
A PROBLEM OF FINDING AN ACCEPTABLE VARIANT
IN GENERALIZED PROJECT NETWORKS

DAVID BLOKH, GREGORY GUTIN, AND ANDERS YEO

Received 20 January 2003 and in revised form 20 June 2003

A project network often has some activities or groups of activities which can be per-
formed at different stages of the project. Then, the problem of finding an optimal/accept-
able time or/and optimal/acceptable order of such an activity or a group of activities
arises. Such a problem emerges, in particular, in house-building management when the
beginnings of some activities may vary in time or/and order. We consider a mathematical
formulation of the problem, show its computational complexity, and describe an algo-
rithm for solving the problem.

1. Introduction

A project network may well has some activities which can be performed at different stages
of the project. In such cases, we wish to compute an optimal (or, at least, acceptable)
time or order of such an activity. Such problems appear, in particular, in house-building
management when the beginnings of some activities may vary in time or/and order (see
[1]), in scheduling of medical examinations in areas with difficult ecological situations
[7, 9], and in building/city evacuation management [2, 10]. For other applications, see
[3, 4, 6].

Consider a mathematical formulation of the problem. Let G = (N ,A) be a network,
that is, finite acyclic digraph with unique source s. We will allow networks to have parallel
arcs, that is, arcs with the same endvertices. The arc set A of G is partitioned into disjoint
subsets D, Ai (i = 1,2, . . . ,r): A = ⋃r

i=1Ai ∪D. A set Ai is called an alternating set. An
arc from

⋃r
i=1Ai is called an alternating arc. A variant G′ = (N ′,A′) of G is a maximal

subgraph of G satisfying the following conditions: s is a unique source of G′, |A′ ∩Ai| = 1
for all i= 1,2, . . . ,r. Note that because of the maximality of G′, if distinct vertices x and y
are in N ′ and an arc a between them is in D, then a∈ A′.

Associate with each arc a of G its time t(a) and cost c(a). The cost of a variant G′ is the
sum of the costs of arcs from G′ and the time of G′ is the time of a critical path (see [8])
in G′. Given constants C and T , one wishes to find a variant (if any) whose cost is at most
C and time is at most T (the AV problem). Any such variant is called acceptable.

Copyright © 2005 Hindawi Publishing Corporation
Journal of Applied Mathematics and Decision Sciences 2005:2 (2005) 75–81
DOI: 10.1155/JAMDS.2005.75

http://dx.doi.org/10.1155/S1173912603504035

76 Generalized project networks

We prove that the problem of finding an acceptable variant is NP-complete (even if G
has a very simple structure). Moreover, we show that the problem of verifying whether G
has a variant (any variant) is also NP-complete. Therefore, the existence of a polynomial
algorithm for solving the AV problem seems to be impossible. We describe an algorithm
which generates all variants in a clever way in order to avoid construction of some non-
variants. Having a variant, we check whether it is acceptable. The algorithm might be
useful for moderate inputs.

The problem of finding an optimal variant in very special networks was first stated by
Eisner [4]. Variants in general networks were considered in [6], yet every alternating set
in [6] is formed by arcs with common initial vertex.

2. Complexity

Proposition 2.1. The AV problem is NP-complete.

Proof. We transform the well-known NP-complete problem, KNAPSACK [5, page 247],
to this problem. Let a set U = {1,2, . . . ,r}, and given integer size ci ≥ 0 and value vi ≥ 0,
for every i ∈ U , as well as positive integers B and K , constitute an arbitrary instance of
KNAPSACK. In KNAPSACK, we wish to find a subset W ⊆U such that

∑
i∈W ci ≤ B and∑

i∈W vi ≥ K . Let W̄ = U −W and V =∑n
i=1 vi. Then, KNAPSACK is equivalent to the

problem of determining a set W ⊆U such that
∑

i∈W ci ≤ B and
∑

j∈W̄ vj ≤V −K .
On the other hand, the last problem is clearly equivalent to the following special case

of the AV problem: let G= (N ,A) be the network with N = {x1,x2, . . . ,xr+1}, A=
⋃r

i=1Ai,
where Ai = {ai,a′i}, ai and a′i are parallel arcs with initial vertex xi and terminal vertex
xi+1. The cost of an arc ai (a′i , resp.) is ci (0, resp.) for all i= 1, . . . ,r. The time of an arc ai
(a′i , resp.) is 0 (vi, resp.). Set C = B, T =V −K . �

Now we consider the problem of checking whether a given network G has a variant
(the EV problem). We first restrict ourselves to a slight extension of networks considered
in the proof of Proposition 2.1, namely, to “multipath” networks with vertex set N =
{x1,x2, . . . ,xr+1} and arc set A =⋃r

i=1Ai, where every arc in Aj has the form xjxj+1 (Aj

may contain several arcs). Then the EV problem is polynomial time solvable due to its
simple transformation into the perfect matching (in bipartite graphs) problem. However,
in general, the EV problem is NP-complete.

