1)) x, (&) <In ar—z , (29)
k=0 =0 L 422
+00 [ 75 ]
vay; (k) Y Ky (1) exp (x5 (K - l))] = 7L, % (&) <In 1, |
1=0

(23)  Inthe sequel, we consider six cases.
(@) If x; (1) = x,5(17,) = x5(113), then it follows from (23)

w—1 +00
[aﬂ (k) exp (x, (K)) + ayy (k) Y Ky (1) exp (x (k= 1)) that
k=0 1=0 +00 +00
+oo a,,+a K,(-D)+a K5 (-]
+a,5 (k) ZKB (-1) exp (x5 (k - l))] =T7,w, ! 12; ’ 131:2‘; : (30)

(24) xexp (x, (1)) @ 2 Ty
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which leads to

X1 (’11)
y

>ln | —— — =
ap tap Z;r:%o Ky (=) + a5 Z?f.f’ K5 (-D)

It follows from (29), (31), and Lemma 2 that

w-1
x; (k) < x, (&) + Z |x; (s + 1) = x; (s)]
s=0
R
<ln|—|+2r,w:=By,
an

w-1
x (k)= x, () = Y [y (s + 1) = x, (5)]
s=0
> M, -2r,w:= B,.
By (32), we derive

max {x; (B} < max{|B,[,|B,|} = B;.
From (23) and (33), we obtain that

a, wexp (B;) +

ap ZKu (=D +a; ZKB (—l):l

1=0 =0
x wexp (x, (1)) = 7 w.

Then

7, —ay; exp (B;)
x >In [_ = L i — = ] .
? (112) ap l+=0 Ky, (=) +ay Zl+=o K5 (D)

Thus by (29), (35), and Lemma 2, we get

w-1
X%, (k) <5, (8) + ) |2, (s + 1) = x, (5)]
s=0

7
< In [_—2
a

+ 27w := By,

w-1
x, (k) = x, () — Z |, (s + 1) = x, ()|
s=0

> 1In [ 7y —ay; exp (Ba)
ap, ZZJ;? Ky, (<) +ays ZIJ::)O Ky; (=D

- 27,w = B;.
It follows from (36) that

max {x, (k)} < max {|By, B[} = Be.

M,

31)

(32)

(33)

(34)

(35)

(36)

(37)

In view of (33), (37), and (23), we get

+00
a;wexp (B;) + alz“-’ZKu (1) exp (Bs)

Then

x5 (113)

>1In

1=0

+00

+ alSWZKIS (D) exp (x5 (13)) = 7.
1=0

7, —ay exp (By) = d, Y1 K, (1) exp (Bg)

a3 Yy Kis (D)

Thus by (29), (39) and Lemma 2, we get

x5 (k) <

<

x5 (k) =

=

w-1

x5 (&) + Z |3 (s + 1) = x5 (s)]

s=0

?
In [_—3] + 273w := B,
as3

w—1
ENCAEDNENCERVEENG]
s=0

(38)

(39)

In [71 — @y exp (Ba) —ap Zlio(? Ky, (1) exp (Bé)

ays X5 Kis (<)

— 213w := Bg.

It follows from (40) that

max {x; (k)} < max {|B;|,|Bs|} := B.

(40)

(41)

(b) If x, (1) = x5(113) = x,(1,), then it follows from (23)

that

[511 +ap, ZKIZ (=D +ay; ZKB (_l):|

1=0 1=0

x exp (x; (1)) w 2 70

which leads to

%y (m)

> In

81 _

aj +ap ZIJ:E)O Ky, (=) + a5 Z;:Ooo K5 (=D '

(42)

M,.

(43)



It follows from (29), (43), and Lemma 2 that

w-1
xp (k) < x;, (&) + Z lx, (s + 1) = x; ()|
s=0

<ln[r

] +2r,w := By,
an

w-1
x; (k) = x, (;) - Z %) (s + 1) = x; ()]
s=0

> M, - 2r,w:= B,.
By (44), we derive

max {x; (B} < max{|B,[,|B,|} = B;.

From (23) and (45), we obtain that

a;,w exp (33)

* |:512 ZKIZ (=D +ay; ZKB (—l):|
1=0 =0

x wexp (x; (1)) 2 7.

