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The steady heat transfer through a rectangular longitudinal fin is studied.The thermal conductivity and heat transfer coefficient are
assumed to be temperature dependent making the resulting ordinary differential equation (ODE) highly nonlinear. An asymptotic
solution is used as a means of understanding the relationship between key parameters. A dynamical analysis is also employed for
the same purpose.

1. Introduction

In this paper we consider the temperature profile in a
longitudinal rectangular fin attached to a stationary base
surface. Fins are defined as extended surfaces used to enhance
the heat dissipation from a hot surface [1, 2]. They are used
in multiple different contexts such as in air-conditioning,
air-cooled craft engines, refrigeration, and the cooling of
computer processors and oil carrying pipe lines. There are
many documented mathematical models which describe the
heat transfer in fins of different geometries and profiles with
a variety of boundary conditions [1]. Many methods have
been implemented as a means of obtaining solutions to such
equations, analytical and numerical alike. In much research
both the thermal conductivity and heat transfer coefficient
have been considered as constants (see e.g., [3–5]). For
engineering applications and physical phenomena thermal
conductivity of a fin is assumed to be linearly dependent on
temperature (see e.g., [6]). In this paper we have chosen the
thermal conductivity as a linear function of the temperature
and the heat transfer coefficient as a nonlinear function of the
temperature.

As far as the author knows, there is no or very little
work which has been done on obtaining asymptotic solutions
to a problem of the form presented here. An investigation
of such solutions is of value given the prevalence of many
parameters whose impact and relationship with each other

has yet to be fully understood. It is the purpose of asymptotic
solutions to reveal the dominant physical mechanisms of
the model. In Moitsheki and Harley [7] and Harley and
Moitsheki [8], the impact of the thermogeometric parameter
was discussed with regards to its proportionality to the
length of the fin, 𝐿. It was noticed that for small values of
M that there seemed to be unstable heat transfer in the
fin—this was thought to be related to the fact that M ∝

𝐿. Investigating an asymptotic solution to the steady heat
transfer in a rectangular longitudinal fin allows us to validate
this relationship and more firmly establish the importance
of the length of the fin. A dynamical system analysis was
conducted in Harley and Moitsheki [8], however, not to the
extent conducted here. In this work, the analysis in [8] is
improved upon and the behaviour, particularly a the tip of
the fin, more meticulously investigated and documented.
This dynamical systems analysis also functions as a means of
investigating the effect of the thermo-geometric parameter.

2. Model

We consider a rectangular longitudinal one-dimensional fin
with a cross-sectional area 𝐴

𝑐
. The perimeter of the fin is

denoted by 𝑃 and the length of fin by 𝐿. The fin is attached
to a fixed base surface of temperature 𝑇

𝑏
and extends into a

fluid of temperature𝑇
𝑎
.The energy balance for a longitudinal
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fin is given by an ordinary differential equation (ODE) [1] as
follows:

𝐴
𝑐

𝑑

𝑑𝑋
(𝐾 (𝑇)

𝑑𝑇

𝑑𝑋
) = 𝑃𝐻 (𝑇) (𝑇 − 𝑇

𝑎
) , 0 ≤ 𝑋 ≤ 𝐿, (1)

where 𝐾 and 𝐻 are the nonuniform thermal conductivity
and heat transfer coefficient both of which depend on the
temperature (see, e.g., [3, 4, 9, 10]).The fin length is measured
from the tip to the base as shown in Figure 1 (see also, [1, 3, 4]).
An insulated fin at one end with the base temperature at the
other leads to the following boundary conditions [1]:

𝑇 (𝐿) = 𝑇
𝑏
,

𝑑𝑇

𝑑𝑋

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑋=0

= 0. (2)

The heat transfer coefficient may be given as the power
law [3]

𝐻(𝑇) = ℎ
𝑏
(
𝑇 − 𝑇
𝑎

𝑇
𝑏
− 𝑇
𝑎

)

𝑛

(3)

as is done for most industrial applications. Furthermore, the
thermal conductivity of the fin may be assumed to vary
linearly with temperature for many engineering applications
[3, 6] and as such may be written as the following:

𝐾 (𝑇) = 𝑘
𝑎
(1 + 𝜆 (𝑇 − 𝑇

𝑎
)) . (4)

In the above equations, 𝐻 is the heat transfer, ℎ
𝑏
indi-

cates the heat transfer at the base of fin, 𝐾 is the thermal
conductivity, 𝑘

𝑎
is the thermal conductivity of the fin at the

ambient temperature, and the exponent 𝑛 is defined to be
dependent upon the heat transfer mode. Here the exponent
represents laminar film boiling or condensation when 𝑛 =
−1/4, laminar natural convection when 𝑛 = 1/4, turbulent
natural convection 𝑛 = 1/3, nucleate boiling when 𝑛 = 2,
radiation when 𝑛 = 3, and 𝑛 vanishes for constant heat
transfer coefficient. The constant 𝑛 may vary between −6.6
and 5, however, in most practical applications it lies between
3 and −3 [11].

Introducing the following dimensionless variables:

𝑥 =
𝑋

𝐿
, 𝜃 =

𝑇 − 𝑇
𝑎

𝑇
𝑏
− 𝑇
𝑎

, ℎ =
𝐻

ℎ
𝑏

,

𝑘 =
𝐾

𝑘
𝑎

, M
2

=
𝑃ℎ
𝑏
𝐿
2

𝑘
𝑎
𝐴
𝑐

,

(5)

allows (1) to be reduced to the following nondimensional
partial differential equation:

𝑑

𝑑𝑥
[𝑘 (𝜃)

𝑑𝜃

𝑑𝑥
] =M

2

𝜃ℎ (𝜃) , 0 ≤ 𝑥 ≤ 1. (6)

In (6) 𝜃 is defined as the dimensionless temperature
and 𝑥 as the dimensionless spatial variable, where 𝑘(𝜃) is
the dimensionless thermal conductivity, ℎ(𝜃) is the heat
transfer coefficient, and M is termed the thermo-geometric
parameter. In dimensionless variables the heat transfer coef-
ficient is chosen as ℎ(𝜃) = 𝜃

𝑛 with 𝑛 termed as the

exponent.The thermal conductivity coefficient can bewritten
in dimensionless variables as 𝑘(𝜃) = 1 + 𝛽𝜃 with 𝛽 = 𝜆(𝑇

𝑏
−

𝑇
𝑎
), where 𝑇

𝑏
is the dimensional fin base temperature and 𝑇

𝑎

is the dimensional ambient temperature. From these choices
of 𝑘(𝜃) and ℎ(𝜃), we obtain the one-dimensional nonlinear
heat conduction equation:

𝑑

𝑑𝑥
[(1 + 𝛽𝜃)

𝑑𝜃

𝑑𝑥
] =M

2

𝜃
𝑛+1

, 0 ≤ 𝑥 ≤ 1. (7)

The dimensionless boundary conditions become
𝑑𝜃

𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=0

= 0 at the fin tip,

𝜃 (1) = 1, at the base.
(8)

These conditions ensure an insulated fin tip and a con-
stant base temperature.

3. Asymptotic Analysis for Steady Heat
Transfer

3.1. M ≪ 𝜖. In this section we will assume that M ≪ 𝜖

(i.e., the thermogeometric parameter is very much smaller
than some small parameter 𝜖) as a means of investigating the
nature of the solutions of the steady state case of (7) as follows:

𝑑

𝑑𝑥
[(1 + 𝛽𝜃)

𝑑𝜃

𝑑𝑥
] =M

2

𝜃
𝑛+1

, 0 ≤ 𝑥 ≤ 1, 𝜏 ≥ 0, (9)

where 𝑓(𝑥) = 1 with boundary conditions
𝜕𝜃

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=0

= 0 at the fin tip,

𝜃 (1) = 1, at the base.
(10)

We assume a solution of the form 𝜃(𝑥) = 𝜃
0
(𝑥) +M2𝜃

1
(𝑥) +

M4𝜃
2
(𝑥), where M → 0. After substitution the term

−M2𝜃(𝑥)
𝑛+1 is expanded using a series expansion so that

−M
2

𝜃(𝑥)
𝑛+1

= −M
2

− (𝑛 + 1) 𝜃
1
(𝑥)M

4

− (
1

2
(𝑛
2

+ 𝑛) 𝜃
1
(𝑥)
2

+ (𝑛 + 1) 𝜃
2
(𝑥))M

6

+ 𝑂 (M
7

) .

