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This paper finds fundamental solutions to the backward Kolmogorov equations, usually
interpretable as transition density functions for variables x that follow certain stochastic
processes of the form dx = A(x, t)dt + cxγdX and dx = A(x, t)dt +

√
α1 +α2x+α3x2dX .

This is achieved by first reducing the relevant PDEs that the density functions satisfy to
their canonical form. These stochastic processes have direct realistic applications in the
modeling of financial assets.

Copyright © 2006 Joanna Goard. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Any endeavor to calculate the theoretical price of certain financial derivative products,
such as options and bonds, begins with the establishment of a dynamic process followed
by the underlying asset. It is well known that under the assumption that an underlying
stock with price S follows the lognormal process

dS= μSdt+ σSdX , (1.1)

Black and Scholes [4] derived their celebrated partial differential equation (PDE) for the
valuation of European options. Note that in (1.1) and throughout this paper, dX denotes
an increment in a Wiener process so that dX ∼ N(0,

√
dt).

Similarly when the short-term interest rate r follows the process

dr = u(r, t)dt+w(r, t)dX , (1.2)

the price of a zero-coupon bond V(r, t) with expiry at time t = T will satisfy the PDE

∂V

∂t
+
w(r, t)2

2
∂2V

∂r2
+
(
u(r, t)− λ(r, t)w(r, t)

)∂V

∂r
− rV = 0 (1.3)

subject to V(r,T)= 1, and where λ(r, t) is the market price of risk (see, e.g., [16]).
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2 Fundamental solutions to Kolmogorov equations

In order to understand the probabilistic properties of random walks such as (1.1) and
(1.2) which we write in general as

dx = A(x, t)dt+B(x, t)dX , (1.4)

it is necessary to find transition density functions (TDFs), p(x, t; y, t′), of the underlying
process. This density function p(x, t; y, t′) is defined by

Pr
(
a < x < b at time t′ | x at time t

)=
∫ b

a
p(x, t; y, t′)dy. (1.5)

The variables x and t can be thought of as the current variables and y and t′ as the future
variables. The TDF satisfies the backward Kolmogorov equation

∂p

∂t
+

1
2
B(x, t)2 ∂

2p

∂x2
+A(x, t)

∂p

∂x
= 0 (1.6a)

involving the derivatives with respect to the current state and time, subject to

p(x, t′; y, t′)= δ(x− y). (1.6b)

Also, at each point in time for x, y ≥ 0, TDFs satisfy the condition

∫∞

0
p(x, t; y, t′)dy = 1. (1.6c)

When (1.4) describes a risk-neutral process, TDFs can be used to value financial
derivatives such as European call (and put) options, giving the holder of the options the
right to buy (sell) the asset with value x, at some future time T for a price K agreed upon
at the current time t. The price for the call option contract is then

C(x, t;K ,T)= e−r(T−t)E
(

max(x−K ,0)
)

= e−r(T−t)
∫∞

K
(y−K)p(x, t; y,T)dy,

(1.7)

where r is the risk-free interest rate. Similarly, the price for the put option contract is

P(x, t;K ,T)= e−r(T−t)E
(

max(K − x,0)
)

= e−r(T−t)
∫ K

0
(K − y)p(x, t; y,T)dy.

(1.8)

Given a fundamental solution, the solution to the Cauchy problem can be obtained
from the given initial data by convolution. In [9], Craddock and Platen find some funda-
mental solutions when B(x)=√2x and A(x)= f (x), that is, of

∂p

∂τ
= x

∂2p

∂x2
+ f (x)

∂p

∂x
, (1.9)
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where τ = t′ − t. When (1.6c) is satisfied, this corresponds to finding TDFs of the process
x, which follows

dx = f (x)dt+
√

2xdX. (1.10)

The method they employed was to perform a classical symmetry analysis of (1.9), and
then using certain symmetries found, write the corresponding form of the transformed
solutions p∗ in terms of another arbitrary solution p, that is,

p∗(x, t)= p(x, t)F(x, t;ε). (1.11)

The symmetry transformations were chosen so as to achieve an integral transform, prefer-
ably if possible, the Laplace transform of the fundamental solution. Thus, if possible, the
symmetries were chosen so that F(x,0;ε) = e−λx, where λ is some function of ε. Then
by choosing the solution p = 1 of (1.9), the fundamental solution of (1.9) is the Laplace
inverse of p̃, the new solution with initial condition e−λx, as for x, y ≥ 0,

p̃(x,τ)=
∫∞

0
e−λy p(x,τ; y, t′)dy. (1.12)

p̃ was called the characteristic solution (the Laplace transform of the fundamental solu-
tion).