Then

71— aq; €xp ( 3)

O .
e aiz 1+0K12( l)+a132+ K3 (D)

Thus by (29), (47), and Lemma 2, we get

w-1
x5 (k) < x5 (&) + Z |3 (s + 1) = x5 (s)]
s=0
<1 [F ] 2r3w == By,
n = + 2730 = B,

x5 (k) = x5 (13) Z |x3 (s+1)—x; (s)|

o In [ _—auexp(B)
an i ) +a 25 Kis (<))
— 215w := By,.
It follows from (48) that
rl?ax {xs (k)} < max {[B;, By} = Byy.

In view of (45), (49), and (23), we get

+00

a;wexp (B;) + alszKu (D) exp (x, (11,))
1=0

+00
+ El3wZK13 (<) exp (By;) = 7.
1=0

(44)

(45)

(46)

|

(48)

(49)

(50)
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Then
X2 (772)

71— ay; exp (B ) as Zm Ky; (=) exp (Bll)
ap Z;j)o Ky, (D)

>1n

(51)
Thus by (29), (51), and Lemma 2, we get

w—1
x5 (k) < x5 (E5) + ) |3 (s + 1) = x5 (5)]
s=0

F
<ln[ ]+2r3w =B,
as3

x5 (k) 2 x5 (173) Z x5 (s + 1) = x5 ()]

> In [71 — dy; €Xp (B ) ags Z+OO Ky; (=1) exp (Bn)
ap, Zz:o Ky, (<)

- 213w := By,.
(52)
It follows from (52) that
B.|,|B := Bi,.
Ig}j( {x3 ()} < max{|B;|,|By,]} 13 (53)

(o) If x,(11,) = x,(11;) = x5(#5), then it follows from (23)
that

[511 + alzlg()Klz (=D + alsl:ZOKls (—l)] (54)

x exp (x; (1)) w 2 1w

which leads to

x, (1)

>ln[_ — 7 n S ] = M,.
ay tap Yy Ky (=) +a; 5 Kz (=)

(55)
It follows from (29), (55), and Lemma 2 that
w—1
x, (k) < x, (&) + Z |x, (s + 1) = x, (s)
s=0
?
<ln[ ]+2r2w = B,,
92 (56)
w—1
%, (k) 2 %y (1) = ) [y (s 4+ 1) = %, ()|
s=0

> M, - 2F,w := By,
By (56), we derive

rl?ez}j( {x, (k)} < max {|B,],|Byl|} := Bys. (57)
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From (23) and (57), we obtain that

[511 +513ZK13 (_l):| wexp (x; (1))

1=0

(58)
+00
+ [EIZZKIZ (—l)] wexp (Bys) = 7.
1=0
Then
Ti—dy, YaN Ky, (<) exp (B
x, () = ln[ 1 _12 Zz__o izoo p( 15)] . (59)
ayy +ag Yy Kis (1)
Thus by (29), (59), and Lemma 2, we get
w-1
xp (k) < x; (&) + Z |, (s + 1) = x; ()|
s=0
<In [_r—l] +27,w = By,
apn
w-1
xp (k) = x; () — Z |, (s + 1) = x; (s)|
s=0
>1In [71 it Zi:? Klfof_l) exp (Bs) | _ 27, = Byg.
ayy +ag 2y Kz (1)
(60)
It follows from (60) that
r}fg-j( {x; (B} < max{|B,[,[By|} = By5. (61)
In view of (57), (61), and (23), we get
ajjwexp (By;) + alZwZKIZ (- exp (By5)
1=0
(62)

+00

+ a13“’2K13 (1) exp (x5 (13)) = 7.
1=0

Then
X3 (’73)
> In 7y —ay; exp (317) —a, ZL%O Ky, (-1) exp (BIS) ]
a2 Kis (D)

(63)

Thus by (29), (63), and Lemma 2, we get

w-1
x5 (k) < x5 (&) + Z |3 (s + 1) = x5 (s)]
s=0

27, _
<ln|—|+27w:=B,,
a3

w-1

x5 (k)2 y () = Y |os (s +1) = x5 (5)]
s=0 (64)

> 1n [F_1 _ai(lx)eXP (317)
s X Kiz (<)
_an Y155 K (1) exp (Bys)
a;s Z?f.f’ K5 (D)
— 215w := Byg.

