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Process control tools are a widely used approach in many operations and production processes. Process control chart ranks as one of
the most important theories used in these disciplines. This paper reviewed the bias of quality characteristics monitoring. Specifically,
this study tries to provide a comprehensive understanding of theories of process control. The text starts with a theoretical review

of statistical process control theories and follows by a technical introduction to developed tools for process control.

1. Introduction

Statistical process control (SPC) is a collection of seven tools
which is useful in improving the quality level by decreasing
the variability and increasing the stability of the process. The
most well-known tool of SPC is the control charts. Control
chart is a graphical tool based on the measurement data
obtained in the course of time from the process. Based on
the nature of the data obtained from the process, two broad
categories of control charts existed; namely, variable and
attribute control charts. If the quality characteristics of the
product items could be measured as a numerical scale such
as weight and height, variable control chart is appropriate.
On the other hand, if the quality characteristics could not
be measured in numerical scale such as color and softness,
attribute control chart could be utilized. By comparing these
two types of control charts, we can conclude that, firstly,
variable control charts need a smaller sample size than
attribute control charts to construct. Secondly, in variable
control charts, assignable cause could be detected sooner
than attribute control charts. Thirdly, the cost and time for
constructing an attribute control chart are less than a variable
control chart, and finally, in attribute control charts, we could
monitor more than one quality characteristic at the same time
in one control chart. In the following, we technically review
the attribute control charts.

2. Attribute Control Chart

Attribute control charts consist of four different control
charts. If the production items are categorized into two
groups based on the specification limits, the beyond statistical
distribution is binomial, and each item is known as confirm
or nonconfirm with the specification limits. In this case,
proportion of nonconforming items (p chart) and number
of nonconforming items (np chart) are appropriate. If the
number of defect in a period of production time or in
one production item is considered, the beyond statistical
distribution is poison, and the suitable control charts are
known as ¢ chart and u chart. In the current research, we
concentrated on the p chart.

2.1. The Attribute Control Charts Literature. Selecting the
proper sample size for constructing the attribute control
charts is so important. According to Ryan and Schwertman
[1] the adequate sample size should be selected to ensure
that the normality assumption is not violated. This difficulty
gets more important when the proportion of nonconforming
is small, because in this case the sample size should be
large enough to have at least one item in the categories of
nonconforming items. However, a large sample size is too
hard to collect in some situations where the output rate of the



process is small, and also it is time consuming and costly. To
overcome this difficulty, Schwertman and Ryan [2] proposed
dual a np chart which consists of two charts. The first chart
has a tighter control limit which requires a smaller sample
size, and the second one is a CUSUM chart.

For overcoming the large sample size, Chen [3] also
proposed an alternative approach. He suggested two charts
which are based on discrete probability integral and arcsine
transformations.

Nelson [4] also proposed an alternative approach. He
suggested counting the number of conforming items between
two consecutive nonconforming items. He assumed that this
observation has an exponential distribution; so, by using a
transformation to a normal distribution, we could monitor
the process.

Several researchers discussed another topic which is
the speed of detecting an abnormal shift in proportion
of nonconforming items. To detect an abnormal shift like
variable control charts, CUSUM chart is a good alternative
approach. Reynolds and Stoumbos [5] proposed two different
CUSUM charts. One is based on binomial distribution, and
the second one is based on a Bernolli variable.

3. Control Charts for Categorical Data

One of the major areas in SPC is monitoring the proportion of
the nonconforming units in the production processes. One of
the usual control charts for such cases is the p chart. Instead of
classifying the production units into two groups (conforming
and nonconforming), suppose that they have been classified
into more than two groups. As an example, they are classified
into three groups: minor defect, major defect, and absent of
defect. If the produced unit has a minor defect, it can be
repaired by low cost and attempts. But if it has a major defect,
it can be repaired by lots of cost, or it must be discarded.

If the produced units classify into more than two groups,
categorical control charts could be used. In the following,
categorical control charts are explained in detail.