Craddock and Platen found fundamental solutions of (1.9) when f satisfied the Riccati
equations

x f ′ − f +
1
2
f 2 =A1x+B1, (1.13a)

x f ′ − f +
1
2
f 2 = A1x

2 +B1x+C1, (1.13b)

x f ′ − f +
1
2
f 2 = A1x

3/2 +B1x
2 +C1x− 3

8
. (1.13c)

For functions f that satisfied (1.13a), the characteristic solution was found in general.
When f satisfied relation (1.13b), solutions were proposed that may lead to characteristic
solutions and when f satisfied (1.13c) and B1 = 0, the characteristic solution was given,
but not its corresponding Laplace inverse.

It is known (see, e.g., [15]) that an evolution equation of the type

P(x, t)ut +Q(x, t)ux +R(x, t)uxx + S(x, t)u= 0 (1.14)

with P,R �= 0, can be reduced via a suitable transformation to

vt = vxx +Z(t,x)v. (1.15)

When the PDE (1.14) admits one additional symmetry operator (namely ∂/∂t) to ∂/∂u
and ϕ(x, t)(∂/∂u), where ϕ is any solution of (1.14), then (1.14) is reducible to

vt = vxx +Z(x)v. (1.16)
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If the PDE (1.14) has at least three more symmetries in addition to u(∂/∂u) and
ϕ(x, t)(∂/∂u), where ϕ is any solution of (1.14), then (1.14) is reducible to

vt = vxx +
α

x2 v, (1.17)

where α is constant. If it has at least five other symmetries (to u(∂/∂u) and ϕ(x, t)(∂/∂u)),
then it is reducible to

vt = vxx. (1.18)

This system of classification affords a systematic approach to finding reductions. As (1.9)
in the cases where f satisfies (1.13a), (1.13b), or (1.13c) has at least three extra symme-
tries beyond p(∂/∂p) and ϕ(x,τ)(∂/∂p), where ϕ(x,τ) satisfies (1.9), (1.9) is reducible
to either (1.17) or (1.18). It is then possible to easily find the fundamental solutions in
these cases by using the fundamental solutions of (1.17) and (1.18). This also avoids the
necessity of finding suitable symmetries that lead to tractable integral transform inverses.

In [2], Albanese and Kuznetsov show that a stationary process of the form (1.4), where
A=A(x) and B = B(x), can be transformed via a suitable change of variables and change
of measure to a process that is driftless. This in fact corresponds to the reduction of (1.14)
to canonical form. They then classify driftless processes that are solvable in the sense that
the corresponding eigenfunction equation can be reduced by a change of measure and
change of variables to a hypergeometric or confluent hypergeometric equation. This then
could lead to TDFs as infinite series of hypergeometric (Gaussian or confluent) functions.

The driftless processes dx = (a + bx + cx2)dX (quadratic volatility) and dx = xγ dX
(CEV driftless) have been well researched, and in [1] Albanese et al. show that these pro-
cesses belong to the equivalence class of the family dx = (λ0 + λ1x)dt + ν0xβdX , where
β = 0,1/2. In turn, this family of processes is contained within the broader class that we
consider in this paper.

The aim of this paper is to look for solutions of (1.6a)-(1.6b) for general functions
A and when B(x, t) = cxγ (Section 3) and B(x, t) = √

α1 +α2x+α3x2 (Section 4), by first
reducing (1.6a) to its canonical form. Rather than finding solutions to (1.6a) in terms
of series of transcendental functions (such as in [2]), the focus here is on being able to
solve the Cauchy problem by a single integration. When (1.6c) is satisfied (as in all our
examples), the fundamental solutions can be viewed as the TDFs for the variable x that
follows the process (1.4). As economic conditions change with time, it is reasonable to
expect that the instantaneous expected return of a given state variable, such as stock prices
and bond yields, depends on time and price level. In fact, Fan et al. [10] and Goard and
Hansen [13], among others, have shown how models with time-dependent parameters
outperform those with a long-term reversion to a fixed mean. As such, we focus here on
time-dependent, as well as time-independent drifts A. The processes (1.4) with B(x, t)=
cxγ, 0≤ γ < 1, are referred to as “constant elasticity of variance” processes and are often
used to model stock prices. The limiting case γ = 1 corresponds to the lognormal process
(1.1) while the case γ = 1/2 corresponds to the square-root process used by Cox et al. [7],
and considered by Craddock and Platen [9]. When γ < 1, the variance of the percentage
return from the stock decreases with the stock price. From empirical studies, Beckers [3]



Joanna Goard 5

suggests that an option pricing formula based on constant elasticity of variance diffusion
could fit the market prices better than the Black-Scholes model.

In interest-rate modeling, Chan et al. [6] performed a comprehensive empirical anal-
ysis on one-factor interest-rate models of the form

dr = (α+βr)dt+ σrγ dX. (1.19)

They found that the most successful models in capturing the dynamics of the short rate
were those that allowed the volatility of interest rate changes to be highly sensitive to the
level of interest rate, in particular with γ ≥ 1. Their unconstrained estimate of γ was 1.499.

In considering a diffusion term of the form B(x, t) = √
α1 +α2x+α3x2, the three ar-

bitrary constants allow for extra flexibility for parameter estimation. It includes the dif-
fusion terms of Cox et al. [7] (α1 = α3 = 0), Ho and Lee [14] (α2 = α3 = 0), and the
lognormal process (1.1) (α1 = α2 = 0).

A summary of the results is presented in Section 5.

2. Reduction to canonical form

Equations of the form (1.6a) with B = B(x) can be reduced to the canonical form

zx2 = zx1x1 +Q
(
x1,x2

)
z (2.1)

via a transformation of the type

x1 = x1(x, t),

x2 = x2(x, t),

z =H(x, t)p

(2.2)

(see, e.g., Bluman [5]). Substituting (2.2) into (2.1), we find that the transformation

x1 =
∫

dx

B(x)
, (2.3a)

x2 = t′ − t

2
, (2.3b)

z = α(x)ek(x)t p, (2.3c)

where

α′(x)
α(x)

+ k′(x)t = A

B2
− B′

2B
, (2.3d)

reduces (1.6a) to (2.1) with

Q =−Ax +
(

2B′

B

)
A− A2

B2
−
(
B′
)2

4
+
BB′′

2
− 2k(x). (2.4)
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We look at the cases where Q corresponds to

(I)
k1

x2
1

+ k2, (2.5a)

(II)
k1

x2
1

+ k2x
2
1 + k3, (2.5b)

(III) k1x
2
1 + k2x1 + k3, (2.5c)

where k1, k2, and k3 are constants, as in cases (I) and (II), (1.6a) could be further reduced
to the form in (1.17) and in case (III), (1.6a) could be reduced further to a constant-
coefficient PDE.

3. B(x)= cxγ

In this section, γ is assumed to be in the interval 0≤ γ < 1 (i.e., the constant elasticity of
variance case). However similar calculations apply for γ > 1 and any variations in the so-
lutions are noted. When γ = 1, then the change of variable for x in (3.1a) is x1 = (1/c) lnx.
As this substitution for x will not provide many useful tractable solutions for A other than
A= μx, for which the TDF is already known, we disregard this case.

When B(x)= cxγ, from (2.3a) and (2.3b),

x1 = 1
c(1− γ)

x1−γ, (3.1a)

x2 = t′ − t

2
, (3.1b)

and z is as given from (2.3c) and (2.3d).
We consider separately the cases where A= A(x) and A=A(x, t).

3.1. A=A(x). In this case, we can let k(x)= 0 in (2.3d) so that from (2.3c) and (2.3d),

z = x−γ/2e1/c2
∫

(A(x)/x2γ)dx p, (3.1c)

and from (2.4),

Q =−A′ +
2γ
x
A− 1

c2x2γ A
2 +

c2γ2

4
x2γ−2− c2γ

2
x2γ−2. (3.2)

We now consider separately the cases where Q reduces to the forms (2.5a)–(2.5c).

3.1.1. Q = (k1/x
2
1) + k2. For the case corresponding to (2.5a), we require that A satisfy

A′ − 2γ
x
A+

1
c2x2γ A

2 =mx2γ−2 +n, (3.3a)
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where

m=−k1c
2(1− γ)2 +

c2γ2

4
− c2γ

2
, (3.3b)

n=−k2. (3.3c)

Then (1.6a) reduces to

zx2 = zx1x1 +
(
k1

x2
1

+ k2

)
z, (3.4a)

which needs to be solved subject to

z
(
x1,0

)=G
(
x1
)
δ
(
qx

1/(1−γ)
1 − y

)
, (3.4b)

where

G
(
x1
)= [

c(1− γ)x1
]−γ/2(1−γ)

exp

[
1
c2

∫ qx
1/(1−γ)
1 A(x)

x2γ dx

]

,

q = (
c(1− γ)

)1/(1−γ)
.