It follows from (64) that

‘,f?}f {x; ()} < max{[B;|,[Bys|} := Byo. (65)

(d) If x,(11,) > x5(113) = x,(1,), then it follows from (23)
that

+00 +00
[511 +ap, ZKIZ (=D +ay ZKB (_l)]
1=0 =0 (66)
x exp (x, (1)) w 2 710
which leads to
X2 (’72)
>lr1[_ —— = n —— = ] = M,.
ay +ap Yy K (FD) +a; 25, Kis (1)
(67)

It follows from (29), (67), and Lemma 2 that

w-1
x, (k) < x, (&) + Z |, (s +1) = x, (s)]
s=0

<In [_1’_2] + 27,w := By,

92 (68)
w-1
x, (k) = x, (n,) — z |, (s + 1) = x, (s)]
s=0
> M, - 2r,w := By,.
By (56), we derive
r]?ee}j( {x, (k)} < max {|By|, |B4|} := By (69)
From (23) and (57), we obtain that
+00
I:au +ay; ZKB (_l)] wexp (x5 (113))
1=0
(70)

+00
+ [5122K12 (—l)] wexp (Byy) = 7.
1=0
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Then

x5 (;) = In [71 __512 Zi:og) Ki((]_l) €xp (Bzo)
ayy +ag Ysy Kis (<)

Thus by (29), (71), and Lemma 2, we get

(71)

w—-1
x5 (k) < x5 (&) + Z 5 (s + 1) = x5 (s)|
s=0

F
<ln[ ]+2r3w :=B,,
as3

w-1
x5 (k) = x5 (173) - Z |5 (s + 1) = x5 ()|
s=0

Zln[

It follows from (72) that

—ay, Z+Oo Ky, (=D exp (Bzo)
a; +ag; Zl:o Ky; (=D

- 273w := B,,.

(72)

‘El?x{x3 (k)} < max {|B;|, |Byl|} := B, (73)

In view of (69), (73), and (23), we get

ajwexp (x; (1)) + a12‘UZK12 (1) exp (Byo)
0 (74)

+00

+ 5130)21{13 (=) exp (B,,) = 7y w.
1=0

Then
X1 (’71)

—ay, Z+OO Ky, (1) exp (Bzo)
ags 21:0 13 (=D (75)

_ a; Zfooo (1) exp (By,)
a;s Z“x’ K3 (D)
Thus by (29), (75), and Lemma 2, we get

>1In

w-1
X () <x (&) + ) |x s+ 1) = x, (9)]
s=0

7
<ln[ ]+2rw—Bl,
an

w-1
x; (k) = x, (1) - Z |x, (s +1) = x; (s)|
s=0

ol

(76)
—ay, Z+OO Ky, (1) exp (Bzo)
ags 21:0 K3 (D)
B ag; Zz o Kiz (=) exp( 22)
a; ZH)O K5 (D)

— 27w = B,s.

Journal of Applied Mathematics

It follows from (76) that

max fx; ()} < max | B, [Bas]} := Bas. (77)

(e) If x5(13) = x,(1;) = x,(17,), then it follows from (23)
that

+00 +00
[511 +ap, ZKIZ (=D +ay; ZKB D

1=0 1=0

] (78)

x exp (x; (1)) w 2 70

which leads to

7
x5 (13) > In [ — 1 - ] .
e ap +ap Z+ Ky, (<) +ay; Z+ Ky; (=)

(79)

It follows from (29), (79), and Lemma 2 that

w-1

x5 (k) < x5 (&) + Z |3 (s + 1) = x5 (s)]

s=0
7
<ln[ ]+2r3w =B,
as3

w-1

x5 (k) = x5 (n3) — Z |3 (s + 1) = x5 (s)]

s=0
>In [ £ — +00
ap +ay, Zl o Kip (=) + a3 Y50 Ki5 (=)

— 215w := Bj,.