3.1. Generalized p Chart. Suppose that IT;, IT,, 1, are the
proportion of the process. This case is comparable with the
p chart situation. Case I is when the proportions are known
before. Case II is when the proportions are unknown before
and at first; in phase I when the process is supposed to be in
control, they must be estimated.

For monitoring a multinomial distribution, independent
samples should be collected during the process. Suppose that
Xi1> Xip» X3 show the number of observations in category 1,
2, and 3, respectively, in period i. Base period is shown with
i = 0. n; is the sample size for monitoring period i.

First, consider case I where the proportions are known
before. A statistical standard approach for solving such a
problem is using Pearson’s goodness of fit statistic as follow

[6]:
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where the process is in the state of in control and Yi2 has chi-
square distribution with two degree of freedom.

The control chart based on (1) has an upper control
limit which is determined with a percentile of chi-square
distribution.

It should be noted that in processes with ¢ categories, the
upper control limit of summation in (1) should be ¢, and the
statistic Yi2 has a chi-square distribution with c-1 degree of
freedom.

Now, consider the second problem (case II). The goodness
of fit test is not appropriate here. An appropriate statistical
approach is a consistency test between base period and other
periods of the process [7]. This statistic for period i is as (2).

Consider the following:

nk(Xk]/nk (X,-j + Xoj) /(n; + no))2
(Xij + Xoj) / (n; +ny)

)
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O

where P; = X;;/my is the ratio of each sample. If n; — 00

where 1y/n; is limited and greater than zero, so that Z; has
a chi-square distribution with two degrees of freedom.
Therefore, in case I, the control chart for this case also has
an upper control limit equal to an appropriate percentile of
chi-square distribution.

There is no theoretical rule for sufficient sample size for
using chi-square distribution in such a case. Some rules of
thumb exist to determine enough sample size. The most
famous rule was proposed by Cochran [8]. He declared
that the twenty percent of the frequency of each category
should be greater than 5, and the expected frequency of each
categories should be greater than one.

3.2. Grouped Observations. Even when the quality charac-
teristic is variable, it is more economical to classify it into k
categories than to measure it exactly. As measuring a variable
characteristic need, cost and time, using gauge for quality
inspection is suggested. As Steiner et al. [9] mentioned:
“usually quality data are gathering in grouped manner”

3.3. Fuzzy Control Charts. Based on the nature of the quality
characteristics, two broad categories of control charts are
developed, namely, variable and attribute control charts.
Variable control charts are used to monitor continuous char-
acteristics of the products such as length, weight, and voltage
which are measurable on numerical scales. However, it is
not always possible to express the quality characteristics on a
numerical scale. For these characteristics such as appearance,
softness, and color, control charts for attribute are used.
Control chart for proportion nonconforming is one of the
attribute control charts. In this chart, each product unit is
classified as “conforming” or “nonconforming,” depending
upon whether or not they meet specifications. Then, by
using the principles of Shewhart control charts, this chart
called p-chart is formed. But as Raz and Wang [10, 11] also



Journal of Applied Mathematics

mentioned, the binary classification into “conforming” and
“nonconforming” used in p-chart might not be appropriate
in many situations where there might be a number of inter-
mediate levels. In this case, for measuring the quality-related
characteristics, it is necessary to use several intermediate
levels besides conforming and nonconforming. For example,
the quality of product can be classified by one of the following
terms: “perfect,” “good,” “medium,” “poor;” and “fair;” depend-
ing on deviation from specifications. Data obtained in this
way are called categorical data, and we can use multinomial
distribution instead of binary distribution. Several statistical
researches have been done in this area. The early research goes
back to Duncan [6, 7], who introduced a chi-square control
chart for monitoring a multinomial process with categorical
data. Later, this type of control chart is discussed further
by Marcucci [12] and Nelson [13]. Marcucci introduced a
statistical approach for a case, where the proportion of each
category is not known before.