(11)

In this manner, we are able to separate (11) according to
powers ofM and obtain the following system of equations:

𝑂(M
0

) : 𝛽(
𝑑𝜃
0

𝑑𝑥
)

2

+
𝑑
2

𝜃
0

𝑑𝑥2
(1 + 𝛽𝜃

0
) , (12)

𝑂(M
2

) : −1 + 2𝛽
𝑑𝜃
0

𝑑𝑥

𝑑𝜃
1

𝑑𝑥
+ 𝛽𝜃
1

𝑑
2

𝜃
0

𝑑𝑥2
+
𝑑
2

𝜃
1

𝑑𝑥2
(1 + 𝛽𝜃

0
) ,

(13)

𝑂(M
4

) : − (𝑛 + 1) 𝜃
1
+ 𝛽(

𝑑𝜃
1

𝑑𝑥
)

2

+ 2𝛽
𝑑𝜃
0

𝑑𝑥

𝑑𝜃
2

𝑑𝑥

+ 𝛽𝜃
2

𝑑
2

𝜃
0

𝑑𝑥2
+ 𝛽𝜃
1

𝑑
2

𝜃
1

𝑑𝑥2
+
𝑑
2

𝜃
2

𝑑𝑥2
(1 + 𝛽𝜃

0
) .

(14)
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Figure 1: Schematic representation of a longitudinal fin with a rectangular profile.

Given these expansions the boundary conditions (10) become

𝜕𝜃
0

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=0

=
𝜕𝜃
1

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=0

=
𝜕𝜃
2

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=0

= 0 at the fin tip, (15)

𝜃
0
(1) = 1, 𝜃

1
(1) = 0, 𝜃

2
(1) = 0 at the base. (16)

Solving these equations we firstly obtain 𝜃
0
(𝑥) = 1 given that

the boundary condition given in (16) needs to be satisfied. In
Moitsheki and Harley [7], the solutions for small M flatten
and the temperature at 𝑥 = 0 tends to 1. As such the solution
𝜃
0
(𝑥) = 1 is a reasonable approximation. We solve (13) and

(14) via MATHEMATICA and obtain the following solution:

𝜃 (𝑥)

= 1 + (
𝑥
2

− 1

2 (𝛽 + 1)
)M
2

+ (

(𝑥
2

−1) ((𝑥
2

−5) (1+𝑛 (1+𝛽)) − 2𝛽 (𝑥
2

−1))

24(1+𝛽)
3

)M
4

.

(17)

This solution verifies the notion that the length of the fin has a
proportional relationship to the thermogeometric parameter.
In assuming that M ≪ 𝜖, we found an asymptotic solution
which when plotted has a high temperature at the fin tip—see
Figure 2. Simplistically our results seem to indicate that when
the thermo-geometric parameter has a small value, then the
fin is short which only increases the temperature profile of the
entire fin.

It needs to be noted that the solution does not allow for
the case 𝛽 = −1, even though the assumption that one has a
decreasing gradient seems a plausible one. Were one to con-
duct the same calculations done to obtain the above solution
(17) with an initial choice of 𝛽 = −1, one would obtain a
contradiction when separating according to powers of the
thermo-geometric parameter such that for M2 : −1 = 0.

As such, this asymptotic solution would not be valid for the
instance when 𝛽 = −1.

3.2. Boundary Layer Analysis:M ≫ 𝜖. In this section we will
consider the case where M is large and as such define it as
M = 1/𝜖 for 𝜖 small. Thus we can write (9) as the following:

𝜖
2
𝑑

𝑑𝑥
(𝑓 (𝑥) (1 + 𝛽𝜃)

𝑑𝜃

𝑑𝑥
) = 𝜃

𝑛+1

. (18)

If 𝜖 is small as assumed then the solution can be approximated
as 𝜃 ≈ 0. Since this solution, in and of itself, is not useful
in understanding our problem we transform variables from
𝑥 ∈ [0, 1] into 𝑋 ∈ [0,∞] through the transformation
𝑋 = (1 − 𝑥)/𝛿. Here we define 𝛿 as the distance from the
point where the temperature ceases to be constant, say 𝑥

⋆
,

and starts to increase as we move along the length of the fin,
to 𝑥
𝑁
= 1. We assume the solution to be constant except for

the range [𝑥
⋆
, 𝑥
𝑁
], where 𝛿 = 𝑥

𝑁
− 𝑥
⋆
. This transformation

of the independent variable gives

𝜖
2

𝛿2

𝑑

𝑑𝑋
(𝑓 (1 − 𝛿𝑋) (1 + 𝛽Θ)

𝑑Θ

𝑑𝑋
) = Θ

𝑛+1

, (19)

where Θ = Θ(𝑋) and the boundary conditions become
Θ(0) = 1 and Lim

𝑋→∞
Θ(𝑋) = 0. In order to obtain a

nontrivial solution, we require that at least two leading-order
terms in this equation have the same order of magnitude.
Balancing the terms we find that

𝜖
2

𝛿2
= 1, (20)

which means that 𝜖 = 𝛿 = 1/M. In this manner we
have obtained a relationship between the thermo-geometric
parameter and 𝛿.

3.3. Remark. The method of asymptotics is effectively used
here to inspect the behaviour of the solution for smallM. In
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Figure 2: Plot of the asymptotic solution (17) withM = 0.1 and 𝛽 = 𝑛 = 1.

previous work (see [7, 8]) the thermo-geometric parameter
was suspected to be proportional to the length of the fin, 𝐿.
It was noticed that for small values of M there seemed to
be unstable heat transfer in the fin—this was thought to be
related to the fact that M ∝ 𝐿. Through our asymptotic
analysis, we are now able to establish that for M ≪ 𝜖 the
temperature at the fin tip (i.e.,𝑥 = 0) is quite high at 0.999975.
This makes sense given that the value attached to 𝜃

0
(𝑥) is

one. This behaviour of the solution also supports the idea
thatM ∝ 𝐿 given that the overall temperature profile would
increase if the fin were short.

For the case where M ≫ 𝜖 we found an inverse
relationship between the thermo-geometric parameter and
the distance 𝛿 defined above.This is again another indication
of the proportional relationship between this parameter and
the length of the fin,𝐿, given that for largeM, 𝛿 is small which
implies that 𝐿 must be large. The reason for this is twofold.
Only when 𝐿 is large (1) would the temperature at the tip be
≪ 𝜖 and (2) would the temperature gradient → 0 for a long
enough period of time to allow 𝛿 = 𝑥

𝑁
− 𝑥
⋆
to be small.

In order to investigate the dynamics of a system in which
M ∝ 𝐿, we consider a dynamical system analysis. The
purpose of this is to verify the results obtained thus far and
also investigate the findings of [7, 8] with regards to possibly
thermally unstable behaviour.

4. Dynamical System Analysis

As a means of further investigating the behaviour of the
system we conduct a dynamical system analysis. We do this
by rewriting (7) as a system of first-order ordinary differential
equations through the transformations 𝜃(𝑥) = 𝑢(𝑥) and
V(𝑥) = 𝑑𝜃/𝑑𝑥 such that 𝑑2𝜃/𝑑𝑥2 = V(𝑑V/𝑑𝜃). This gives the
following system:

𝑑V

𝑑𝑥
=M
2

𝑢
𝑛+1

− 𝛽V
2

,

𝑑𝑢

𝑑𝑥
= V (1 + 𝛽𝑢) ,

(21)

with 𝑢(1) = 1 and V(0) = 0. We now use these equations and
obtain the following equilibrium points:

𝑧
1
= (0, 0) , 𝑧

2
= (−

1

𝛽
, −

M(−1)
(𝑛+1)/2

𝛽(𝑛+2)/2
) ,

𝑧
3
= (−

1

𝛽
,
M(−1)