(80)

By (80), we derive

max {x; (k)} < max {|B;|, |Bs,|} := Bs;. (81)

From (23) and (33), we obtain that

|:au +ap ZKu (_l):| wexp (x; (117))
1=0 (82)

+00

+ay; ZKB (- wexp (Bs;) = 71w
1=0

- = +00
x, (}71) >1n ry fl13 Zz_:o Ki«f [) exp (333) ' (83)
ayy +ay Yis Kip (1)
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Thus by (29), (83), and Lemma 2, we get

w-1
x; (k) < x, (&) + Z |x; (s +1) = x; (s)|
s=0

(84)
]+
<ln|—|+2r,w:= By,
an
x, (k) = x, () Z |x1 (s+1)—x; (s)l
> 1n [ — a3 Z+OO K3 (=1) exp (Bs3) (85)
- a +ap Zz:o Ky, (D)
— 21w := By,.
It follows from (83) and (84) that
max {x; ()} < max{|B,|,|Bsy|} := Bss. (86)
In view of (83), (84), and (23), we get
+00
ajjwexp (Bss) + alZwZKIZ (1) exp (x; (7,))
1=0
(87)
+00
+ 513wZKl3 (-1)exp (Bs3) = T w.
1=0
Then
%, (11,)
> In 7 —ay exp (B;) — a3 Z;r:%o K3 (=1) exp (333)
ays 215 Kis (D)
(88)

Thus by (29), (88), and Lemma 2, we get

w-1
x, (k) < x, (&) + Z |5 (s + 1) = x, (s)|
s=0

7
<In [
a

+ 27w := By,

w-1

%3 (k) 2 %, (113) = Y 3y (s + 1) = x, (5)]
s=0

> In |:r —dy; €Xp (B ) ags Zmo K5 (-1) exp (333) ]
a3 Z;r:%o Ky (-D)
— 27w := By
(89)
It follows from (89) that
hax {x, ()} < max {|By[, [Bs|} := Bs;. (90)

1

(f) If x5(13) = x,(1,) = x,(1,), then it follows from (23)
that

[511 +ay ZKU (=D +ay ZKB (_l):|

1=0 1=0 (91)

x exp (x; (1) @ > Fro

which leads to

r
() > ]
I “11+alzzloK12( l)+a13Z,+0K13( 1)
(92)

It follows from (29), (92), and Lemma 2 that

x5 (k) < x5 (&) +

Zl’% (s+1) = x5 (s)|

<ln[r

] + 213w := B,
as3

x5 (k) = x5 (1) z %5 (s + 1) = x5 (5)]

2 In [— — +00 1 — +00
ay +ap Yy Kip (FD) +ay; 25, Kis (1)

— 273w := Bsg.
(93)

By (93), we derive

max {x; (k)} < max {|B,|,|Bss|} := Bso. (94)

From (23) and (94), we obtain that

[511 +ap, ZKn (—l):| wexp (x; (1))

1=0
(95)

+00

+a; ZKB (-l) wexp (Bsy) = 7 w.
1=0

Then

— a3 21 o K3 (-1) exp (339)
aj +ap Zl o Kz (D)

%, (1) = In (96)
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Thus by (29), (96), and Lemma 2, we get

w-1
x, (k) < x, (&) + Zo |, (s + 1) = x, (s)]

T
<In [_—2] +27,w := B,,
axy

w-1
x, (k) 2 x, (1) - ;0 |x1 (s+1)—x; (5)| 7)

> In [71 — a3 21?5) K5 (-1) exp (339)
ap +ap ZL‘E’ Ky, (D)

—2r,w := By,.
It follows from (97) that

max {x, (k)} < max {|B,|,|By|} := By (98)

In view of (94), (98), and (23), we get

ajwexp (x, (m,)) + alszKlz (1) exp (Bs)
1=0
(99)

+00
+ El3wZK13 (1) exp (By;) = 7.
1=0

Then

o sk ]
% (1) = 1n "m0 2 612( ) exp (Bso)
1

(100)

A Y155 K3 (D) exp (Byy)
an

Thus by (29), (100), and Lemma 2, we get

w—1
xy (k) <y (8) + ) |x (s + 1) = x, (5)]
s=0

Journal of Applied Mathematics

w-1
x, (k) = x, () - Z |x, (s + 1) = x; ()
s=0

71— ap Z;:Z)O Ky, (=D exp (B39)

>In
an
e Y155 Kis (=) exp (Byy)
ap
— 21w := By,.