But the problem still exists. As we know, the quality
level of each product is determined by the quality inspectors,
and they do this task mentally. For example, one product
might be classified into perfect category by an inspector but
classified into good category by another inspector. It means
that determining the quality level of the product mentally by
the inspectors is in an uncertainty situation. As Yager and
Zadeh [14] also indicated that in fact the main problem is
vagueness that corresponds to the mental affect. Fuzzy set
theory could be used because of the uncertainty situation and
vague environment. In case of monitoring attribute data by
using fuzzy set theory, several researches exist. Raz and Wang
[10, 11] proposed an approach based on fuzzy set theory for
monitoring attribute processes when quality characteristics
are classified into mutually exclusive categories. Kanagawa
etal. [15] present a control chart based on the probability den-
sity function existing behind the linguistic data, continuing
the Raz and Wang approach. These approaches are discussed
by Laviolette et al. [16], Almond [17], and Kandel et al. [18]
and reviewed by Woodall et al. [19] and Taleb and Limam
[20]. Later, Giilbay et al. [21-23] proposed an «a-level fuzzy
control chart for attributes in order to reflect the vagueness
of data and tightness of inspection. In the following, the most
famous research in the area of fuzzy attribute control charts
will be illustrated in detail.

3.3.1. The Raz and Wang Approach. Constructing a control
chartinvolves determining the center line (CL), upper control
limit (UCL), and lower control limit (LCL). This is calculated
based on the random sample from the process. When linguis-
tic data are used, it is necessary to state the related fuzzy set by
arepresentative value. In the following, several approaches to
determine a representative value for a fuzzy set are explained,
and after that probabilistic and fuzzy membership approach
will be presented.

Representative Value. To keep the standard format of the She-
whart control chart, it is necessary to transfer the associated
fuzzy set to a crisp value which we call representative value.
This transformation could be done in different ways. In the

following, four methods which are similar in the principle
to central tendency in statistics are represented. It must be
mentioned that there is no theoretical baseline to select
between these four methods, and the selection is completely
arbitrary. In the following definitions, F is the fuzzy subset, x
is the base variable, and pp(x) is the membership function.

(1) The fuzzy mode, f,,.q4e> is the value of the base variable
where the membership is equal to 1:

#F(fmode):l(fmode:{xlﬂf(x):1}’ VXGF). (3)

The fuzzy mode is unique if pp(x) is unimodal.
In the special case where A = (a, b, c) isa triangular fuzzy
number, the fuzzy mode is equal to b; so, we could have

fmode =b. (4)

(2) The «-level fuzzy midrange, f,.(«), is the average of
the endpoint of an a-level cut. An «-level cut of F, denoted
by F,, is a nonfuzzy subset of the base variable x containing
all the values with a membership function value greater than
or equal to «. Thus,

F,={x|up(x)>al. (5)

Note that the fuzzy mode is a special case of the a-level fuzzy
midrange with o = 1.

Suppose that A is a triangular fuzzy number. Applying o-
cut of fuzzy set, the values of a* and ¢* are determined as
follows:

a“=a+ab-a),

(6)

G =c-alc-b).

So, a-level fuzzy midrange for a triangular fuzzy number
could be calculated as follows:

a® +c*

fmr (“) = 2

(a+c)+aflb-a)-(c-b)] 7
:>fmr(06)= atc)t+a 2(1 C .

(3) The fuzzy median, f,,.4> is the point which divides the
area under the membership function into two equal regions,
satistying the following equation:

Sined +00
J Yp (x)dx = J Up (x) dx
-0 Sined
(8)

1 +00
=3 j_oo Up (x) dx.

(4) The fuzzy average, f,,, is defined by Zadeh [24] as
follows:

fol xpp (x)dx
fol Up (x) dx

Generally, two first approaches are simpler in calculation,
especially when the membership function was nonlinear.

fanZA‘V(X:F)= (9)
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FIGURE 1: Representative value.

However, when the membership function is too nonsym-
metrical, the result of fuzzy mode might be bias. Fuzzy
midrange is more flexible, because a different level for & could
be selected. When in addition to the place of membership
function, the shape of the membership function is important;
then, the best choice would be fuzzy average, because it has
been calculated from a wide principle.
For comparison, consider a fuzzy set like A as follows:

0 x<0.2
25x-05 02<x<06

B =Y 54 06<x<08 (10)
0 x> 0.8

Representative value for A would be f, 4 = 0.6, fied =
0.546, fy,, = 0.55, and f,,, = 0.533; Figure 1 shows these
results as well.

