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We derive an implicit 𝐺𝐿(𝑛,R) Lie-group algorithm together with the Newton iterative scheme to solve nonlinear differential
algebraic equations. Four numerical examples are given to evaluate the efficiency and accuracy of the newmethod when comparing
the computational results with the closed-form solutions.

1. Introduction

In this paper, we propose a novel method to solve nonlinear
differential algebraic equations (DAEs), which govern the
evolution of 𝑛+𝑚 variables𝑥

𝑖
, 𝑖 = 1, . . . , 𝑛 and𝑦

𝑗
, 𝑗 = 1, . . . , 𝑚

with 𝑛 nonlinear ordinary differential equations (ODEs) and
𝑚 nonlinear algebraic equations (NAEs):

ẋ = f (x, y, 𝑡) , x (0) = x
0
, 𝑡 ∈ R, x ∈ R

𝑛
, y ∈ R

𝑚
, (1)

F (x, y, 𝑡) = 0, F ∈ R
𝑚
. (2)

Usually, 𝑛 is larger than 𝑚. When 𝑚 = 0, the DAEs reduce
to the ODEs. There are many numerical methods used to
solve ODEs, but only a few is used to solve DAEs [1–5]. A
lot of engineering problems are modelled as a combination
of ODEs and NAEs, which are abbreviated as differential
algebraic equations (DAEs). The DAEs are both numerically
and analytically difficult than the ODEs. Recently, there were
some new methods to solve DAEs, for example, Adomian
decomposition method [6, 7], variational iterative method
[8], and pseudospectral method [9].

2. The 𝐺𝐿(𝑛,R) Structure of Differential
Equations System

The Lie-group is a differentiable manifold, which is endowed
with a group structure that is compatible with the underlying
topology of the manifold.The Lie-groupmethod can provide

a better algorithm that retains the orbit generated from
numerical solution on the manifold which is associated with
the Lie-group.

The general linear group is a Lie group, whose manifold
is an open subset 𝐺𝐿(𝑛,R) := {G ∈ R𝑛×𝑛 | detG ̸= 0} of the
linear space of all 𝑛 × 𝑛 nonsingular matrices. Thus, 𝐺𝐿(𝑛,R)

is an 𝑛 × 𝑛-dimensional manifold. The group composition is
given by the matrix multiplication.

Here we give a new form of (1) from the 𝐺𝐿(𝑛,R) Lie-
group structure. The vector field f on the right-hand side of
(1) can be written as

ẋ = Ax, (3)

where

A =
f

‖x‖
⊗

x
‖x‖

(4)

is the coefficient matrix. The symbol ⊗ in u ⊗ y denotes the
dyadic operation of u and y, that is, (u ⊗ y)z = y ⋅ zu.

Because the coefficient matrix A is well defined, the Lie-
group elementG generated from the above dynamical system
(3) with Ġ = AG satisfies detG(𝑡) ̸= 0, such that G ∈

𝐺𝐿(𝑛,R).

3. An Implicit 𝐺𝐿(𝑛,R) Lie-Group Scheme

Equation (3) is a new starting point for the development
of the Lie-group 𝐺𝐿(𝑛,R) algorithm. In order to develop
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a numerical scheme from (3) and (4), we suppose that the
coefficient matrix A is constant with

a =
f

‖x‖
, b =

x
‖x‖

(5)

being two constant vectors, which can be obtained by taking
the values of f and x at a suitable mid-point of 𝑡 ∈ [𝑡

0
= 0, 𝑡],

where 𝑡 ≤ 𝑡
0
+ ℎ and ℎ is a small time stepsize. The variable y

is supposed to be a constant vector in this small time interval.
Thus, from (3) and (4) we have

ẋ = b ⋅ xa. (6)

Let

𝑤 = b ⋅ x, (7)

and (6) becomes

ẋ = 𝑤a. (8)

At the same time, from the above two equations we can derive

𝑤̇ = 𝑐𝑤, (9)

where

𝑐 = a ⋅ b (10)

is viewed as a constant scalar. Thus, we have

𝑤 (𝑡) = 𝑤
0
exp (𝑐𝑡) , (11)

where 𝑤
0
= b ⋅ x

0
.

Inserting (11) for 𝑤(𝑡) into (8) and integrating the resul-
tant equation, we can obtain

x (𝑡) = [I
𝑛
+ 𝜂 (𝑡) ab𝑇] x0, (12)

where x
0
is the initial value of x at an initial time 𝑡 = 𝑡

0
= 0,

and

𝜂 (𝑡) =
𝑒
𝑐𝑡
− 1

𝑐
. (13)

Let G(𝑡) be the coefficient matrix before x
0
in (12), that is,

G = I
𝑛
+ 𝜂 (𝑡) ab𝑇, (14)

which is one sort of elementary matrices. According to [10,
11], one can prove

detG = 𝑒
𝑐𝑡
> 0, (15)

which means that G is a Lie-group element of 𝐺𝐿(𝑛,R).
Within a small time stepwe can suppose that the variables

𝑦
𝑗
, 𝑗 = 1, . . . , 𝑚 are constant in the interval of 𝑡

𝑘
< 𝑡 < 𝑡

𝑘+1
. As

a consequence, we can develop the following implicit scheme
for solving the ODEs (1) where y at the 𝑘th time step, denoted
by y
𝑘
, is viewed as a parameter.

(i) Give 0 ≤ 𝜃 ≤ 1.

(ii) Give an initial x
0
at an initial time 𝑡 = 𝑡

0
and a time

stepsize ℎ.
(iii) For 𝑘 = 0, 1, . . ., we repeat the following computations

to a terminal time 𝑡 = 𝑡
𝑓
:

x
𝑘+1

= x
𝑘
+ ℎf
𝑘
, (16)

where f
𝑘
:= f(x

𝑘
, y
𝑘
, 𝑡
𝑘
). With the above x

𝑘+1
generated from

an Euler step as an initial guess, we can iteratively solve the
new x

𝑘+1
by

𝑡
𝑘
= 𝑡
𝑘
+ 𝜃ℎ,

x
𝑘
= (1 − 𝜃) x𝑘 + 𝜃x

𝑘+1
,

f
𝑘
= f (x

𝑘
, y
𝑘
, 𝑡
𝑘
) ,

a
𝑘
=

f
𝑘

󵄩󵄩󵄩󵄩x𝑘
󵄩󵄩󵄩󵄩

,

b
𝑘
=

x
𝑘

󵄩󵄩󵄩󵄩x𝑘
󵄩󵄩󵄩󵄩

,

𝑐
𝑘
= a
𝑘
⋅ b
𝑘
,

𝑑
𝑘
= x
𝑘
⋅ b
𝑘
,

𝜂
𝑘
=

exp (𝑐
𝑘
ℎ) − 1

𝑐
𝑘

,

z
𝑘+1

= x
𝑘
+ 𝜂
𝑘
𝑑
𝑘
a
𝑘
.

(17)

If z
𝑘+1

converges according to a given stopping criterion, such
that

󵄩󵄩󵄩󵄩z𝑘+1 − x
𝑘+1

󵄩󵄩󵄩󵄩 < 𝜀
2
, (18)

then go to (iii) to the next time step; otherwise, let x
𝑘+1

=

z
𝑘+1

and go to the computations in (17) again. In all the
computations given below we will use 𝜃 = 1/2.

4. Newton Iterative Scheme for DAEs

Now, we turn our attention to theDAEs defined in (1) and (2).
Within a small time step we can suppose that the variables 𝑦

𝑗
,

𝑗 = 1, . . . , 𝑚 are constant in that interval of 𝑡
𝑘
< 𝑡 < 𝑡

𝑘+1
. We

give an initial guess of 𝑦
𝑗
, 𝑗 = 1, . . . , 𝑚 and insert them into

(1).Then, we apply the above implicit scheme to find the next
x
𝑘+1

, supposing that x
𝑘
is already obtained in the previous

time step.When x
𝑘+1

are available we insert them into (2) and
then apply the Newton iterative scheme to solve y

𝑘+1
by

yℓ+1
𝑘+1

= yℓ
𝑘+1

− B−1F (x
𝑘+1

, yℓ
𝑘+1

, 𝑡
𝑘+1

) , (19)

until the following convergence criterion is satisfied:
󵄩󵄩󵄩󵄩󵄩
yℓ+1
𝑘+1

− yℓ
𝑘+1

󵄩󵄩󵄩󵄩󵄩
< 𝜀
1
. (20)

The component 𝐵
𝑖𝑗
of the Jacobian matrix B is given by

𝜕𝐹
𝑖
/𝜕𝑦
𝑗
. Below we use some examples to demonstrate the

numerical processes in Sections 3 and 4.
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5. Numerical Examples of DAEs

In order to assess the performance of the newly developed
scheme based on the Lie-group 𝐺𝐿(𝑛,R), let us investigate
the following four examples of DAEs.

Example 1. Using the on-off switching criteria, we can syn-
thesize the flow model of perfect plasticity into a two-phase
system [12]:

Q̇ = 𝑘
𝑒
q̇ −

𝑘
𝑒
𝜆

𝑄
0

Q, (21)

where 𝜆 is subjected to

𝜆 =
1

𝑄
0

Q ⋅ q̇ > 0 if ‖Q‖ = 𝑄
0
, Q ⋅ q̇ > 0,

𝜆 = 0 if ‖Q‖ < 𝑄
0
or Q ⋅ q̇ ≤ 0.

(22)

While 𝑘
𝑒
> 0 is known as an elastic modulus, the constant

𝑄
0
> 0 is a yield strength of material.
We can view the above equations in the plastic state, that

is, 𝜆 > 0, as a system of DAEs:

Q̇ = 𝑘
𝑒
q̇ −

𝑘
𝑒
𝜆

𝑄
0

Q =: f , (23)

‖Q‖
2
= 𝑄
2

0
. (24)

Now we explain that (23) and (24) are index two DAEs.
Taking the time differential of (24) and inserting (23) into the
resultant equation we can solve 𝜆 by

𝜆 =
1

𝑄
0

Q ⋅ q̇. (25)

Inserting it into (23) we obtain a nonlinear ODEs system:

Q̇ = 𝑘
𝑒
q̇ −

𝑘
𝑒

𝑄
2

0

Q ⋅ q̇Q. (26)

A further differential of (25) and inserting (26) leads to a
differential equation for 𝜆. Usually, when one applies the
general purpose numerical integration method to solve (26),
it cannot guarantee that the yield condition in (24) can be
automatically satisfied. Hong and Liu [12] have developed the
exponential-based scheme from the Lorentz group 𝑆𝑂

𝑜
(𝑛, 1),

which can automatically satisfy (24).
We apply the implicit𝐺𝐿(𝑛,R) scheme to solveQ through

(23) and then iteratively solve the unknown function 𝜆

through (24) by the Newton iterative method.The numerical
processes of this implicit Lie-group DAE (LGDAE) are given
below.

(i) Give an initial guess of 𝜆
0
, for example, 𝜆

0
= 0.

(ii) Give an initial condition Q
0
at an initial time 𝑡 = 𝑡

0

and a time stepsize ℎ.
(iii) For 𝑘 = 0, 1, . . ., we repeat the following computations

to a specified terminal time 𝑡 = 𝑡
𝑓
:

Q
𝑘+1

= Q
𝑘
+ ℎf
𝑘
. (27)

With the above Q
𝑘+1

generated from an Euler step as
an initial guess, we then iteratively solve the newQ

𝑘+1

by

Q
𝑘
= (1 − 𝜃)Q𝑘 + 𝜃Q

𝑘+1
,

a
𝑘
=

f
𝑘

󵄩󵄩󵄩󵄩󵄩
Q
𝑘

󵄩󵄩󵄩󵄩󵄩

,

b
𝑘
=

Q
𝑘

󵄩󵄩󵄩󵄩󵄩
Q
𝑘

󵄩󵄩󵄩󵄩󵄩

,

𝑐
𝑘
= a
𝑘
⋅ b
𝑘
,

𝑑
𝑘
= Q
𝑘
⋅ b
𝑘
,

𝜂
𝑘
=

exp (𝑐
𝑘
ℎ) − 1

𝑐
𝑘

,

z
𝑘+1

= Q
𝑘
+ 𝜂
𝑘
𝑑
𝑘
a
𝑘
.

(28)

If z
𝑘+1

converges according to a given stopping crite-
rion, such that

󵄩󵄩󵄩󵄩z𝑘+1 −Q
𝑘+1

󵄩󵄩󵄩󵄩 < 𝜀
2
, (29)

then go to (iv); otherwise, let Q
𝑘+1

= z
𝑘+1

and go to
(28).

(iv) For 𝑗 = 0, 1, . . ., we repeat the following computa-
tions:

𝜆
𝑗+1

= 𝜆
𝑗
−

𝐹
𝑗

𝐹
󸀠

𝑗

, (30)

where the prime denotes the differential with respect
to 𝜆, and

a󸀠
𝑘
=

f
󸀠

𝑘

󵄩󵄩󵄩󵄩󵄩
Q
𝑘

󵄩󵄩󵄩󵄩󵄩

,

𝑐
󸀠

𝑘
= b
𝑘
⋅ a󸀠
𝑘
,

𝜂
󸀠

𝑘
=

𝑐
󸀠

𝑘
[(ℎ𝑐
𝑘
− 1) exp (𝑐

𝑘
ℎ) + 1]

𝑐
2

𝑘

,

Q󸀠
𝑘+1

= 𝜂
󸀠

𝑘
𝑑
𝑘
a
𝑘
+ 𝜂
𝑘
𝑑
𝑘
a󸀠
𝑘
,

𝐹
𝑗
=

󵄩󵄩󵄩󵄩Q𝑘+1
󵄩󵄩󵄩󵄩

2
− 𝑄
2

0
,

𝐹
󸀠

𝑗
= 2Q
𝑘+1

⋅Q󸀠
𝑘+1

.

(31)

If 𝜆
𝑗
converges according to

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗+1

− 𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
< 𝜀
1
, (32)

then go to (iii) with 𝜆
𝑗
as an initial guess of 𝜆 for the

next time step; otherwise, let 𝜆
𝑗
= 𝜆
𝑗+1

and go to (28).

In order to assess the performance of the above numerical
method, we consider a strain control case with the strain
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Figure 1: Example 1 of a plastic equation to compute the stresses, showing the numerical errors of (a)𝑄
1
, (b)𝑄

2
, and (c) consistency condition.

components being 𝑞
1
= 𝑒
0
cos(𝜔𝑡) and 𝑞

2
= 𝑒
0
sin(𝜔𝑡). Here

we suppose that 𝛽 = 𝑘
𝑒
𝑒
0
/𝑄
0
> 1, and the initial stresses are

on the yield surface with 𝑄
1
= 𝑄
0
cos 𝜃
0
and 𝑄

2
= 𝑄
0
sin 𝜃
0
.

As shown in Liu [13, 14], the responses of𝑄
1
and𝑄

2
have the

following closed-form solutions:

𝑄
1

𝑄
0

=
𝑧 + 𝛽 cos 𝜃

0
− 1

𝛽𝑧
cos (𝜔𝑡) − 𝑧̇

𝛽𝜔𝑧
sin (𝜔𝑡) ,

𝑄
2

𝑄
0

=
𝑧̇

𝛽𝜔𝑧
cos (𝜔𝑡) +

𝑧 + 𝛽 cos 𝜃
0
− 1

𝛽𝑧
sin (𝜔𝑡) ,

(33)

where

𝑧 (𝑡) = 1 +
𝛽
2
− 𝛽 cos 𝜃

0

𝑚2
[cosh (𝑚𝜔𝑡) − 1]

+
𝛽 sin 𝜃

0

𝑚
sinh (𝑚𝜔𝑡) ,

(34)

in which𝑚 = √𝛽2 − 1.
In Figure 1, we plot the response errors of 𝑄

1
and 𝑄

2

and the error of the consistency condition, which is defined
by |√𝑄

2

1
+ 𝑄
2

2
− 𝑄
0
|, in a time range of 𝑡 ∈ [0, 10]. We fix

𝑘
𝑒

= 200,000MPa, 𝑄
0

= 200MPa, 𝑒
0

= 0.002, 𝜔 = 1,
and 𝜃

0
= 0, and the time stepsize used is ℎ = 0.001. Under

the convergence criteria 𝜀
2

= 10
−8 for inner iterations and

𝜀
1
= 10
−8 for outer iterations, we apply the LGDAE to solve

the above problem. From Figure 1(c), we can observe that the
LGDAE can retain the consistency condition very well. As
shown in Figures 1(a) and 1(b), the accuracy of LGDAE is
better than that obtained by the exponential-based scheme
[12] and the 𝑆𝑂(𝑛) scheme [15].

Example 2. We consider an index two nonlinear Hessenberg
DAEs [7, 8]:

𝑥̇
1
= 𝑡𝑥
2

2
+ 𝜆 + 𝑔

1 (𝑡) ,

𝑥̇
2
= 𝑡 exp (𝑥

1
) + 𝑡𝜆 + 𝑔

2 (𝑡) ,

𝑥
1
+ 𝑡𝑥
2
+ 𝑔
3 (𝑡) = 0,

(35)

with 𝑥
1
(0) = 𝑥

2
(0) = 𝜆(0) = 0, where

𝑔
1 (𝑡) =

1 − 𝑡
2
− 𝑡
3

(1 + 𝑡)
2

,

𝑔
2 (𝑡) =

1 − 𝑡 − 4𝑡
2
− 4𝑡
3
− 𝑡
4

(1 + 𝑡)
2

,

𝑔
3 (𝑡) = − ln (1 + 𝑡) −

𝑡
2

1 + 𝑡
.

(36)
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Figure 2: Example 2 showing (a) the numerical errors of solutions, (b) the error of invariant, and (c) the numbers of iterations.

The exact solutions of this problem are

𝑥
1 (𝑡) = ln (1 + 𝑡) , 𝑥

2 (𝑡) = 𝜆 (𝑡) =
𝑡

1 + 𝑡
. (37)

Under the convergence criteria 𝜀
2

= 10
−15 for inner

iterations and 𝜀
1

= 10
−10 for outer iterations, we apply the

LGDAE as that in (27)–(32) to solve this problem, where

𝐹
𝑗
= 𝑥
𝑘+1

1
+ 𝑡
𝑘+1

𝑥
𝑘+1

2
+ 𝑔
3
(𝑡
𝑘+1

) ,

(𝑎
1

𝑘
)
󸀠

=
1

󵄩󵄩󵄩󵄩x𝑘
󵄩󵄩󵄩󵄩

,

(𝑎
2

𝑘
)
󸀠

=
𝑡
𝑘

󵄩󵄩󵄩󵄩x𝑘
󵄩󵄩󵄩󵄩

,

(𝑥
𝑘+1

1
)
󸀠

= 𝑎
1

𝑘
𝑑
𝑘
𝜂
󸀠

𝑘
+ (𝑎
1

𝑘
)
󸀠

𝑑
𝑘
𝜂
𝑘
,

(𝑥
𝑘+1

2
)
󸀠

= 𝑎
2

𝑘
𝑑
𝑘
𝜂
󸀠

𝑘
+ (𝑎
2

𝑘
)
󸀠

𝑑
𝑘
𝜂
𝑘
,

𝐹
󸀠

𝑗
= (𝑥
𝑘+1

1
)
󸀠

+ 𝑡
𝑘+1

(𝑥
𝑘+1

2
)
󸀠

.

(38)

In the above, (𝑥𝑘+1
1

)
󸀠

and (𝑥
𝑘+1

2
)
󸀠

denote, respectively, the
differentials of 𝑥𝑘+1

1
and 𝑥
𝑘+1

2
with respect to 𝜆, and 𝑎

𝑖

𝑘
denotes

the 𝑖th component of a
𝑘
.

We use ℎ = 10
−3, and the problem is solved in a range of

𝑡 ≤ 1. In Figure 2(a), we show the numerical errors of 𝑥
1
, 𝑥
2

and 𝜆, of which we can see that the numerical solutions are

very accurate. In Figure 2(b), we show the error of |𝑥
1
(𝑡) +

𝑡𝑥
2
(𝑡) + 𝑔

3
(𝑡)|, which is almost zero with the order 10−11. It

can be seen that the numbers of iterations are few with three
to six for inner iterations and two or three for outer iterations
as shown in Figure 2(c).

Example 3. We consider an index three differential algebraic
equations system given by Sand [4], which describes the
position of a particle on a circular track:

𝑢̈
1
= 2𝑢
2
+ 𝜆𝑢
1
,

𝑢̈
2
= −2𝑢

1
+ 𝜆𝑢
2
,

𝑢
2

1
+ 𝑢
2

2
= 1.

(39)

For (𝑢
1
(0), 𝑢
2
(0)) = (0, 1), 𝜆(0) = 0, the exact solution is

𝑢
1
(𝑡) = sin 𝑡

2
, 𝑢
2
(𝑡) = cos 𝑡2 and 𝜆(𝑡) = −4𝑡

2. The above
problem can be viewed as a mechanical control problem to
select a suitable controller 𝜆(𝑡) changing the system’s stiffness
such that the orbit of the mechanical system can really trace
a circle in time.

We use this example to demonstrate how to transform
the above DAEs to a full system of ODEs with the following
strong form constraint:

𝐼
1
= 𝑥
2

1
+ 𝑥
2

3
− 1 = 𝑢

2

1
+ 𝑢
2

2
− 1 = 0, (40)
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where we let 𝑥
1
= 𝑢
1
, 𝑥
2
= 𝑢̇
1
, 𝑥
3
= 𝑢
2
and 𝑥

4
= 𝑢̇
2
. At the

same time the above ODEs become

𝑥̇
1
= 𝑥
2
,

𝑥̇
2
= 2𝑥
3
+ 𝜆𝑥
1
,

𝑥̇
3
= 𝑥
4
,

𝑥̇
4
= −2𝑥

1
+ 𝜆𝑥
3
.

(41)

Taking the time differential of (40), we can derive

𝑥
1
𝑥̇
1
+ 𝑥
3
𝑥̇
3
= 𝑥
1
𝑥
2
+ 𝑥
3
𝑥
4
= 0, (42)

due to 𝑥
2
= 𝑥̇
1
and 𝑥

4
= 𝑥̇
3
. The above is a first differential

form of the constraint in (40). However, it is still not available
for the determination of the Lagrange multiplier 𝜆. Thus, the
second differential form of (42) is required:

𝑥
1
𝑥̇
2
+ 𝑥̇
1
𝑥
2
+ 𝑥
3
𝑥̇
4
+ 𝑥̇
3
𝑥
4
= 0. (43)

Inserting (41) and using (40), we can derive

𝐼
2
= 𝜆 + 𝑥

2

2
+ 𝑥
2

4
= 0. (44)

Then, we finally come to a system of ODEs:

𝑥̇
1
= 𝑥
2
,

𝑥̇
2
= 2𝑥
3
− 𝑥
1
(𝑥
2

2
+ 𝑥
2

4
) ,

𝑥̇
3
= 𝑥
4
,

𝑥̇
4
= − 2𝑥

1
− 𝑥
3
(𝑥
2

2
+ 𝑥
2

4
) ,

(45)

and the Lagrange multiplier 𝜆 is calculated by

𝜆 = −𝑥
2

2
− 𝑥
2

4
. (46)

Finally, taking the differential of the above equation and
inserting (45) for 𝑥̇

2
and 𝑥̇

4
we can obtain the differential

equation for 𝜆:

𝜆̇ = 2𝑥
2
[𝑥
1
(𝑥
2

2
+ 𝑥
2

4
) − 2𝑥

3
] + 2𝑥

4
[2𝑥
1
+ 𝑥
3
(𝑥
2

2
+ 𝑥
2

4
)] .

(47)

In the above, we have transformed the DAEs in (39) into
a set of ODEs system (45) and (47) through three times
differentiations. This DAEs system is thus said to be of index
three.

In general, we may hope the solution of the system (45)
can automatically satisfy the following constraint on (𝑥

1
, 𝑥
3
):

𝑥
2

1
+ 𝑥
2

3
= 1, (48)

which is the last equation in (39). However, we should
remind that there exists no general numerical integrator
which can automatically satisfy (48). For this purpose, the
numerical integrator must be particularly designed to meet
that requirement. In the above, we have introduced two
invariants 𝐼

1
and 𝐼
2
; for this DAEs system the preservations

of these two invariants are utmost important.
We apply the LGDAE to solve𝑥

𝑖
, 𝑖 = 1, . . . , 4 by using (41)

and then iteratively solve the weak form constraint in (42) by

the Newton method to find 𝜆. The processes are the same as
that in (27)–(32), but now we have different 𝐹

𝑗
and 𝐹

󸀠

𝑗
:

𝐹
𝑗
= 𝑥
𝑘+1

1
𝑥
𝑘+1

2
+ 𝑥
𝑘+1

3
𝑥
𝑘+1

4
,

𝑐
󸀠

𝑘
=

𝑥
1
𝑏
2

𝑘
+ 𝑥
3
𝑏
4

𝑘

󵄩󵄩󵄩󵄩x𝑘
󵄩󵄩󵄩󵄩

,

𝜂
󸀠

𝑘
=

𝑐
󸀠

𝑘
[(ℎ𝑐
𝑘
− 1) exp (𝑐

𝑘
ℎ) + 1]

𝑐
2

𝑘

,

(𝑥
𝑘+1

1
)
󸀠

= 𝑎
1

𝑘
𝑑
𝑘
𝜂
󸀠

𝑘
,

(𝑥
𝑘+1

2
)
󸀠

= 𝑎
2

𝑘
𝑑
𝑘
𝜂
󸀠

𝑘
+ 𝑑
𝑘
𝜂
𝑘
𝑥
1
,

(𝑥
𝑘+1

3
)
󸀠

= 𝑎
3

𝑘
𝑑
𝑘
𝜂
󸀠

𝑘
,

(𝑥
𝑘+1

4
)
󸀠

= 𝑎
4

𝑘
𝑑
𝑘
𝜂
󸀠

𝑘
+ 𝑑
𝑘
𝜂
𝑘
𝑥
3
,

𝐹
󸀠

𝑗
= 𝑥
𝑘+1

1
(𝑥
𝑘+1

2
)
󸀠

+ (𝑥
𝑘+1

1
)
󸀠

𝑥
𝑘+1

2
+ (𝑥
𝑘+1

3
)
󸀠

𝑥
𝑘+1

4

+ 𝑥
𝑘+1

3
(𝑥
𝑘+1

4
)
󸀠

.

(49)

In the above, 𝑎𝑖
𝑘
and 𝑏

𝑗

𝑘
are, respectively, the 𝑖th and 𝑗th

components of the vectors a
𝑘
and b

𝑘
.

Under the convergence criteria 𝜀
2

= 10
−15 for inner

iterations and 𝜀
1

= 10
−6 for outer iterations, we apply the

above numerical method with ℎ = 10
−4 to solve (39). In

Figure 3(a) we show the numerical errors of 𝑢
1
, 𝑢
2
, and 𝜆,

of which we can see that the numerical solutions are very
accurate. In Figure 3(b), we show the errors of |𝐼

1
| and |𝐼

2
|,

which are almost zero with the order 10
−10. It can be seen

that the accuracy of 𝑢
1
and 𝑢

2
is in the order of ℎ2.5, and the

numbers of iterations are few with three for inner iterations
and two for outer iterations as shown in Figure 3(c).

Example 4. Finally, we consider a more complex pendulum
problem [16]:

𝑥̇
1
= 𝑥
3
− 𝜆
2
𝑥
1
,

𝑥̇
2
= 𝑥
4
− 𝜆
2
𝑥
2
,

𝑥̇
3
= − 𝜆

1
𝑥
1
,

𝑥̇
4
= − 𝜆

1
𝑥
2
− 1,

𝐼
1
= 𝑥
2

1
+ 𝑥
2

2
− 1 = 0,

𝐼
2
= 𝑥
1
𝑥
3
+ 𝑥
2
𝑥
4
= 0.

(50)

The exact solution of the above problem is not available,
which has two Lagrange multipliers 𝜆

1
and 𝜆

2
and two

constraints.
The initial values are 𝑥

1
(0) = 1 and 𝑥

2
(0) = 𝑥

3
(0) =

𝑥
4
(0) = 0. Under the convergence criteria 𝜀

2
= 10
−15 for

inner iterations and 𝜀
1
= 10
−10 for outer iterations, we apply

the LGDAE with ℎ = 10
−4 to solve (50). In Figure 4(a), we

show the numerical solutions. In Figure 4(b), we show the
errors of |𝐼

1
| and |𝐼

2
|, which are almost to be zero with the

order 10−13 for |𝐼
1
| and the order 10−17 for |𝐼

2
|. The numbers

of iterations are few with three for inner iterations and two
for outer iterations as shown in Figure 4(c).
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Figure 3: Example 3 showing (a) the numerical errors of solutions, (b) the errors of invariants, and (c) the numbers of iterations.
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Figure 4: Example 4 showing (a) the numerical solutions, (b) the errors of invariants, and (c) the numbers of iterations.
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6. Conclusions

By recasting the nonlinear ODEs: ẋ = f into a quasi-linear
Lie-form: ẋ = Ax, where A = f/‖x‖ ⊗ x/‖x‖, we have derived
an implicit 𝐺𝐿(𝑛,R) Lie-group algorithm together with the
Newton iterative scheme, namely, the LGDAE, to solve the
nonlinear differential algebraic equations. Four numerical
examples were given to assess the performance of the novel
method, which is easily implemented to solve the nonlinear
differential algebraic equations with a high efficiency and
accuracy.
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