(3.4c)

The solution to (3.4a)-(3.4b) for −3/4≤ k1 ≤ 1/4 that satisfies z = 0 at x1 = 0 is

z
(
x1,x2

)= ek2x2

2x2

∫∞

0

√
x1

√
ξe−((x2

1+ξ2)/4x2)Iν

(
ξx1

2x2

)
G(ξ)δ

(
qξ1/(1−γ)− y

)
dξ, (3.5)

where ν2 = 1/4− k1 so that

z
(
x1,x2

)=
√
x1

2x2
ek2x2

y1/2−2γ

c3/2(1− γ)1/2
exp

{

−
(
c2(1− γ)2x2

1 + y2−2γ

4c2(1− γ)2x2

)}

× Iν

(
y1−γx1

2c(1− γ)x2

)
exp

(
1
c2

∫ y A(x)
x2γ dx

)
.

(3.6)

Note that when k1 = 0, we can write

z
(
x1,x2

)= y−3γ/2ek2x2

2c
√
πx2

exp

(−(x1c(1− γ)− y1−γ)2

4x2c2(1− γ)2

)

exp
(

1
c2

∫ y A(x)
x2γ dx

)
. (3.7)

Then from (3.1a)–(3.1c),

p(x, t; y, t′)= xγ/2 exp
[−1
c2

∫
A(x)
x2γ dx

]
z
(

1
c(1− γ)

x1−γ,
t′ − t

2

)
. (3.8)

In general for γ ≥ 0, γ �= 1, we can write

p(x, t; y, t′)= x1/2y1/2−2γ

c2|1− γ|(t′ − t
) exp

{
k2

2

(
t′ − t

)
}

exp
{
−

(
x2−2γ + y2−2γ

)

c2(1− γ)2
(
t′ − t

)
}

× Iν

(
y1−γx1−γ

c2(1− γ)2(t′ − t)

)
exp

{
1
c2

∫ y A(x)
x2γ dx− 1

c2

∫ x A(x)
x2γ dx

}
.

(3.9)
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Example 3.1. With n= 0, a solution to (3.3) is

A= x(2γ−1)

[
ck

2

(
Dxk/c− 1
Dxk/c + 1

)
+
c2

2

]

, (3.10)

where m and D are arbitrary and k =√4m+ c2 �= 0.

The corresponding stochastic process (1.4) for x is given by

dx = cx2γ−1
[
k

2

(
Dxk/c− 1
1 +Dxk/c

)
+
c

2

]
dt+ cxγdX , (3.11)

with the associated TDF when D = 0 given by

p(x, t; y, t′)= xk/2c y1−2γ−k/2c

c2|1− γ|(t′ − t)
exp

{
−
(

x2−2γ + y2−2γ

2c2(1− γ)2(t′ − t)

)}
Iν

(
y1−γx1−γ

c2(t′ − t)(1− γ)2

)
,

(3.12)

where ν2 = 1/4− k1 and k1 = (c2γ2− 2c2γ− 4m)/(4c2(1− γ)2).
Note that if k =√4m+ c2 = 0 so that m=−c2/4, then

A= x2γ−1

2

[
2c2

ln(x) +D1
+ c2

]
, (3.13)

where D1 is arbitrary. In this case, the stochastic process (1.4) for x is

dx = c2x2γ−1
[

1
ln(x) +D1

+
1
2

]
dt+ cxγdX , (3.14)

and the associated TDF for x is

p(x, t; y, t′)= y1−2γ

(
ln(y) +D1

)

(
ln(x) +D1

)
1

c2|1− γ|(t′ − t)

× exp
{
−
(

x2−2γ + y2−2γ

2c2(1− γ)2(t′ − t)

)}
I0

(
y1−γx1−γ

c2(1− γ)2(t′ − t)

)
.

(3.15)

This is plotted in Figure 3.1 with c = 0.1, D1 = 5, x = 10, t = 0 for various γ and t′.

3.1.2. Q = k1/x
2
1 + k2x

2
1 + k3. For the case corresponding to (2.5b), we require that A sat-

isfy

A′ − 2γ
x
A+

1
c2x2γ A

2 = αx2γ−2 +βx2−2γ + ε, (3.16a)

where

α=−k1c
2(1− γ)2 +

c2γ2

4
− c2γ

2
, (3.16b)

β = −k2

c2(1− γ)2
, (3.16c)

ε =−k3. (3.16d)
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(a)
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t� = 0.5
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(b)

Figure 3.1. TDFs for the variable x that follows dx = 0.01x2γ−1[1/(5 + lnx) + 1/2]dt + 0.1xγdX with
x = 10, t = 0 and (a) γ = 2/3,1/3,1/4 at time t′ = 1; (b) γ = 2/3 at times t′ = 0.1,0.5,1.

Then (3.1a)–(3.1c) reduce (1.6a) to

zx2 = zx1x1 +

(
k1

x2
1

+ k2x
2
1 + k3

)

z. (3.17)

Equation (3.17) can be further reduced to

uy2 = uy1 y1 +
k1

y2
1
u (3.18)

via a substitution that depends on whether k2 < 0 or k2 > 0. We summarize the results
here for the solutions of (1.6a)-(1.6b) and write them in such a way that shows the trans-
formations that were necessary.

Case 1 (k2 < 0). Letting k20 =−k2, then the solution to (1.6a)-(1.6b) is

p(x, t; y, t′)= xγ/2 exp
(−1
c2

∫
A(x)
x2γ dx

)
z
(

1
c(1− γ)

x1−γ,
t′ − t

2

)
, (3.19)
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where

z
(
x1,x2

)= exp

{√
k20

2
x2

1 +
(√

k20 + k3

)
x2

}

u
(
x1e

2
√

k20x2 ,
1

4
√
k20

(
exp

(
4
√
k20x2

)
− 1

))
,

u
(
y1, y2

)=
√
y1

2y2c3/2(1− γ)1/2
y1/2−2γ exp

(
−
(
y2

1c
2(1− γ)2 + y2−2γ

4c2(1− γ)2y2

))
Iν

(
y1−γ y1

2y2c(1− γ)

)

× exp
(

1
c2

∫ y A(x)
x2γ dx

)
exp

(

−
√
k20

2
y2−2γ

c2(1− γ)2

)

,

(3.20)

where ν2 = 1/4− k1.

Case 2 (k2 > 0). For k2 > 0, the solution to (1.6a)-(1.6b) is

p(x, t; y, t′)= xγ/2 exp
(−1
c2

∫
A(x)
x2γ dx

)
z
(

1
c(1− γ)

x1−γ,
t′ − t

2

)
, (3.21)

where

z
(
x1,x2

)= 1
√∣
∣cos

(
2
√
k2x2

)∣∣
exp

[√
k2

2
x2

1 tan
(

2
√
k2x2

)
+ k3x2

]

×u

(
x1

cos
(
2
√
k2x2

) ,
1

2
√
k2

tan
(

2
√
k2x2

)
)

,

u
(
y1, y2

)= y1/2−2γ

c3/2(1− γ)1/2

√
y1

2y2
exp

{
−
(
y12c2(1− γ)2 + y2−2γ

4c2(1− γ)2y2

)}
Iν

(
y1−γ y1

2y2c(1− γ)

)

× exp
(

1
c2

∫ y A(x)
x2γ dx

)
,

(3.22)

where ν2 = 1/4− k1.

Note that in general for γ ≥ 0, γ �= 1, that in the expanded expressions for p from (3.19)
and (3.21), the coefficient 1/(1− γ) should be replaced by 1/|1− γ|.
Example 3.2. With γ = 3/2 so that B = cx3/2, α= ε = 0, a solution to (3.16a)–(3.16d) is

A= c2x2
[

1 +
√
a

x

C1 sin(
√
a/x) +C2 cos(

√
a/x)

C1 cos(
√
a/x)−C2 sin(

√
a/x)

]
, (3.23)

where a=−β/c2 and β, C1, and C2 are arbitrary constants.
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In this case, β < 0 and so k2 =−βc2(1− γ)2 > 0 and k3 = 0, k1 =−3/4, a=−β/c2.
Hence we find the fundamental solution

p(x, t; y, t′)=
√
−β

c
√
x y3/2

(
C1 cos(

√
a/y)−C2 sin(

√
a/y)

)

(
C1 cos(

√
a/x)−C2 sin(

√
a/x)

)

× exp

{√−β
c

[
y sin2 (√k2(t′ − t)

)− y− xcos2
(√

k2(t′ − t)
)

xy cos
(√

k2(t′ − t)
)

sin
(√

k2(t′ − t)
)

]}

× I1

(
2
√
−β

c
√
xy sin

(√
k2(t′ − t)

)

)

× 1

sin
(√
−βc2(t′ − t)/2

) .