Representing a Sample. A sample could involve several
observations which are selected for the inspection. Each
observation is classified with a linguistic term and related
to a known membership function. These separate linguistic
terms need to combine to become a representative value for
the sample. This combination of the observation could be
done both before and after transferring the linguistic terms
to representative values.

In the first case, related fuzzy sets to linguistic terms in a
sample should be added together and then divided into the
number of sample observations. This operation is done based
on the fuzzy mathematics. The result would be a fuzzy set
which might not be similar to any of the preliminary terms
but is the representative of the quality of that sample. Then, a
numerical value as a representative could be calculated by one
of the four transformation techniques which were explained
in the previous section. Suppose that t linguistic terms existed
which were shown by L; (i = 1,2,...,t). For each linguistic
value, a related fuzzy set such as F; with a membership
function like y;(x;) is defined. Consider a sample like S with
n observation S = {(F,, k), (F,, k), ..., (F,k,)}, where k; is
the number of items that classify to linguistic value L; by
quality inspectors and k; + k, + --- + k, = n. The fuzzy set
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which is the mean of a sample fuzzy set is shown by MFs. The
membership function of MFs is y(x,) as follows [25]:

s (xs)
= Max x{Min[py (1), (%) - pe(x0)]} -

xg=(kyx, +hyxy 4otk x, ) [

(11)

The representative value of the sample could be calculated by
one of the transformation approach on the y,(x,).

If the mean of the sample constructs after transferring the
linguistic value to representative value, the calculation would
be easier. The representative value of the F; is shown by r;. The
sample mean, M, as the mean of the r; could be calculated as
follows:

M- (riky +ryky +-0- + rtkt)' 1)
n

The first approach keeps fuzziness more than the second
approach with the need of more calculation especially when
we have a nonlinear membership function. In the following,
an example is provided to show both approaches.

Consider a linguistic variable for the evaluation of the
quality characteristic of a product with a set of terms such as
perfect, good, medium, poor, and bad. Base variable is a level of
quality which standardized in the interval [0, 1]. Zero shows
the best quality and 1 shows the lower quality. Membership
functions associated with each linguistic term are as follows.

1-4x 0<x<0.25

Hpericer (X) = {0 x> 0.25,

4x 0<x<0.25

Hgood (X) = 12 -4x 025<x<05
0 x2>0.5,
0 x <0.25 x>0.75
Umedium (X) = 14x—1 0.25<x<0.5 (13)
3-4x 0.5<x<0.75
0 x <05
Hpoor (X) = 14x -2 0.5<x<0.75
|4—4x 075<x<1,
= | x<0.75
Hoad 9= 14023 075 <x< 1.

These membership functions are depicted in Figure 2.
Consider a sample with 10 observations as

S= {(Fperfect’ 3) > (Fgood) 2) 5

(Fmedium’ 2) ’ (Fpoor’ 2) ’ (Fbad’ 1)} .

(14)
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u(X)

\_.'. o -
0 0.25 0.5 0.75 1
Quality level (X)

FIGURE 2: Membership functions for 5 linguistic terms.

w(X)

0.426

0 0.2 0.4 0.6 0.8
Quality level

F1GURE 3: Combined membership function of the sample.

By combining these 10 observations based on the first
approach, fuzzy set associated with the sample mean could
be defined by the following membership function:

0 0<x<02
5x -1 02<x<04
HsO)=123333333x 0dsx<07 )
0 x>07.

Figure 3 also shows this membership function. The represen-
tative value by using fuzzy median for this set would be 0.426.

By using the second approach, first, the representative
value for each linguistic term must be calculated. By using
the fuzzy median, we have

Toertect = 0146, 14004 = 025,
(16)
rmedium = 05, rpoor = 075, rbad = 0.854.
Finally, sample mean could be calculated as follows:
(0.146 x3+0.25%x2+0.5x2
17)

+0.75x 2+ 0.854 x 1) 107" = 0.429.

Calculation of the Center Line. Normally, center line could
be calculated as the average of the sample mean. Here, also

both approaches could be used. Suppose m sample with n
observations, then CL would be as follows:

m
oL 2 M (18)
m

where M is the sample mean of the jth sample.

In the following, for determining the control limits, two
approaches are explained, namely, probabilistic approach and
membership approach.

Probabilistic Control Limits. In the traditional control charts,
control limits were determined with a coefficient of the
standard deviation of the process. So, here also we need an
estimation of the standard deviation. For m sample with n
observations, standard deviation is shown by SD; for jth
sample and calculated as follows:

t
SD; = ﬁ ;kij(rj - M), (19)

where ¢ is the number of linguistic terms, 7; is the representa-
tive value associated with linguistic term L;, and M is the jth
sample mean. The mean of m standard deviation was shown
by MSD and calculated as follows:

1 m
MSD = _ZSDJ' (20)
mi3

Suppose that sample distribution is approximately normal, or
sample size is large enough (n > 25). Then, for calculating the
control limits, we could use the standard method. We have

Probabilistic LCL = Max {0, (CL — A, - MSD)},

Probabilistic UCL = Min {1, (CL + A; - MSD)}, o
21

Al < 3 C. - 2((n—-2)/2)!
P Cn T \n-1((n-3)/2)"
The coeflicient A ; and C, and table of other coeflicient values

could be found in Montgomery [26] and any other standard
references.

Membership Control Limits. In contrast to the traditional
control charts which are constructed based on the probability
distribution of the sample mean, membership control limits
are based on the membership function. In the following, con-
structing the membership control limits would be explained.

Consider a convex fuzzy set, and suppose that x,, is the
fuzzy mode of the membership function. We could define
an inverse membership function which consists of two parts.
One part which is in the left side of x,, and is shown by
x;(«), and another part which is in the right side of x,,, and
shown by x,(«). The inverse membership function is defined
as follows: x;(«) is the minimum value of the base variable
x in which the membership value of them is equal to «, and
x,(«) is the maximum value of the base variable x in which
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FIGURE 4: Deviation of mean for a fuzzy set.

the membership value of them is equal to a. In other words,
x;(«0) and x,(«) are the endpoints of a-cut. Now, a value for
the deviation of fuzzy set which is called mean deviation
and shown as § could be calculated as follows by using the
summation, the deviation of left mean, §;, and deviation of
right mean, 6, [25]:

1
8 = J [x,, — x; ()] - dax,
a=0 (22)

61* - Jl [XT () = xm] ~da,
a=0

where §; and §, are left and right deviations of mean,
respectively. Their values are equal to the area under the
membership function at the left and right side of the mode
point of fuzzy set. For fuzzy set A, mean deviation 8(A) could
be calculated as follows:

1

8 (A)=6,(A)+9,(A) = J- [x,, — x; ()] - d

a=0

1
t n@-x) @

a=0

1
J a=0

In this equation, « is the level of membership. In fact,
deviation of a fuzzy set, is a numerical value which stated
by the dimension of the base variable. Figure 4 presents the
deviation of mean for a fuzzy set.

Suppose that we have m sample with »n observations. At
first, the fuzzy mean of each sample must be calculated by
using fuzzy mathematics, and then, the grand mean of m
sample must calculated. For determining the control limits
by using the previous equation, at first, the deviation of
grand mean should be calculated. The control limits a known
distance from the center line. This distance is equal to a
coeflicient of deviation of the grand mean. We could have

[x, () = x; ()] - dax.

Membership LCL = Max {0, (CL — K9)},
(24)
Membership UCL = Min {1, (CL + K§)},
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where k is a coefficient which shows the distance from center
line. The value of k could be determined by using the Monte-
Carlo simulation when we suppose that type I error is fixed.

3.3.2. The Kanagawa Approach. Raz and Wang [10, 11] pro-
posed a general approach for designing control chart for
monitoring the mean of the process. This approach is based
on the normal assumption and just monitors the mean of
the process. Kanagawa et al. [15] proposed an approach
for estimating the probability density function beyond the
linguistic data, and by using it, they design control charts for
monitoring both the mean and the variation of the process.