(101)
It follows from (101) that

1;12}3( {x, (k)} < max {|B,|, |By,|} := Bys. (102)

Obviously, B; (i = 1,2,...,43) are independent of A € (0, 1).
Take M = max{Bs,Bg, Bg, By1» Biy» Bys» Bys» Bios Bros Bygs
B,,, Byys Bsss Bys, Bay, Bsg, Byg, Bys, } + By, where B, is taken
sufficiently large such that max{| In{x7 }|, | In{x] }|, | In{x3 }|} <
B,, where (xf,x;‘,x;‘)T is the unique positive solution of
(11). Now we have proved that any solution z = {z(k)} =
{(x, (k), xz(k),x3(k))T} of (22) in X satisfies ||z|| < M, k € Z.

Let Q = {z = {z(k)} € X : ||z|| < M}, then it is easy to see
that Q is an open, bounded set in X and verifies requirement
(a) of Lemma 1. When z € 0Q N Ker L, z = {(xy, x,, x3)T} is

a constant vector in R with ||z|| = max{|x, [, %], [x5]} = M.
Then

QNz =

+00 +00

7y —ay exp (x) —ap an (D exp (x,) —ay; ZKla (1) exp (x3)
1=0 =0
+00 +00

7, —ay exp (x,) —ay ZKZI (D exp (x,) —ay ZKzs (=D exp (x3)
=0 =0

+00 +00
73 —as; exp (x3) — @y ZK31 (=D exp (x;) — a3, ZK32 (=D exp (x)
1=0 1=0

#0.
(103)

Now let us consider homotopic ¢(x;, x,, x34) = uQNz+ (1 -
wGz, u € [0, 1], where

71— ay; exp (xl)
Gz=|71,-anexp(x,) |.

T3 — a3 €xp (x3)

(104)
Letting ] be the identity mapping and by direct calculation,
we get
deg {]QN(xl, x5 x3) 5 Q ﬂ ker L; 0}
= deg {QN(xl, X %3) 5 Q2 ﬂ ker L; 0}
= deg {gb (%1, %5, %3,1)5Q ﬂ ker L; 0}

= deg {qb (%1, %5, %3,0)5Q ﬂ ker L; 0}



Journal of Applied Mathematics

—a,; exp (x7) 0 0
= sign 1 det 0 —a,, exp (x3) 0
0 0 —as; exp (x})

= sign {—a,,a,,a33 exp (x; +x, +x3)} = -1 #0.
(105)

By now, we have proved that Q verifies all requirements of
Lemma 1, then it follows that Lz = Nz has at least one
solution in Dom L N Q; that is, to say, (11) has at least one
w periodic solution in DomL N Q say z* = {z*(k)} =
{(x} (), x5 (K), x5 (K)) '} Let %7 (k) = explx; (k)}, X5 (k) =
exp{x; (k)}, and x;(k) = exp{x;(k)}; then by Lemma 3
we know that z° = {x"(k)} = {Ef(k),?;(k),?;(k))T} is
an w periodic solution of system (7) with strictly positive
components. The proof is complete.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (nos. 11261010 and no. 11101126), the
Soft Science and Technology Program of Guizhou Province
(no. 2011LKC2030), the Natural Science and Technology
Foundation of Guizhou Province (J[2012] 2100), the Gov-
ernor Foundation of Guizhou Province ([2012] 53), and the
Doctoral Foundation of Guizhou University of Finance and
Economics (2010).

References

(1] Y. Kuang, Delay Differential Equations with Applications in
Population Dynamics, vol. 191, Academic Press, Boston, Mass,
USA, 1993.

[2] X. H. Tang and X. E Zou, “On positive periodic solutions of
Lotka-Volterra competition systems with deviating arguments,”
Proceedings of the American Mathematical Society, vol. 134, no.
10, pp. 2967-2974, 2006.

[3] X. Tang, D. Cao, and X. Zou, “Global attractivity of positive
periodic solution to periodic Lotka-Volterra competition sys-
tems with pure delay;” Journal of Differential Equations, vol. 228,
no. 2, pp. 580-610, 2006.

[4] M. Bohner, M. Fan, and ]. Zhang, “Existence of periodic
solutions in predator-prey and competition dynamic systems,”
Nonlinear Analysis. Real World Applications, vol. 7, no. 5, pp.
1193-1204, 2006.

[5] C. V. Pao, “Global asymptotic stability of Lotka-Volterra com-
petition systems with diffusion and time delays,” Nonlinear
Analysis. Real World Applications, vol. 5, no. 1, pp. 91-104, 2004.