(𝑛+1)/2

𝛽(𝑛+2)/2
) ,

(22)

and nullclines which are curves drawn in the phase portrait
along which one of the state variables does not change in time

V = 𝑢
3/2

, V = −𝑢
3/2

. (23)

The Jacobian matrix 𝐽 for the system (21) is given by

𝐽 (𝑢, V) = [
𝛽V 1 + 𝑢𝛽

M2 (𝑛 + 1) 𝑢𝑛 −2𝛽V
] . (24)

To be able to do a phase plane analysis of the relevant
equation we need to linearise the system.This is done via the
calculation of the Jacobian (24), where the elements in 𝐽 need
to be linear with respect to V. We now consider the Jacobian
(24) for the equilibrium points given in (22). Firstly, we
consider the point 𝑧

1
= (0, 0) which produces the following

Jacobian equation:

𝐽 (𝑢
1
, V
1
) = [

0 1

0 0
] . (25)

This in turn produces the eigenvalues

𝜆
(1)

1
= 0, 𝜆

(1)

2
= 0. (26)

The phase diagrams produced for this equilibrium
point—to be seen in Figure 3—indicate that the point is a
centre which is neutrally stable for 𝑢 < 0 joined to a saddle
which is unstable for 𝑢 > 0. Furthermore, given that the
Jacobian matrix has zero eigenvalues this critical point is a
nonhyperbolic and degenerate singular point.More precisely,
the linear part of the vector field can now be said to be doubly
degenerate and the reduced system on the center manifold is
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Figure 3: Plot of the phase trajectories for system (25) withM = 1 (a) andM = 10 (b) with 𝛽 = 𝑛 = 1.

two-dimensional [12].The classification and unfolding of this
(nilpotent) type was done simultaneously and independently
by Takens [13] and Bogdanov [14]. The normal form of the
case (25) can be obtained as per Takens [13] and done in
Guckenheimer and Holmes [12] and written as

𝑢̇ = V + 𝑎𝑢
2

,

V̇ = 𝑏𝑢
2

.

(27)

Takens [13] went on to show that (27) determines the local
topological type of any vector field

𝑢̇ = V + 𝑎𝑢
2

+ O (
󵄨󵄨󵄨󵄨𝑥, 𝑦
󵄨󵄨󵄨󵄨

3

) ,

V̇ = 𝑏𝑢
2

+ O (
󵄨󵄨󵄨󵄨𝑥, 𝑦
󵄨󵄨󵄨󵄨

3

)

(28)

provided that 𝑏 ̸= 0. The predominant tool is a technique
called blowing-up. Singular changes to the coordinates are
introduced which expand the degenerate fixed points into
circles containing a finite number of fixed points. If these are
hyperbolic after the first blow-up, then the local flow near the
circle, and, hence, near the original fixed point is stable with
respect to higher-order terms. In our case three blow-ups are
required for the transformed vector field to become stable.
The first transformation is to polar coordinates given by 𝑢 =
𝑟 cos 𝜃, V = 𝑟 sin 𝜃, and still leaves us with a degenerate vector
field. After two further blow-ups however—(𝑟, 𝜃) → (𝜌, 𝜙)

defined by 𝜃 = 𝜌 cos 𝜙, 𝑟 = 𝜌 sin 𝜙, and (𝜌, 𝜙) → (𝜂, 𝜓)

defined by 𝜙 = 𝜂 cos 𝜓, 𝜌 = 𝜂 sin 𝜓—the following vector
field is obtained [12]:

𝜂̇ = 𝜂
2

(−𝑏 cos3 𝜓 + 2 cos2 𝜓 sin𝜓

−sin3 𝜓 + 𝑏 cos𝜓 sin2 𝜓 ⋅ ⋅ ⋅) ,

𝜓̇ = 𝜂 (𝑏 cos3 𝜓 sin𝜓 − 3 cos 𝜓 sin2 𝜓 + 𝑏 cos2 𝜓 sin𝜓 ⋅ ⋅ ⋅) .
(29)

Division of the vector field by 𝜂 will leave the phase portrait
of (29) unaffected (except possibly at 𝜂 = 0) and since
the common factor 𝜂 occurs in both components we may
consider the “divided out” vector field given by the following:

𝜂̇ = 𝜂 (−𝑏 cos3 𝜓 + 2 cos2 𝜓 sin 𝜓

−sin3 𝜓 + 𝑏 cos 𝜓 sin2 𝜓 ⋅ ⋅ ⋅) ,

𝜓̇ = 𝑏 cos3 𝜓 sin 𝜓 − 3 cos 𝜓 sin2 𝜓 + 𝑏 cos2 𝜓 sin𝜓 ⋅ ⋅ ⋅ ,
(30)

which has six hyperbolic fixed points at 𝜂 = 0, 𝜓 = 0, 𝜋/2, 𝜋,
3𝜋/2, and 𝜓 = arctan(2𝑏/3). Hence the flow of (30) is stable
to small (higher-order) perturbations and consequently the
flow of (29) near 𝜂 = 0 is similarly stable. If we now “blow-
down” three times (𝜂, 𝜓) → (𝜌, 𝜙) → (𝑟, 𝜃) → (𝑥, 𝑦), we
are able to conclude that the flow of (27) near the degenerate
fixed point (𝑥, 𝑦) = (0, 0) is indeed stable with respect to the
addition of (small) higher-order terms provided that 𝑏 ̸= 0.
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Figure 4: Plot of the phase trajectories for system (25) withM = 0.1 (a) andM = 10 (b) with 𝛽 = 𝑛 = 1.

We now turn to our other two equilibrium points.
Evaluating 𝐽 at 𝑧

2
produces the following:

𝐽 (𝑢
2
, V
2
) = [

−M(−1)
(𝑛+1)/2

𝛽
(−𝑛/2)

0

M2 (𝑛 + 1) (−𝛽)
−𝑛

2M(−1)
(𝑛+1)/2

𝛽
(−𝑛/2)

] ,

(31)

with eigenvalues

𝜆
(2)

1
= −M(−1)

(𝑛+1)/2

𝛽
(−𝑛/2)

,

𝜆
(2)

2
= 2M(−1)

(𝑛+1)/2

𝛽
(−𝑛/2)

.

(32)

When we consider 𝐽 at 𝑧
3
we find that

𝐽 (𝑢
3
, V
3
)

= [
M(−1)

(𝑛+1)/2

𝛽
(−𝑛/2)

0

M2 (𝑛 + 1) (−𝛽)
−𝑛

−2M(−1)
(𝑛+1)/2

𝛽
(−𝑛/2)

] ,

(33)

where the eigenvalues are

𝜆
(3)

1
= −2M(−1)

(𝑛+1)/2

𝛽
(−𝑛/2)

,

𝜆
(3)

2
=M(−1)

(𝑛+1)/2

𝛽
(−𝑛/2)

.

(34)

For these two equilibriumpoints we find that we have two
cases to consider:

(a) eigenvalues with no zero or purely imaginary eigen-
values,

(b) eigenvalues which are purely imaginary.

In the first instance we turn to the Hartman-Grobman
theorem which states that if 𝐽 = 𝐷𝑓(𝑥) has no zero or purely
imaginary eigenvalues, then there is a homeomorphism ℎ
defined on some neighbourhood 𝑈 of 𝑥 in R𝑛 locally taking
orbits of the nonlinear flow (21) to those of the linear flow
(31)–(33) [12, 15]. The homeomorphism preserves the sense
of orbits and can also be chosen to preserve parametrization
by time.

For case (a) where 𝐽 has no eigenvalues with zero real
part, 𝑥 is called a hyperbolic or nondegenerate fixed point
and the asymptotic behaviour of solutions near it (and hence
its stability type) is determined by the linearisation. For
this to be the case we must have that (𝑛 + 1)/2 is even.
In Figure 4 we obtain eigenvalues which produce unstable
saddle points; these results are similar to those obtained in
Harley andMoitsheki [8] where the systemwas found to have
two unstable saddle points for 𝑛 = 1. As M increases this
behaviour becomes more visually apparent, however when
the thermo-geometric parameter takes on a small value it
becomes more difficult to analyse the stability of the system
visually.

If however, as in the case of (b), any one of the eigenvalues
has zero real part, then stability cannot be determined by
linearisation. Thus, given that the linearised system does not
describe the nonlinear system, we consider phase diagrams
for specific values of our parameters as a means of under-
standing the dynamics of the system. If we choose 𝑛 = 2
we end up with the case in question and obtain the following
equilibrium points: 𝑧

1
= (0, 0), 𝑧

2
= (−1, 𝑖) and 𝑧

3
= (−1, −𝑖),

where 𝑖 = √−1. In Figure 5 we see the phase diagrams for the
system (25) forM = 0.1, 1, and 10.The real parts of the points
𝑧
2
and 𝑧
3
lie on top of each other to the left of the origin.
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Figure 5: Plot of the phase trajectories for system (25) withM = 0.1 (a),M = 1 (b), andM = 10 (c) with 𝛽 = 1 and 𝑛 = 2.

For M = 0.1 the dynamics of 𝑧
2
and 𝑧

3
are akin to that

of a saddle point.The representation of the equilibrium point
𝑧
1
= (0, 0) seems to be influenced by the points 𝑧

2
and 𝑧
3
and

behaves in a manner corresponding with what is seen when
considering some linear systems [16]. In fact what we see
visually corresponds to the case when 𝑧

1
only has one linearly

independent eigenvector in which case the line determined
by the eigenvector consists of fixed points, and all other
solution curves are parallel to this line, moving in opposite
directions on either side of the line [16]. This behaviour is
local and is consistent with the analysis conducted above in
which the degenerate point 𝑧

1
was found to be stable with

respect to the addition of (small) higher-order terms.

When M = 1 we notice that 𝑧
2
and 𝑧

3
seem to create a

centre (neither attracting nor repelling) for 𝑢 < −1 attached
to a saddle point for 𝑢 > −1. However, when M increases
to 10 the points 𝑧

2
and 𝑧

3
are now positioned on top of

each other which causes the system to behave in a manner
indicative of a plane of equilibria. This means that nothing
moves and every solution curve is a point with the form
𝑥 = 𝑥

0
and 𝜃 = 𝜃

0
.

As such, for these values of M the system does not
behave in a stable manner around 𝑧

2
and 𝑧

3
—at best we

find neutrally stable behaviour. Even if a solution were to
start sufficiently near these equilibrium points, it would
not necessarily remain bounded. Furthermore, given that
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as 𝑡 → ∞ the solutionsmay not remain close or actually tend
to the equilibrium points we cannot claim that the critical
points are asymptotically stable either.

5. Concluding Remarks

In this paper, we were able to obtain an asymptotic solution
which clarifies the behaviour of the systemwhenM ≪ 𝜖.The
solution curve also verified our suspicions that the thermo-
geometric parameter is proportional to the length of the fin.
Furthermore, whenwe consider largeM—that is, whenM ≫

𝜖—we found that M ∝ 𝐿 via a boundary layer analysis.
This justifies the work conducted in [7, 8] with regards to this
relationship.

As a means of further investigating the effects of M on
the dynamics of the system we conducted a dynamic system
analysis. In doing so we found that when the temperature
gradient is zero—this is true specifically at the tip of the fin
where 𝜃󸀠|

𝑥=0
= 0—the system is in fact stable, with respect to

the addition of (small) higher-order terms, even though the
behaviour exhibited may indicate otherwise. Furthermore,
the behaviour of the other equilibrium points is that of
unstable saddle points when 𝑛 is odd, which according to
the Hartman-Grobman theorem can be ascertained via a
consideration of the linearised system in this instance. The
system maintains unstable (or neutrally stable when M =

0.1) behaviourwhen 𝑛 is even—the cases ofM = 4 and 6were
also considered—as can be witnessed when considering the
phase diagrams. Lastly, we find that while it is quite a complex
endeavour to investigate the stability at the tip of the fin—that
is, when 𝜃󸀠 = 0—it is even more complicated to consider the
dynamics of the systemwhenM becomes small, that is, when
the fin is short.
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