Probability Density Function for Linguistic Data. The objective
is to design a control chart for monitoring the variation as
well as the mean of a process by using the probability density
function (p.d.f). The mentioned probability density function
which is beyond the linguistic variables generates the linguis-
tic data randomly and based on the mental judgment of the
inspectors.

Suppose that for standard data in the interval [0, 1], p.d.f
could be determined based on the Gram-Charlier series:

f(x)=¢x)[1+aH; (x)+0,H, (x)+---], (25)

where ¢(x) is a standard normal probability density function
and H, is the Hermite polynomial with the degree of :

H, (x)=x
Hz(x):xz—l

H; (x) = x> = 3x (26)

The relationship between «, and f3, is

o =
_B-1
“=
Bs — 3B

==

(27)

Also, the relationship between 3, and K, would be

K1:ﬁ1
K2=ﬁ2—[3%

28
Ky =05-3BpB + 2/3? 29
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Linguistic data could be considered as fuzzy data. So,
based on the Giilbay and Kahraman [23] definition, the
probability of a linguistic data like L; happening is

PriL) = L i (%) f () dx. (29)

When the p.d.f and membership function of the linguistic
variable are known, previous equations helps to calculate the
probability of happening the event of base variable X in the
interval [x, x + dx] with condition of happening the evidence
of L;, as follows:

(%) f(x)dx

Pr (X I Ll) dx = W (30)

In addition, if k; is known, f3, could be calculated as follows:

1 t +00
B, = -ZJ kx'Pr (X | L) dx. 31)

niz /oo

Based on Kanagawa et al. [15], by using the Gram-Charlier
series with degreer (r = 1,2,...,t) and by using the following
algorithm, we could estimate the p.d.f.

Step 1. By using fuzzy mode, the value of scalar number of the
membership function associated with each linguistic value
X, X5, ..., X, must be determined. Then, kﬁo) is calculated
as follows:

1<, |,
pY = ;gkixi. (32)

Continuously, by using (32) other torques must be deter-
mined.

Step 2. The torque which is determined in Step 1 inserts into
the p.d.f.

Step 3. The values of f(x) insert into (31) and update the
torque.

Step 4. Repeat Steps 2 and 3 until giving the following
condition:

©_ v, s
B == kixi. (33)
i=1

ns

Now, by using this assumption where is X, X,,..., X, are
independent random variables from f(x), « upper percent
of normal distribution by using the Cornish-Fisher develop-
ment method would be

KK,
Z“=ua+ﬁ(lx{“—l)
K K3 | 5 34
g (e 3m) o
K2/K?
3 2 3
" T (e b

7
(M)
L.
J(e) R;
j(e)
LN
M
CL=M=p
F1GURre 5: TFN for M and M; for sample j.
where
X-K
Z= —11/2 (35)
(Ky/n)

and u, shows « upper percent of normal distribution with
mean equal to zero and variance equal to 1.

3.3.3. a-Level Fuzzy Control Chart. As mentioned before in
crisp state, control limits for the proportion of nonconform-
ing could be calculated as (1). In fuzzy state, sample mean M;
and center line CL could be calculated as follows:

m
CL=M,;=YM,
j=1
s K (36)
1 kit
M= =00 it
n

As CL is a fuzzy set, it could be stated by a triangular fuzzy
number (TFN), where its fuzzy mode is equal to CL. Figure 5
depicted CL as a TFN.

4. Conclusion

To conclude, this study has technically reviewed control
charts. The author in this paper covered the first phase
of developments in the context of control charts. In the
second phase, most of the works are based on hybrid charts
as well as works which are focusing on the use of more
productive charting methods [27]. The second part starts
by 2000s. Clearly, developments of phase two charts are all
based on pure charts which are in phase one and have been
reviewed in this paper. The contribution of this study was
to review pure control charts to show start points to direct
further studies. Further researches could continue reviewing
the developments of control charts in second phase, as well
as using the pure charts of the first phase to modify the
chart’s productivity. The author is continuing this study to
modify the current available control charts, using fuzzy
theory approach.
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