Theorem 2.2. The EV problem is NP-complete.

Proof. We transform the well-known problem 3-SAT [5, page 46] to the EV problem. Let
U = {u1, . . . ,uk} be a set of variables, let C = {c1, . . . ,cm} be a set of clauses such that every
ci has three literals, and let vil be the lth literal in the clause ci. We will construct a network
G which has a variant if and only if C is satisfiable.

We construct network G as follows. We start with the vertices s,x1, . . . ,x2k and arcs
sx1, . . . ,sx2k. For every i = 1, . . . ,k and every j = 1, . . . ,m, if the variable ui belongs to the
clause cj , we add the arc x2i−1yi j , where yi j is a new vertex. Analogously, for every i =
1, . . . ,k and every j = 1, . . . ,m, if the negation of ui belongs to the clause cj , we add the arc
x2izi j , where zi j is a new vertex. The arcs sx2i−1,sx2i constitute the set Ai (i= 1, . . . ,k). All
arcs of the forms x2i−1yi j and x2izi j constitute the set Ak+ j for j = 1, . . . ,m.

David Blokh et al. 77

We will prove that G has a variant if and only if C is satisfiable.
Suppose first that C is satisfiable and consider a truth assignment α for U that satis-

fies all the clauses in C. Let vj,l j , j = 1,2, . . . ,m, be true under α. Construct a variant G′

(starting from empty G′) as follows. For every j = 1,2, . . . ,m, if vj,l j is a variable ui, then
the arcs sx2i−1 and x2i−1yi j (along with their vertices) are added to G′, otherwise, that is,
vj,l j is the negation of a variable ui, the arcs sx2i and x2izi j are added to G′ (we do not
append arcs which are already in G′). Clearly, G′ contains exactly one arc from each of
the sets Ak+1, . . . ,Ak+m. Moreover, it has at most one arc from each of the sets A1, . . . ,Ak

since a variable and its negation cannot be both true under α. However, G′ may contain
no arcs from some of the sets A1, . . . ,Ak. After appending representatives of such sets to
G′ we clearly obtain a variant of G.

The above arguments can be “reversed” in order to prove that if G contains a variant,
then C is satisfiable. �

3. Algorithm

In this section, we describe an algorithm, which finds all variants of a network. The algo-
rithm is illustrated by an example in the full version of the paper in www.cs.rhul.ac.uk/
home/gutin/. Let G= (N ,A) be a network, as described in the introduction. Set Ar+1 =D
and let (A1,A2, . . . ,Ar) be some ordering of the alternating sets in G. Furthermore, let

Ai = (a(i)
1 ,a(i)

2 , . . . ,a(i)
|Ai|) be some ordering of the arcs in Ai (i= 1,2, . . . ,r). Define the ver-

tices u(i)
k and v(i)

k , such that a(i)
k = u(i)

k v(i)
k for all i= 1,2, . . . ,r and k = 1,2, . . . ,|Ai|. A feasi-

ble r-tuple, �α= (α1,α2, . . . ,αr) is an ordered set of integers, such that 1≤ αi ≤ |Ai| for all
i= 1,2, . . . ,r. If �α is a feasible r-tuple then let (�α) j (or just αj) denote the jth entry in the

tuple �α. If �α and �β are feasible r-tuples, and there exists an integer j ≥ 1, such that αi = βi

for all i= 1,2, . . . , j− 1 and αj < βj , then we say that �α≺ �β and that ω(�α,�β)= ω(�β,�α)= j.

Finally, if �α is a feasible r-tuple, then A∗(�α)= {a(1)
α1 ,a(2)

α2 , . . . ,a(r)
αr }.

We now show the following lemma.

Lemma 3.1. Given a feasible r-tuple �α, we can, in O(|N|2) time, decide if there is a variant
G′ = (N ′,A′), with A∗(�α)⊆A′.

Furthermore if such a variant exists, then it is unique.

Proof. Define a network G∗, a vertex set B, and an arc set C as follows:

G∗ = (V(G),A∗
(
�α
)∪Ar+1

)
,

B = {b : there is a path from s to b in G∗
}

,

C =A∗
(
�α
)∪ {uv : uv ∈Ar+1 and {u,v} ⊆ B

}
.

(3.1)

It is easy to check that there is a variant (containing the arcs from C) in G∗ if and only

if {u(i)
αi ,v(i)

αi } ⊆ B, for all i = 1,2, . . . ,r. Furthermore using normal breadth-first search, B
can be found in O(|N|2) time, which implies that C can be found in O(|N|2) time. This
proves the first part of the lemma.

The second part follows immediately since if there is a variant in G∗, then it must be
precisely the one containing all the arcs in C. �

file:www.cs.rhul.ac.uk/home/gutin/pppublications.html
file:www.cs.rhul.ac.uk/home/gutin/pppublications.html

78 Generalized project networks

The trivial algorithm now consists of generating all feasible r-tuples, and for each one
testing if there is a corresponding variant, using Lemma 3.1. This implies an algorithm
which is quite simple and runs in O(|N|2Πr

i=1|Ai|) time. However, in many cases, we
can do better than this. Before we describe our algorithm we need a few definitions and
lemmas.

For a network G = (N ,A) and set B, G〈B〉 denotes the subgraph of G induced
by B.

Definition 3.2. Let �α be a feasible r-tuple and G′ =G〈A∗(�α)
⋃r+1

k= j Ak〉. Define m(�α,v) for

all vertices v ∈N , as well as p(�α) and q(�α) in the following manner:

m
(
�α,v
)=max

{
j ≤ r + 1 : ∃ a path from s to v in G′

}
, (3.2)

p
(
�α
)=min

{
max

{
m
(
�α,u(i)

k

)
: 1≤ k ≤ ∣∣Ai

∣∣} : 1≤ i≤ r
}

, (3.3)

q
(
�α
)=min

{
max

{
m
(
�α,u(i)

αi

)
, i
}

: 1≤ i≤ r
}
. (3.4)

Observe from Definition 3.2 that a variant including the arcs {a(1)
α1 ,a(2)

α2 , . . . ,a(l)
αl } (0 ≤

l ≤ r) cannot include any vertex v, with m(�α,v) ≤ l. The definition of p(�α) implies that

p(�α) is the largest value, such that for every alternating set, Ai, there is an arc u(i)
k v(i)

k ∈Ai

with m(�α,u(i)
k) ≥ p(�α). Similarly, q(�α) is the smallest number, such that there is an i ∈

{1,2, . . . ,r} with m(�α,a(i)
αi)≤ q(�α) and i≤ q(�α). The meaning of m(�α,v), p(�α), and q(�α),

should hopefully become clear after Lemma 3.3.

Lemma 3.3. Let �α and �β be feasible r-tuples, with ω(�α,�β) = l. Then the following hold.

(i) Any variant including the arcs A∗(�β) cannot include any vertex v, with m(�α,v) < l.

(ii) If l > p(�α), then there is no variant including the arcs A∗(�β).

(iii) If l > q(�α), then there is no variant including the arcs A∗(�β).
(iv) Given �α we can compute m(�α,v) for all v ∈N , p(�α) and q(�α) in O(|N|2) time.

Proof. (i) Any variant including the arcs A∗(�β) also includes the arcs {a(1)
α1 ,a(2)

α2 , . . . ,

a(l−1)
αl−1 }. By the remarks after Definition 3.2, there is no path from s to v, in G〈A∗(�β)∪
Ar+1〉, for any vertex v with m(�α,v)≤ l− 1 < l.

(ii) If l > p(�α), then there exists an alternating set Ai, with max{m(�α,u(i)
k) : k = 1,2, . . . ,

|Ai|} = p(�α) < l. Therefore m(�α,u(i)
k) < l, for all arcs u(i)

k v(i)
k ∈ Ai. By (i), no arc in Ai lies

in any variant including A∗(�β), so there is no variant including A∗(�β).

(iii) If l > q(�α), then there is an i∈ {1,2, . . . ,r}, such that max{m(�α,u(i)
αi), i} = q(�α) < l.

This implies that m(�α,u(i)
αi) < l and i < l. It follows that a(i)

αi does not lie in any variant

including A∗(�β), so there is no such variant.
(iv) Let Gr = G〈A∗(�α)∪Ar+1〉. Using breadth-first search on Gr , we find all the ver-

tices Vr which can be reached from s in Gr . We then contract all the vertices in Vr (note
s∈Vr) into the vertex s. Then we add all the arcs from Ar to obtain the graph Gr−1. Using

David Blokh et al. 79

breadth-first search on Gr−1, we find all the vertices Vr−1 which can be reached from s in
Gr−1. Continuing this process, we obtain the sets Vr ,Vr−1,Vr−2, . . . ,V1. Clearly if a vertex
v is not in Vr ∪Vr−1 ∪ ···∪Vk+1, but v ∈ Vk, then m(�α,v) = k. Furthermore, the time
used in total is O(

∑r
k=1 |Vi|2)=O(|N|2).

To compute p(�α), we first compute temp(i) =max{m(�α,u(i)
k) : k = 1,2, . . . ,|Ai|}, for

each i = 1,2, . . . ,r, in O(
∑r

i=1 |Ai|) time. Then we can compute p(�α) in O(r) time using
the values temp(i), which implies that p(�α) can be computed in O(|N|2) time.

We can compute q(�α) in O(|N|2) time as we can get max{m(�α,u(i)
k), i} in constant

time for each i= 1,2, . . . ,r. This completes the proof of the lemma. �

We now present our algorithm.

Step 1. Let �α1 = (1,1, . . . ,1) be a feasible r-tuple (it has r ones). Let c = 1.

Step 2. Use Lemma 3.1 to decide whether there is a variant including the arcs A∗(�αc). If
there is a variant, then print it.

Step 3. Compute m(�αc,v) for all v ∈N , and compute p(�αc) and q(�αc) (see Definition 3.2

and Lemma 3.3). Let �β = �αc and k =min(p(�αc),q(�αc),r).

Step 4. Set βk = βk + 1. While m(�αc,u(k)
βk

) < k and βk ≤ |Ak| increase the value of βk by
one. Afterwards if βk > |Ak|, then decrease the value of k by one and stop if k = 0, or
return to the start of Step 4 otherwise.

Step 5. For j = k+ 1,k+ 2, . . . ,r, let βj be the smallest value such that m(�αc,u
(j)
βj

)≥ k.

Step 6. Let c = c+ 1, �αc = �β and return to Step 2.

Theorem 3.4. The above algorithm finds all possible variants in O(C|N|2) time, where C
is the value of c when the algorithm terminates.

Proof. We first show that, in Step 5, there is always a value βj , such that m(�αc,u
(j)
βj

)≥ k, for

all j=k+1,k+2, . . . ,r. Assume that this is false, then max{m(�αc,u
(j)
βj

) : βj=1,2, . . . ,|Aj|}
< k, which implies that k > p(�αc). This is however a contradiction against the definition
of k, and the fact that the value of k never increases in Step 4. As �α1 ≺ �α2 ≺ ··· ≺ �αC, this
implies that the algorithm terminates.

We will show that if there is a feasible r-tuple �γ = (γ1,γ2, . . . ,γr), and an integer c,
such that �αc ≺�γ ≺ �αc+1, then there is no variant including the arcs A∗(�γ). The case when
�αC ≺�γ (C is the maximum value of c) will then be analogous. This will imply the theorem
since we have used Lemma 3.1 to check if there is a variant including a feasible r-tuple,
for all feasible r-tuples which may be included in a variant.

Let x = ω(�αc,�γ), z = ω(�αc+1,�γ). Consider two cases.
Case 1. x > min(p(�αc),q(�αc),r).

We have either x > p(�αc) or x > q(�αc), which by Lemma 3.3 implies that there is no
variant including the arcs A∗(�γ).
Case 2. x ≤min(p(�αc),q(�αc),r).

80 Generalized project networks

Note that every new r-tuple �αc+1 equals current �β in Step 6 . Note that by Step 4 per-
formed last time before Step 6 , k = ω(�αc,�αc+1). We have z > k as �αc <�γ < �αc+1.

We now prove that m(�αc,u(z)
γz) < k. Then, by Lemma 3.3, there is no variant including

the arcs of A∗(�γ). Assume that m(�αc,u(z)
γz)≥ k and consider the following three subcases.

Subcase 2.1 (x > z). By the assumption of Case 2, x ≤min(p(�αc),q(�αc),r). Clearly, γx >
(�αc)x. Therefore, in Step 4, the algorithm would have chosen k ≥ x. Thus, k ≥ x > z which
implies k > z. However, (�αc+1)z > γz = (�αc)z (as x > z), which means that z ≥ k; a contra-
diction.
Subcase 2.2 (x = z). Hence, (�αc)z < γz < (�αc+1)z. Thus, Step 4 would have terminated with
βz = γz rather than (�αc+1)z; a contradiction.
Subcase 2.3 (x < z). We have (�αc)x < γx = (�αc+1)x (as x < z). It follows that k ≤ x < z.
Thus, in Step 5, βz would have been smaller than or equal to γz rather than (�αc+1)z; a
contradiction.

We have now shown that if there is a variant in G, then our algorithm must find it. It is
easy to show that the complexity of our algorithm is O(C|N|2) (using Lemma 3.3). �

We note that C denotes a number of distinct feasible r-tuples, which implies that C ≤
Πr

i=1|Ai|. Therefore our algorithm will never take more time asymptotically, than the
trivial algorithm. In some cases our algorithm will however be considerably faster than
the trivial algorithm. The speed of our algorithm also depends on the ordering of the
alternating sets A1,A2, . . . ,Ar . We will not use great length to describe an optimal ordering
of the alternating sets, however it is always a good idea to let the alternating sets which
can reach many other alternating edges have small indices.

Using the proof of Theorem 2.2, we can transform every instance of the 3-SAT prob-
lem into a network. We call the networks obtained in this way 3-SAT networks. We will
now see how much time we may need to find a variant in a 3-SAT network. Let V denote
the number of variables in an instance of the 3-SAT problem and let C be the number
of clauses. Let N = V +C. Clearly the trivial algorithm takes O(N22V3C) time. For com-
parison we prove the following theorem, which shows that our algorithm is considerably
faster than the trivial algorithm in some cases.

Theorem 3.5. Let G be a 3-SAT network. If we order the alternating sets, such that the sets
corresponding to variables have smallest indices, then our algorithm takes O(N22V) time to
find a variant in G.

Proof. Let the alternating sets A1,A2, . . . ,AV correspond to variables and the alternating
sets AV+1,AV+2, . . . ,AV+C correspond to clauses. Let r =V +C and let �αc = (α1,α2, . . . ,αr)
be a feasible r-tuple at the cth iteration of our algorithm. Let the ith variable be true if and
only if αi = 1. If some clause is false, then we note that all arcs uv in the corresponding
alternating set have m(�αc,u) ≤ V . Therefore our algorithm will have p(�αc) ≤ V , which
implies that no two tuples in {�α1,�α2, . . . ,�αC} can have the same values in the first V places.
Therefore C ≤ 2V , which implies the theorem. �

It can be shown that the value of q in our algorithm does not speed up the algorithm,
except possibly in the first iteration. After the first iteration we will always have q(�αc) ≥
min(p(�αc),r).

David Blokh et al. 81

References

[1] H. M. Ahuja, Construction Performance Control by Networks, John Wiley & Sons, New York,
1976.

[2] L. G. Chalmet, R. L. Francis, and P. B. Saunders, Network models for building evacuation, Man-
agement Sci. 28 (1982), no. 1, 86–105.

[3] E. A. Dinic, The fastest algorithm for the PERT problem with AND-and OR-nodes, Proc. Integer
Prog. and Combinatorial Opt. Conference, University of Waterloo Press, Waterloo, 1990,
pp. 185–187.

[4] H. Eisner, A generalized network approach to the planning and scheduling of a research project,
Oper. Res. 10 (1962), no. 1, 115–125.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company, California, 1979.

[6] N. A. J. Hastings and J. M. C. Mello, Decision Networks, John Wiley & Sons, Chichester, 1978.
[7] V. K. Ivanov, A. I. Gorsky, A. F. Tsyb, M. A. Maksyutov, and E. M. Rastopchin, Dynamics of

thyroid cancer incidence in Russia following the Chernobyl accident, J. Radiol. Prot. 15 (1990),
305–318.

[8] E. Minieka, Optimization Algorithms for Networks and Graphs, Industrial Engineering, vol. 1,
Marcel Dekker, New York, 1978.

[9] K. B. Moysich, R. J. Menezes, and A. M. Michalek, Chernobyl-related ionising radiation exposure
and cancer risk: an epidemiological review, Lancet Oncol. 3 (2002), no. 5, 269–279.

[10] Z. Sinuany-Stern and E. Stern, Simulating the evacuation a small city: the effects of traffic factors,
Socio-Econ. Plann. Sci. 27 (1993), no. 2, 99–108.

David Blokh: Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel
E-mail address: davidb@bgumail.bgu.ac.il

Gregory Gutin: Department of Computer Science, Royal Holloway University of London,
Egham, Surrey TW20 0EX, UK

E-mail address: gutin@cs.rhul.ac.uk

Anders Yeo: Department of Computer Science, Royal Holloway University of London, Egham,
Surrey TW20 0EX, UK

E-mail address: anders@cs.rhul.ac.uk

mailto:davidb@bgumail.bgu.ac.il
mailto:gutin@cs.rhul.ac.uk
mailto:anders@cs.rhul.ac.uk

