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Timber production in New Zealand was privatized in 1987. We examine the effects of
this change on the level of New Zealand sawn timber production, and changes in the
seasonal pattern, using a state-space model with intervention variables. We describe the
formulation and estimation of the state-space model, and show how it can be used to
examine both the structural changes around the time of privatization and the gradually
evolving seasonal pattern in production. We also show how the model can be used to
forecast future production.

Copyright © 2006 Dongwen Luo et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The Statistics Section of the Ministry of Agriculture and Forestry, New Zealand, collects
statistics on sawn timber production both annually (effectively a census) and quarterly
(a sample survey). Quarterly data is published provisionally, and final figures are given
when the annual survey has been completed. Figure 1.1 shows the quarterly figures for
the period from March 1973 to June 2002 (118 values). The series shows a strong sea-
sonal pattern with wave crest at quarter 3 (September) and trough at quarter 1 (March).
The amplitude of the seasonal variation does not seem to increase as the level of the series
increases, which suggests additive rather than multiplicative seasonality. The apparent
dip in the series in the late 1980s coincides with the disestablishment of the New Zealand
Forest Service and the sale or corporatisation of state forest assets (Brown and Valentine
[2]; Clarke [4]; Rhodes and Novis [17]). Thereafter there appears to be a dramatic in-
crease in trend. In addition, it is thought that the seasonal pattern has changed over time,
although this is not thought to be related to privatization. There are several factors affect-
ing the seasonality: weather, which reduces logging operations in a wet season; regular
holidays; and annual maintenance of sawmilling operations. Change in the seasonal pat-
tern is expected because of technological improvements, in particular the extended use of
kiln drying to allow for an increase in production through the autumn and winter.
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Figure 1.1. Total NZ sawn timber production, quarterly from March 1973 to June 2002. Privatization
occurred at the end of 1986 (time period 57).

The aims of our analysis are to investigate the effects of privatization and to examine
this changing seasonality. This requires an appropriate decomposition of the observed se-
ries into trend, seasonal, and other components, allowing for the structural change during
the privatization episode. Our approach is to use the framework of the basic structural
model, a form of state-space model, with intervention variables to account for the sudden
dip in the level of the series and the simultaneous increase in trend.

We first give a brief review of the basic structural model in Section 2, then demonstrate
in Section 3 the use of interventions in the basic structural model to incorporate the effect
of privatization. Section 4 considers alternatives to estimation of the variance parameters.
We investigate in Section 5 the ability of the model to forecast future values by comparing
the forecasts for the next two years with the available data and with the forecasts from an
ARIMA model. Section 6 summarizes and discusses our findings.

2. Basic structural model

The basic structural model (Harvey [8]) decomposes an observed time series Yt into
trend, seasonal, and random components as follows:

Yt = μt + St + et, (2.1)

where μt represents the underlying level of the series, St the seasonal factor, and et a ran-
dom error term. The level μt is modelled as a “random walk with drift”:

μt = μt−1 +βt−1 +u1t, (2.2)
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where the slope β is allowed to evolve over time according to a random walk:

βt = βt−1 +u2t . (2.3)

The seasonal factors can also evolve over time by means of a “seasonal random walk”:

St =−St−1− St−2− St−3 +u3t . (2.4)

The four error series et, u1t, u2t, u3t represent random shocks to the series, and are as-
sumed here to be independent and normally distributed with variances σ2

e , σ2
u1, σ2

u2, σ2
u3,

respectively. The variances determine the smoothness of each component: if a variance is
small, then that component changes slowly over time. For example, if σ2

u2 is close to zero,
then the local slope βt will be almost constant over time, implying a more or less fixed
trend in timber production; a larger value for this variance would give more flexibility
and allow the slope to vary, so that future forecasts would be based more on the recent
trend in production. Values for these variance parameters can be estimated from the data
using the method of maximum likelihood, or chosen to give appropriately smooth com-
ponents.

The model described above can be written in matrix form as a “state-space model,” in
which the “observation equation”

Yt = Axt + et (2.5)

tells us how the observed series is related to the underlying state of the system, and the
“state equation”

xt =Φxt−1 + ut (2.6)

shows how the state evolves over time. The state here represents the level μ, slope β, and
seasonal components S. In the basic structural model as given above, the state vector
would be xt = (μt, βt, St, St−1, St−2)T , the observation matrix A= (1, 0, 1, 0, 0), the state
innovation ut = (u1t, u2t, u3t, 0, 0)T , and the state transition matrix

Φ=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
. (2.7)

The likelihood of the hyperparameters σ2
e , σ2

u1, σ2
u2, σ2

u3 can be constructed by running the
Kalman filter (Kalman [13] Schweppe [18]). Maximum likelihood estimates can then be
obtained by using a quasi-Newton optimizer, or alternatively the EM method of Shumway
and Stoffer [20]. The components of the state vector xt are then estimated by running
the Kalman smoother (de Jong [5]). This overall procedure can be regarded as a model-
based alternative to more pragmatic methods, such as X-11 (Shiskin et al. [19]) and the
HP filter (Hodrick and Prescott [12]) for decomposing an observed series into trend and
other components.
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Structural models with a cyclical component have been considered by Watson [22]
and Harvey and Jaeger [11]. A stochastic cyclical component Ct, with a variable period,
can be modelled using the Box-Jenkins AR(2) model

Ct = φ1Ct−1 +φ2Ct−2 +u4t, (2.8)

so we expand the state vector to xt = (μt, βt, Ct, Ct−1, St, St−1, St−2)T and the observation
matrix to A= (1, 0, 1, 0, 1, 0, 0). The state equation is now

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μt

βt

Ct

Ct−1

St

St−1

St−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0

0 1 0 0 0 0 0

0 0 φ1 φ2 0 0 0

0 0 0 1 0 0 0

0 0 0 0 −1 −1 −1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μt−1

βt−1

Ct−1

Ct−2

St−1

St−2

St−3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1t

u2t

u3t

0

u4t

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.9)

In our analysis of NZ timber production, we begin with the basic structural model with-
out a cyclic component, and later extend our analysis to investigate the possible presence
of cycles.

3. Intervention analysis

Intervention analysis in time series refers to the modelling of a sudden change in the
nature of the series, and can be of two forms. In the first, a known event at a particular
point in time is investigated for its effect, if any, on the series. For example, Harvey and
Durbin [10] examined the effect of seat belt legislation on deaths by car accident in the
UK. In the second form, the existence and location of possible shocks is not known in
advance, and the problem is akin to outlier detection (de Jong and Penzer [6]). In practice
we may require something between these two extremes. For the NZ timber data we know
the date of privatization (Q1-1987, or t = 57), but structural changes may be expected to
occur either just before or just after this date.

Interventions can be introduced into the basic structural model via the observation
equation (2.5), the state equation (2.6), or both. In our case, inspection of the raw series
suggests a drop in the level (μ) component and an increase in the slope (β) component,
so we replace (2.6) with

xt =Φxt−1 + λ⊗ It + ut, (3.1)

where “⊗” denotes componentwise product, λ= (λμ, λβ, 0, 0, 0)T , and It is a 5× 1 vector
of zeros except at the intervention time(s), when either the first or second component,
or both, is one. It here represents the pattern of the interventions (when they occur) and
λ the sizes of the shocks introduced to the system. Luo [14] showed how the method of
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Table 3.1. Effect of interventions on the likelihood for the basic structural model.

Interventions −2logL AIC
None 983.59 991.59

Level only 974.89 984.89

Slope only 979.54 989.54

Level and slope 971.40 983.40

Shumway and Stoffer [20] using the EM algorithm can be extended to simultaneously
estimate both λ and the variance parameters, given It.

To determine the form of It, that is, where to place the level and slope interventions, we
considered two complementary strategies. The method of de Jong and Penzer [6] is based
on examining the smoothed values of the state interventions E(ut | Y1, . . . ,Yn) which are
obtained from the Kalman smoother fitted to a null model without interventions. Here
we find an unusually large negative value for u1t (level component) at t = 55, two quar-
ters before the nominal date of privatization, and a number of large positive values for
u2t (slope component) beginning at t = 59. An alternative strategy is to fit the full model
including interventions, estimating all parameters including the locations of the inter-
ventions. This can be very computationally intensive, but can be achieved using Markov
chain Monte Carlo methods (Carter and Kohn [3]). Our approach here is to search a grid
of values in the neighbourhood of t = 57 and compare the values of the log-likelihood,
maximized over the variance parameters. This confirms the best placing of the interven-
tions as t = 55 for the level and t = 59 for the slope.

Table 3.1 gives the value of−2log-likelihood, minimized over the variance parameters,
and the Akaike information criterion AIC (Akaike [1]), for models with and without
interventions at the above locations. Here AIC has been calculated as−2logL + 2k where k
is the number of estimated parameters. The model with both level and slope interventions
has the lowest AIC so is the preferred model.

Figure 3.1 shows selected components from the final run of the Kalman smoother with
level and slope interventions. The estimates from the full model are σ2

e = 0, σ2
u1 = 637,

σ2
u2 = 0, σ2

u3 = 58.0, λμ = −87.5, and λβ = 9.31. Because the slope error variance is zero,
the slope component is piecewise constant and so the level μ is modelled as a random
walk with drift, the drift increasing from 1.03 per quarter before privatization to 10.34 per
quarter afterwards. This corresponds to an annual average increase of about 4.1 thousand
cubic metres before, and 41.4 after, privatization. Thus the model suggests that a sudden,
and considerable, drop in production of about 87 thousand cubic metres was experienced
leading up to privatization, but that subsequently production has been increasing at a
steady rate.

Figure 3.1(b) shows the changing seasonal pattern. The seasonal difference between
Quarter 2 (June) and Quarter 3 (September) seems to have diminished, whereas Quarters
4 and 1 (December and March) have initially diverged and then reconverged. Seasonal
adjustment can be accomplished easily in the state-space framework, by subtracting the
estimated seasonal factors from the observed series. In our model the seasonally adjusted
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Figure 3.1. Fitted structural model showing raw and smoothed series (a); seasonal factors (b); level
(μ) component residuals (c); seasonal component residuals (d). The seasonal factor legend is Q1 =
square, Q2= diamond, Q3= circle, Q4= triangle.

series consists simply of the level component, which is plotted in Figure 3.1(a) along with
the actual series.

Figures 3.1(c), 3.1(d) show the estimated error series for the level and seasonal com-
ponents, and can be used for model checking. The seasonal error series suggests a few
periods of rapid change in the seasonal pattern, in 1974–1975, 1978–1979, and 1997–
1998, perhaps corresponding with technological changes. The level error series appears
to be positively autocorrelated, and inspection of the level component suggests a possi-
ble medium-term cycle, perhaps a business cycle, of about 4 to 5 years. Allowing for this
could give a smoother level component and a different partitioning of the total variance
in the series, since in the current model the cycles could be inflating the level variance.

The maximum likelihood estimates obtained from the structural model with cyclical
component are φ1 = 1.027, φ2 = −0.286, σ2

e = 22.6, σ2
u1 = 0, σ2

u2 = 434.3, σ2
u3 = 0, σ2

u4 =
73.9, λμ = −109.4, and λβ = 8.24. Figure 3.2 shows selected components from the final
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Figure 3.2. Fitted model with cyclical component showing raw and smoothed series (a); level (μ)
component (b); cycle (C) component (c); seasonal component (d). The seasonal factor legend is Q1=
square, Q2= diamond, Q3= circle, Q4= triangle.

run of the Kalman smoother. Again the slope error variance is zero, but now the error
variance of the level μ also drops to zero, so the estimated level is composed of a series of
line segments as shown in Figure 3.2(b). The cyclical component has absorbed most of
the variation, so that instead of a smooth cycle it is a rather noisy, but stationary, AR(2).
The estimated values of φ1, φ2 imply a spectrum which decreases monotonically with
increasing frequency, so that there is no dominant cycle. The minimized value of −2log-
likelihood is now 966.31, which is only a slight improvement on the previous model,
and the AIC is slightly higher at 984.31. The pattern of changing seasonality as shown
in Figure 3.2(d) is very similar to that of the previous model. Thus there seems to be
little to be gained from adding the cyclical component. The only practical consequence of
the addition would be in forecasting future values. The simpler model projects the level
forward as a straight line and adds the most recent seasonal factor to give the forecast.
The additional cyclical component, by contrast, will incorporate recent departures from
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the straight line trend via the AR(2) model. This might be considered to be appropriate
on heuristic grounds.

4. Imposing smoothness

As an alternative to maximum likelihood estimation of the hyperparameters, that is,
the variances, we now consider a more heuristic approach, namely, the choice of values
which produce what is considered to be an appropriate amount of smoothness in each
component. This is equivalent to the use of preset smoothing parameters in exponen-
tial smoothing or Holt-Winters decomposition, rather than choosing the values which
optimize some fitting criterion.

In modelling New Zealand timber production, we might decide for forecasting pur-
poses to have a smoothly changing slope, so that it is the “local slope” which is projected
forwards in the state equation (2.6). We might also choose, a priori, a smooth cyclical
component to represent “the business cycle.” We can impose the required smoothness
by setting the corresponding variances to suitably small values. An informal trial-and-
error approach, with visual inspection of the smoothness of the estimated component
series, can be used to obtain reasonable parameter values. Figure 4.1 shows the result of
fitting the model with σ2

u1 = 20, σ2
u2 = 20, σ2

u3 = 0.1. The estimates of the other param-
eters are φ1 = 1.712, φ2 = −0.862, σ2

e = 489.5, σ2
u4 = 25.4, λμ = −102.3, and λβ = 7.46.