[6] K.Gopalsamyand P. Weng, “Global attractivity in a competition
system with feedback controls,” Computers ¢» Mathematics with
Applications, vol. 45, no. 4-5, pp. 665-676, 2003.

[7] X. Xiong and Z. Zhang, “Periodic solutions of a discrete two-
species competitive model with stage structure,” Mathematical
and Computer Modelling, vol. 48, no. 3-4, pp. 333-343, 2008.

[8] Z.Liu,J. Hui, and J. Wu, “Permanence and partial extinction in
an impulsive delay competitive system with the effect of toxic
substances,” Journal of Mathematical Chemistry, vol. 46, no. 4,
pp. 1213-1231, 2000.

[9] S. Ahmad and I. M. Stamova, “Asymptotic stability of an N-
dimensional impulsive competitive system,” Nonlinear Analysis.
Real World Applications, vol. 8, no. 2, pp. 654-663, 2007.

13

[10] Y. Chen and Z. Zhou, “Stable periodic solution of a discrete
periodic Lotka-Volterra competition system,” Journal of Math-
ematical Analysis and Applications, vol. 277, no. 1, pp. 358-366,
2003.

[11] M. Zhu and S. Lu, “Existence and global attractivity of positive
periodic solutions of competition systems,” Journal of Applied
Mathematics and Computing, vol. 37, no. 1-2, pp. 635-646, 2011.

[12] Y. G.Sunand S. H. Saker, “Positive periodic solutions of discrete
three-level food-chain model of Holling type I1,” Applied Math-
ematics and Computation, vol. 180, no. 1, pp. 353-365, 2006.

[13] R.Xu, L. Chen, and F. Hao, “Periodic solutions of a discrete time
Lotka-Volterra type food-chain model with delays,” Applied
Mathematics and Computation, vol. 171, no. 1, pp. 91-103, 2005.

[14] Y.Li, “Positive periodic solutions of a discrete mutualism model
with time delays,” International Journal of Mathematics and
Mathematical Sciences, no. 4, pp. 499-506, 2005.

[15] L. Nie, Z. Teng, L. Hu, and J. Peng, “Existence and stability
of periodic solution of a predator-prey model with state-
dependent impulsive effects,” Mathematics and Computers in
Simulation, vol. 79, no. 7, pp. 2122-2134, 2009.

[16] L.-L. Wang and W.-T. Li, “Periodic solutions and permanence
for a delayed nonautonomous ratio-dependent predator-prey
model with Holling type functional response,” Journal of Com-
putational and Applied Mathematics, vol. 162, no. 2, pp. 341-357,
2004.

[17] J. Wiener, “Differential equations with piecewise constant
delays,” in Trends in Theory and Practice of Nonlinear Differential
Equations, vol. 90 of Lecture Notes in Pure and Applied Mathe-
matics, pp. 547-552, Dekker, New York, NY, USA, 1984.

[18] B. Dai and J. Zou, “Periodic solutions of a discrete-time
nonautonomous predator-prey system with the Beddington-
DeAngelis functional response,” Journal of Applied Mathematics
& Computing, vol. 24, no. 1-2, pp. 127-139, 2007.

[19] W. Zhang, D. Zhu, and P. Bi, “Multiple positive periodic
solutions of a delayed discrete predator-prey system with type
IV functional responses,” Applied Mathematics Letters of Rapid
Publication, vol. 20, no. 10, pp. 1031-1038, 2007.

[20] M. Fan and K. Wang, “Periodic solutions of a discrete time
nonautonomous ratio-dependent predator-prey system,” Math-
ematical and Computer Modelling, vol. 35, no. 9-10, pp. 951-961,
2002.

[21] R. E. Gaines and J. L. Mawhin, Coincidence Degree, and
Nonlinear Differential Equations, Springer, Berlin, Germany,
1997.



-

Advances in

Operations Research

/
—
)

Advances in

DeC|S|on SC|ences

Mathematical Problems
in Engineering

Algebra

2

Journal of
Probability and Statistics

The Scientific
\(\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of

Mathematics

Journal of

DISBJBLL alhematics

International Journal of

Stochastic Analysis

Journal of

Function Spaces

Abstract and
Applied Analysis

Journal of

Applied Mathematics

ol

w2 v (P
/

e

\jtl (1)@" W, E

International Journal of
Differential Equations

ces In

I\/lathémamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization



