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Abstract. The data for the tests considered here may be presented in two-way contingency ta-
bles with all marginal totals fixed. We show that Pearson’s test statistic X%, (P for Pearson) may
be partitioned into useful and informative components. The first detects location differences be-
tween the treatments, and the subsequent components detect dispersion and higher order moment
differences. For Kruskal-Wallis-type data when there are no ties, the location component is the
Kruskal-Wallis test. The subsequent components are the extensions. Our approach enables us to
generalise to when there are ties, and to when there is a fixed number of categories and a large
number of observations. We also propose a generalisation of the well-known median test. In this
situation the location-detecting first component of X%, reduces to the usual median test statistic
when there are only two categories. Subsequent components detect higher moment departures
from the null hypothesis of equal treatment effects.
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Two-way data.

1. Introduction

The idea of decomposing a test into orthogonal contrasts, as in the analysis of
variance, has long been appreciated by statisticians as a way of making hypothesis
tests more informative. In the authors’ smooth goodness of fit work (see Rayner
and Best, 1989), a similar approach is pursued. Omnibus test statistics are par-
titioned into smooth components. We define the components of a test statistic
to be asymptotically pairwise independent, with each asymptotically having the
chi-squared distribution, and such that their sum gives the original test statistic.
The components provide powerful directional tests and permit a convenient and
informative scrutiny of the data. This approach is applied to Spearman’s test in
Best and Rayner (1996) and Rayner and Best (1996a); Rayner and Best (1996b)
gave an overview of this approach applied to several commonly used nonparametric
tests, including the Friedman and Durbin tests.

Data for a generalisation of the median test that we subsequently propose, and
for the Kruskal-Wallis test both with and without ties, may be presented in the
form of two-way tables with fixed marginal totals. We derive the covariance matrix
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of entries in such tables and then partition a multiple of X% into components that
detect location and higher moment differences between rows.

For Kruskal-Wallis-type data when there are no ties, the location component is
the Kruskal-Wallis test. Our approach enables us to generalise to when there are
ties, and to when there is a fixed number of categories and a large number of
observations. We also propose a generalisation of the well-known median test. The
location detecting first component of X% reduces to the usual median test statistic
when there are only two categories. Using more categories allows components other
than this location component to be calculated. These additional components, that
detect dispersion and higher moment effects, are not available when using the usual
median test.

The structure of this paper is as follows. In the next section the model for two-
way contingency tables with fixed marginal totals is given, and Pearson’s X% is
derived as a test statistic for the null hypothesis of like rows. In section three a
multiple of X% is partitioned into components. The material in section 2 and 3
will be familiar to many readers, but is necessary background for the new work. In
section four it is shown that when there are no ties the first component is the usual
Kruskal-Wallis statistic. The non-location detecting components are our extensions.
Section five generalises the treatment to when there are ties. Section six introduces
a generalisation of the usual median X? test, which is thus identified as a location
detecting test; the extensions permit dispersion and other effects to be detected.

2. A Model and Pearson’s X2 Test

Suppose we have a two-way table of counts V;;, with¢=1,...,rand j =1,...,c.
The row and column totals, respectively n;, ¢ = 1,...,r and n;, j = 1,...,¢c
are known constants. Under the null hypothesis of simple random sampling, the
likelihood was given by Roy and Mitra (1956) as

{an} rip /S I0 7

i=1 7j=1 i=1j=1

in which n., =", n; = Z]. n ; is the grand total of the observations. The mod-
els for tables with just one set of marginal totals fixed, or only the grand total
fixed, are quite different from our model in which all row and column totals are
fixed. See Lancaster (1969, chapter XI section 2, pp. 212-217). This likelihood can
be expressed as a product of extended or multivariate hypergeometric probability
functions:

r c
H [H n1j+--.+nijcm]_-| /n1.+...+ni.cni.
=2 7j=1 J

To find moments of the N;;, expectations may be taken with respect to the
distribution of the second row conditional on knowledge of the column sums of the
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first two rows, then conditional on the column sums of the first three rows, and so
on. It suffices to know the moments of the extended hypergeometric distribution.
Details are given in the Appendix. We find

E[Njjl=ninj/n_, i=1,...,r and j=1,...,c

Write N; = (Ni1,...,Nie)T,i=1,...,r and N* = (N7T,...,NT), so that N is
the vector of all the cell counts. The joint covariance matrix of IN; and IV is, for

i#7,
cou(N;, N;) = —”nZ’ {dmg <(: :Tf"l)> - (::) } ‘

Write f; =nj/n_,j=1,...,¢c, and

R = diag <%> B (:Tﬁsl> .

The covariance matrix of N is cov(N) = {diag(f;) — (fif;)} ® R, where ® is
the direct or Kronecker product. See Lancaster (1969) for details about direct or
Kronecker sums and products. Now define the standardised cell counts

Zl]:(Nl—E[Nl]])/ E[Nl]], ’L.ZI,...,T' and j:1,...,c,

Z=(Ziry s Zacr ooy Zotyeres Zoe)
I, the a by a identity matrix and 1, the a by 1 vector with every element 1. Then

cov(Z) ={I. — (\/[fifi} @ R.

The matrix {I,.— (y/[f:f;])} has r—1 latent roots 1 and one latent root zero. The
latent roots of R are difficult to find in general, but their asymptotic limits follow
from Lancaster (1969, Chapter V.3). Lancaster showed that the quadratic form
with vector the standardised cell counts and matrix essentially R, is the familiar
Pearson goodness of fit statistic, with asymptotic distribution x2_;. Hence the
latent roots of R are asymptotically one ¢ — 1 times and zero once. So under the
null hypothesis of simple random sampling, Z has zero mean and covariance matrix
cov(Z), which asymptotically has (r —1)(c— 1) latent roots one, and the remaining
r 4+ ¢ — 1 latent roots zero.

In the well known and often used ‘classical’ model, r and ¢ are fixed and the total
count n_ — oo. The test statistic X3 is given by

r c 2
> _ L nin; ning\ _ o7
=5 (- ) () 7,

i=1 j=1 o

We now confirm that our model leads to this test statistic. Suppose H is orthogonal
and diagonalises cov(Z). Asymptotically we then have
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HTCOV(Z)H = I(r—l)(c—l) ©® O(H_C_l),

where @ means direct or Kronecker sum. Define Y = HYZ. Now Z1Z =
YTY, in which Y, by the multivariate Central Limit Theorem, is asymptotically
Nype(0, [I (r—1)(c—1)®0(r4c—1)]) under the null hypothesis of simple random sampling.
It follows that under the null hypothesis, X3 = ZT7Z = YTY asymptotically has

the X%rq)(cq) distribution.

3. Partitioning Pearson’s Statistic

We now show that X3 may be partitioned into components, the sth of which
detects sth moment departures from the null hypothesis of similarly distributed

rows (treatments).
rc

The elements Y; of Y are such that X }23 = Z Yf. There is some choice in defining
i=1

the Y;, as H is not yet fully specified. In doing so, our aim is to find Y; that can
be easily and usefully interpreted. To achieve one such partition, first suppose
that {gs(j)} is the set of polynomials orthonormal on {n_j/n_}. See the Appendix
for the definitions of the first two polynomials and the derivation of subsequent
polynomials. This approach results, when there are no ties, in the first component
being the Kruskal-Wallis test. Write g for the ¢ by 1 vector with elements g;(j).
Define G by

G=[G ... GJ/Ve

in which G is the rc¢ by r matrix

gs 0
0 gs
Gs=| . . , s=1,...,c—1, and
0 0 ... gs
1. 0
0 1.
G.=| . . . .|, isalso r¢ by r.
0 0 ... 1,

Define ¥ = ,/"T_l GTZ. The elements of Y may be considered in blocks of

r, the sth block corresponding to the polynomial of order s. These blocks are
asymptotically mutually independent. Write Y7 = (V{, e VZ), in which

Vl = (Yh Tt YT‘)T7 AR Vc—l = (}/7(072)7'4»17 s 73/(671)7')717
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and V. =0 (all the V, are r by 1) so that

~1 ~1
<"n >X1%: <"n >ZTZ:YTY:VlTV1+...+VCT_1VC_1.

This partitions (2-1) X% into components V.V, , s =1,...,c — 1. The V are
asymptotically mutually independent and asymptotically N,.(0,I(._1)©0), so that
the VSTVs are asymptotically mutually independent x2_,. Explicitly we have, for
s=1,...,c—1,

V,= —V(’;_”GZ’Z = —V("n_l) chgso)zﬁ

1

Because V5 involves, through g5, a polynomial of order s, the elements of V' are
polynomials of order s in the elements of IN. Under the null hypothesis E[Z] = 0,
but when this is not true E[V ] involves moments up to order s of Z. So for
s=1,...,r—1, VSTVS detects sth moment departures from the null hypothesis of
similarly distributed rows (treatments).

Instructors Example. See Conover (1980, p. 233). Three instructors assign
grades in five categories according to the following table.

Grade
A B C D E Total
Instructor1 4 14 17 6 2 43
Instructor 2 10 6 9 7 6 38
Instructor 3 6 7 8 6 1 28
Total 20 27 34 19 9 109

Conover (1980) found the Kruskal-Wallis statistic adjusted for ties to be 0.3209,
which is to be compared with the x3 (5%) point of 5.991. We find the location de-
tecting component V{Vl to have P-value 0.85, confirming, as Conover reported,
that “none of the instructors can be said to grade higher or lower than the oth-
ers on the basis of the evidence presented”. However the dispersion detecting
component V2TV2 has P-value 0.01, indicating a significant variability difference.
From the data it appears that the first instructor is less variable than the other
two. In fact, 9.643 = (—2.113)% + (2.274)% + (—0.031)2, with the elements of
vy = (—2.113,2.274,—0.031)7 being values of approximately standard normally
distributed contributions from instructors 1, 2 and 3 respectively. The first instruc-
tor is less variable than the third who is less variable than the second. This can
be formalised by a LSD analysis. The residual X3 — V] V| — V2V, has P-value
0.75, indicating no further effects in the data.
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Partition of X} for instructor’s data

Statistics Degrees of Freedom  Value P-value
viv, 2 0.324 085
viv, 2 9.643  0.01
Xz -viv,-viv, 4 2.021  0.75
X2 8 11.985  0.15

4. The Kruskal-Wallis Test with No Ties

We now consider models that lead to the Kruskal-Wallis test when there are no ties.
The latent roots of cov(Z) will be found explicitly rather than asymptotically as in
section 2. We show that X% is not an appropriate test statistic, but nevertheless,
its components are. The first component is the Kruskal-Wallis test statistic, and
the subsequent components provide informative extensions.

Suppose we have distinct observations z;;, being the jth of n; observations on
the ith of ¢ treatments. All n = n; + ... + n; observations are combined, ordered,
ranked, and the sums R; of the ranks obtained by the ith treatment calculated.
The Kruskal-Wallis statistic is

H = {12/[n(n+ D)]}Z;R?/n; — 3(n + 1).

See for example, Conover (1980, section 5.2). The data may be presented as an ¢ by
n contingency table of counts {N;;}, with N;; = 1 if rank j is allotted to treatment
i, and N;; = 0 if rank j is allotted to some other treatment. The row and column
totals are all fixed: the row totals are the treatment sample sizes, so that n;. = n;
for i = 1,...,t, while the column totals are all one: n; =1 fors=1,...,n. Such
a table has X% = (¢ — 1)n no matter what the {N;;}. Since X% is constant, it has
P-value 1. Clearly X% is not a suitable test statistic.
The model of section 2 holds, except that now

n 1
R= I, - 1,17,
n—1 n—1 n

This matrix has one latent root one and n — 1 latent roots n/(n — 1). It follows
that cov(Z) has (t — 1)(n — 1) latent roots n/(n — 1), and the remaining ¢t + n — 1
latent roots zero. So if H is orthogonal and diagonalises cov(Z) then

n
H"cov(Z)H = -1 [I(tfl)(nfl) @ 0(t+n71)] .

Define
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Then

~1 ~1
YTy = (”—> z77 = (” ) X2,
n n

With r replaced by ¢ and c¢ replaced by n, this is the same as in section three.

As in section 2, we are interested in the distribution theory as n — oo. However
there Z was an rc by 1 vector of fixed length; here Z is a tn by 1 vector. For-
tunately, it is not the asymptotic distribution of Z that is required. First recall
that X% has a fixed value, (t — 1)n, for all tables, and so is not available as a test
statistic. Second, as in section three, the multivariate Central Limit Theorem shows
that each V' is asymptotically N¢(0, I';,_1)@0). Moreover consideration of all pairs
Vs, V; shows that they are asymptotically jointly multivariate normal, and since
their covariance matrix is zero, they are asymptotically pairwise independent. The
VIV, still partition (2=1) X2. It is the pairwise independence and convenient
X7_, distribution of each V', that makes data analysis so informative and conve-
nient. What is lost by the unavailability of X%, is demonstrated in the Employees
Example below: there is no residual available to assess if there are higher moment
differences between the treatments.

We now show that provided there are no ties, V{Vl is the Kruskal-Wallis statis-
tic, so that the subsequent VSTVS provide extensions to the Kruskal-Wallis test.
First note that the {gs(j)} is the set of polynomials orthonormal on the discrete
uniform distribution, so that ¢;(j) =aj +b, j =1,...,n, in which

a=+/12/(n2—1) and b= —/3(n+1)/(n—1) = —{(n +1)/2}a.

n
The rank sum for treatment i, R;, is ZjNij, t=1,...,t. Now since n; =1 for

j=1,...,n, =
Zgl(j)\/E[Nij] = \/Wzgl(j)go(j)(l/n) =0
and

Z Zijg1(j) = VIn/ni]); Nij(aj +b) = v/[n/ni{aR; + bn;}
’ n+1
a [n/ni]{Ri— 5 nz}
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Now

Viv, = v2+.. . +Y2=

:i: j{:gl
= anZ{ 1 } = n+1 zt:R—ZZ—S(TH-l)

i=1

after some manipulation. This is the Kruskal-Wallis statistic, well known to be
sensitive to location departures from the null hypothesis. Since V5 assesses sth
moment departures between treatments, we have partitioned the statistic ("T_I)XIQ_-,
into asymptotically pairwise independent components, VSTVS, s=1,...,n—1, each
with the x?_, distribution, and such that the sth detects sth moment departures
from the hypothesis of similarly distributed rows (treatments). Since the first of
these is the Kruskal-Wallis statistic, the subsequent components provide extensions
to the Kruskal-Wallis test.

Employees Example. Conover (1980, p. 238, exercise 2) gave an exercise in which
20 new employees are randomly assigned to four different job training programmes.
At the end of their training the employees are ranked, with a low ranking reflecting
a low job ability.

Programme Ranks

1 2,4, 6,7, 10
2 1,3,8, 11, 12
3 5, 14, 16, 19, 20
4 9,13, 15, 17, 18

The value of the Kruskal-Wallis statistic is 9.72, with x% P-value 0.021, but Monte
Carlo permutation test P-value 0.010. The latter is more likely to be accurate as
the sample size is small. Further components are not significant. An LSD analysis
can be used to show that programmes 1 and 2 and programmes 3 and 4 are equally
effective, with 3 and 4 being superior.

5. The Kruskal-Wallis Test with Ties

If there are ties, the data may be presented as an ¢ by n* contingency table of
counts {N;;}, with the row totals are fixed at the treatment sample sizes, so again
n; =n;, ¢ =1,...,t, while the column totals are no longer all one. The covariance
matrix of Z is

o) = I~ (fIF D & B ant R diag () ()
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As in section 2, the latent roots of R are zero once and asymptotically one n* —1
times. It follows that cov(Z) has (t — 1)(n* — 1) latent roots asymptotically one,
and the remaining ¢ + n* — 1 latent roots zero. With suitable modifications the
partitioning of section three holds. For s = 1,...,n* — 1,

V.= Gz = 0.2 IV

i=1

Note that {gs(j)} is the set of polynomials orthonormal on {n_j/n_}, not on the
discrete uniform as in the previous section when there were no ties. This is the
partition derived in section 3 for X%. So the first component of X% in the In-
structors example is the Kruskal-Wallis statistic corrected for ties. The subsequent
components are extensions to the Kruskal-Wallis test adjusted for ties. Note that
for this example the model assumed in section 3, with fixed numbers of rows and
columns, is more plausible than the model of this section, since n* = 5 is hardly
large.

6. Generalised Median Tests

Conover (1980, section 4.3) described the median test, in which random samples are
taken from each of ¢ populations. Each random sample is classified as above and
below the grand median (the median of the combined random samples), forming
an r by 2 contingency table with fixed marginal totals. The usual chi-squared test,
based on X3, is then applied to this contingency table.

If instead of the grand median, a ‘grand quantile’ is used, the resulting test is
described as a quantile test: see Conover (1980, p. 174). These tests can be gen-
eralised by choosing ¢ instead of two categories for the combined random samples,
and so forming an 7 by c contingency table of counts V;; of the number of obser-
vations for the ith sample in the jth category. This table has all row and column
totals fixed and can be tested for row consistency using the results of the sections 2
and 3. The first three say, components of X% are of particular interest, indicating
location, dispersion and skewness differences between treatments.

It is routine to show that the location component V{Vl of X}% reduces to the
median test statistic when observations are classified into just two categories. This
is shown in the Appendix. The result identifies the median test as a location detect-
ing test. To detect up to sth moment differences between the populations requires
categorisation into s + 1 categories and the use of the Vo,..., Vi components. If
there are as many categories as observations and each category has one observation,
the test based on the location component is the Kruskal-Wallis test, which is known
to be more powerful than the median test. Using more than two categories will
result in less loss of information due to categorisation compared to the median test,
and will permit assessment of higher moment differences between the treatments.
Corn Example. Conover (1980, p. 172) gave the example of four different methods
of growing corn. He classified the data as greater than 89 and up to 88 and applied
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the median test. In this form this does not conform to the fixed margins model.
If the objective were to divide the data into groups of the lowest 18 and highest
16 observations, it would conform to the fixed margins model. We now classify the
data into four approximately equal groups.

Using the median test, Conover reported a P-value “slightly less than 0.001”: the
method median yields are clearly different. We calculate X2 = 49.712 on 9 degrees
of freedom. In addition V] V| = 25.723, V2V, = 19.972 and Vi V3 = 2.574, all
on 3 degrees of freedom. The location and dispersion components and X% are all
significant, with P-values all zero to three decimal places. The residual or skewness
component has 2 P-value 0.45. The finer classification, compare to that employed
by the median test, has uncovered a variability difference between the methods:
methods 3 and 4 are significantly less variable than 1 and 2.

First Second Third Fourth  Total
Quartile Quartile Quartile Quartile

Method 1 0 3 4 2 9

Method 2 1 6 3 0 10

Method 3 0 0 1 6 7

Method 4 8 0 0 0 8

Total 9 9 8 8 34
Appendix
The Orthogonal Polynomials
The first two polynomials, defined on z1,...,z. and orthonormal with regard to

the weights p1,...,pe, are g1(x;) and g2(z;), given explicitly by:

91(z;) = (zj — )/
and
g2(25) = a{ (v; = 1) = oy — i) /2 = o}y G =100,
in which

B = Zfﬁjpja Mo = Z(%’ —w)'p; and a= (u4 + 5 e —
j=1 j=1

)70.5

The subsequent polynomials gz(z;), . .., gc—1(z;) may be derived by using the useful
recurrence relations in Emerson (1968). In the text we have taken, as in many
applications, z; =j,j=1,...,c.

Derivation of the Covariance Matrix of the Cell Counts

In section 2 the method used to find the moments of the N;; is described. To find
E[Ns1], we take E[Na1|N1; + N2j, j=1,...,c]|, then the conditional expectation
of this expression with the sum of the first three columns being known, and so on.
The successive expectations are
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na2.(N11 + Noi)/(n1. +na.),
{na./(n1. + n2 ) H{(m1. + na2.)(N11 + Noy + N31)/(n1. +ne. +n3.)},

{no./(n1. + n2 ) H{(n1. + n2) /(1. +na. + n3)} - ..
{(nl_ + ...+ n(c,l).)/(nl_ +...+ nc)}{nl} = n2_n_1/n__.

By symmetry E[N;;] =n;n;/n_,i=2,...,r and j = 1,...,c. By difference the
expectations for the first row may be obtained, giving the familiar

E[Nijl=ninj/n., i=1,...,r and j=1,...,c

In the same way

E'[Ngl(N21 — 1)] = TLQ_(TLQ_ — l)n_l(n_l — 1)/{”(” — 1)},

from which we obtain var(Ns;), and

Similarly

g Itk <u> i=1,...,r and j#k=1,...,c
n.n. n.—1

3

COU(Ni]', Nik) = —N;.

By symmetry

cov(Npj, Nog) = = j o2 (%) i=1,..,rand j#k=1,. ¢

and by the expectation argument again

7 r Ity s 1 . .
cov(NiT,st):n'n' e AL ( ), i#j=1,...,r, and r#s=1,...,c.
n, n,. n,—1

Write N; = (Nit,...,Nie)T, i =1,...,r and N* = (NT ... NT). The joint
covariance matrix of IN; and IN; is, for ¢ # j,

ov(Niy Ny) = =78 {dmg <<:jrﬁ'i)> - (Z.'.Tﬁi) } ‘

Now since the {N;;} are such that the row and column totals are known constants,
cov(N;,N1+...+N,)=0fori=1,...,r. Soif wewrite f; =n_j/n_,j=1,...,¢,
and
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R = diag <%> - (:{i) )

then the covariance matrix of IN; is

CO’U(N.,;) = — ZCOU(NZ', N]) = Z foJR = fz(]. — fi)R,
i#£j i#]
which agrees with direct calculation. So if ® is the Kronecker product, the covari-
ance matrix of IV is

cov(N) = {diag(f;) = (fifj)} ® R.
Recall that we have defined Z,;; = (N;; — E[Nyj])//E[Nij], i =1,...,r and j =
L...,c,and Z = (Zy1,. .y Zicye oy Zatye oy Zie) L. Tt follows that

cov(Z) ={I. — (\/[fifil} @ R.

The location component V! V| of X2 reduces to the median test statistic
If there are b observations below a predetermined point in the combined sample,
and a above it, then Conover (1980, p. 172) gave the X2 Median test statistic as

T—ﬁi Ny — b 2/n-
- G,b pa 71 n. 7.0

It is routine to show that ¢g1; = (j — p)/o, 7 =1,...,¢, in which y and o are are
the mean and standard deviation of the distribution defined by P(X = 1) =b/n .
and P(X =2) =a/n.. It follows that u = 1 + a/n.. and 0 = ab/n®. Now

2
o/ni Vii = Z Nijg1j = Nir(—a/n.) + (n;, — Na)(1 —a/n.)
Jj=1
= (nl — anl/n) — Nil = nlb/n — Nil-

It follows that, as required, VlTVl =T.
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