This is in some respects a very different model, with most of the variance being incor-
porated into the observation error. The changes in the seasonality are in broad agree-
ment with the earlier models, but are now much smoother. The AR(2) model for the
cyclical component now has a dominant frequency, that is, a peak in the spectrum, at
cos−1(−φ1(1− φ2)/4φ2) = 0.391 (Harvey [9, page 181]), corresponding to a period of
16.1 quarters or about 4 years.

5. Forecasting

In forecasting future values from a state-space model, the state equation (2.6) allows us
to project the state forward in time, setting future values of ut+h equal to zero. The ob-
servation equation (2.5) then converts these into forecasts Ŷt+h. This can be done by a
simple modification of the Kalman filter, which can also produce prediction errors for
the forecasts; Harvey [8] or Shumway and Stoffer [21]. For illustration we use the model
from Section 3, that is, without a cyclical component. Since this model has a fixed trend
component, the state equation projects the level forward as a straight line with constant
slope and adds the most recent seasonal factor to give the forecast.

Figure 5.1(a) shows the forecasts from this model for the next 8 quarters, up to June
2004, and compares them with the most recent figures available from the Ministry of
Agriculture and Forestry. The actual values can be seen to be reasonably close to the
forecasts, and well within the prediction intervals, except for the first value, September
2002, for which the actual production figure is considerably higher than expected. Note
that here we are forecasting all eight future values using only the data up to June 2002.
In practice one could update future forecasts as new data become available, using the
Kalman filter.
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Figure 4.1. Fitted model with smooth cyclical component showing raw and smoothed series (a); level
(μ) component (b); cycle (C) component (c); seasonal component (d). The seasonal factor legend is
Q1= square, Q2= diamond, Q3= circle, Q4= triangle.

An ARIMA(0,1,2)× (2,1,0)4 model, selected using the AIC criterion, was estimated
as

(
1 + .45B4 + .34B8)(1−B4)(1−B)Yt =

(
1− .09B+ .15B2)et. (5.1)

The AIC for the fitted ARIMA model was 985.18, a little larger than that of the best state-
space model. The forecasts from this model are shown in Figure 5.1(b). The predictions
are more accurate in the short term but less accurate overall, with a mean absolute per-
centage error of 8.1% as compared to 5.1% for the state-space model. The prediction
intervals are noticeably wider for the ARIMA forecasts. This is to be expected, as the
innovations in the series resulting from the privatization episode will, if not modelled,
inflate the forecast error variance.
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Figure 5.1. Forecasts for September 2002 to June 2004. The heavier solid line shows the actual values.
The broken lines give the prediction intervals.

6. Discussion

We have used the framework of the basic structural model to decompose the New Zealand
timber production series, including interventions in the structural components to allow
for possible changes due to privatization. This allows us to estimate and visualize the way
the seasonal pattern changes over time. We have chosen an additive model, based on the
observation that the amplitude of seasonal variation appears to be approximately con-
stant. It could perhaps be argued, a priori, that proportional seasonal variation would be
more appropriate. If the above analyses are repeated with the log-transformed data, the
seasonal components are found to converge gradually over time. This would imply that
seasonal variability is decreasing, perhaps because of technological factors. The other im-
plication of this alternative model is that production increased at a rate of approximately
0.8% before privatization, and 6% afterwards. It is interesting to note that the forecasts
from this model are a little more accurate, but the prediction intervals considerably wider.

The inclusion of a cyclical component in the model is not really supported by the data.
The existence of business cycles and the methods used to estimate them are contentious
issues in econometrics. Quah [16] has pointed out an identifiability problem in the de-
composition of a given series into trend and cyclical components without prior assump-
tions about smoothness. In the econometrics literature there has been some controversy
over the “calibration,” as opposed to the estimation, of models (Hansen and Heckman
[7]). Calibration here is taken to mean the use of values for some parameters based on
historical reported values or on what is felt to be appropriate behaviour. If we believe in
business cycles, we can impose restrictions on certain parameter values to produce cycles
of the expected length of 4–6 years. But the apparent cycles in timber production could
otherwise be explained using a random walk model, and there is no compelling statistical
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evidence for preferring the former. The restrictions on certain parameters necessary to
detect business cycles could perhaps be incorporated formally into the analysis via the
Bayesian approach (Pole et al. [15]).

A basic ARIMA model actually performed a little better in short-range out-of-sample
forecasting. The advantage of the state-space approach is its ability to separate, model,
and describe the various components of a series.
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