(3.24)

Example 3.3. We note that in the case where A(x)= μx and 0≤ γ < 1, the density function
has previously been found by Feller [11, 12] and this then has been used to find option
prices via risk-neutral valuation as described in the introduction (see Cox and Ross [8]).

The same result can be found here with

α= 0, β = μ2

c2
, ε = μ(1− 2γ) (3.25)

in (3.16a) so that from (3.16b)–(3.16d),

k1 = γ(γ− 2)
4(1− γ)2

,

k2 =−(1− γ)2μ2 < 0,

k3 =−μ(1− 2γ).

(3.26)

From (3.19)-(3.20), we get

p(x, t; y, t′)= 2μ
c2

x1/2y1/2−2γe(μ/2)(t′−t)
(
e2(1−γ)μ(t′−t)− 1

) exp

{ −μ
c2(1− γ)

(
x2−2γe2(1−γ)μ(t′−t) + y2−2γ

e2(1−γ)μ(t′−t)− 1

)}

× I1/2(1−γ)

{
2y1−γμx1−γe(1−γ)μ(t′−t)

c2(1− γ)
[
e2(1−γ)μ(t′−t)− 1

]
}

,

(3.27)

which agrees with the result in [8].

3.1.3. Q = k1x
2
1 + k2x+ k3. For the case corresponding to (2.5c), we require that A satisfy

A′ − 2γ
x
A+

1
c2x2γ A

2 = αx2−2γ +βx1−γ + ε+mx2γ−2, (3.28a)
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where

α= −k1

c2(1− γ)2
,

β = −k2

c(1− γ)
,

ε =−k3,

m= c2γ2

4
− c2γ

2
.

(3.28b)

Then (3.1a)–(3.1c) reduce (1.6a) to

zx2 = zx1x1 +
(
k1x

2
1 + k2x1 + k3

)
z. (3.29)

Equation (3.29) is always reducible to the form

wy2 =wy1 y1 + kw, (3.30)

where k is some constant. However, the transformation necessary to get this reduction
depends on the coefficient k1. We consider the different cases and summarize the results
below.

Case 1 (k1 = 0). In this case, k = k3 in (3.30) and the solution to (1.6a)-(1.6b) is

p(x, t; y, t′)= xγ/2 exp
(−1
c2

∫
A(x)
x2γ dx

)
z
(

1
c(1− γ)

x1−γ,
t′ − t

2

)
, (3.31)

where

z
(
x1,x2

)= exp
(
k2x1x2 +

k2
2x

3
2

3

)
w
(
x1 + k2x

2
2,x2

)
,

w
(
y1, y2

)= y−(3/2)γ

2c√πy2
exp

(
1
c2

∫ y A(x)
x2γ dx

)
exp

{−(y1c(1− γ)− y1−γ)2

4y2c2(1− γ)2
+ k3y2

}
.

(3.32)

Case 2 (k1 < 0). We let k1 =−λ2.
For this case, k = 0 in (3.30) and the solution to (1.6a)-(1.6b) is

p(x, t; y, t′)= xγ/2 exp
(
− 1
c2

∫
A(x)
x2γ dx

)
z
(

1
c(1− γ)

x1−γ,
t′ − t

2

)
, (3.33)
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where

z
(
x1,x2

)= exp
{
λ

2
x2

1 −
k2

2λ
x1 +

(
λ+ k3 +

k2
2

4λ2

)
x2

}

×w
(
x1e

2λx2 − k2

2λ2
e2λx2 ,

1
4λ

(
e4λx2 − 1

)
)

,

w
(
y1, y2

)= y−3γ/2

2c√πy2
exp

{

−
(
y1 + k2/2λ2− y1−γ/c(1− γ)

)2

4y2
− λ

2
y2−2γ

c2(1− γ)2
+
k2

2λ
y1−γ

c(1− γ)

}

× exp
(

1
c2

∫ y A(x)
x2γ dx

)
.

(3.34)

Case 3 (k1 > 0). We let k1 = λ2.
In this case, k =−k2

2/8λ
2 in (3.30) and the solution to (1.6a)-(1.6b) is

p(x, t; y, t′)= xγ/2 exp
(
− 1
c2

∫
A(x)
x2γ dx

)
z
(

1
c(1− γ)

x1−γ,
t′ − t

2

)
, (3.35)

where

z
(
x1,x2

)= 1
√∣
∣cos2λx2

∣
∣

exp

{
λ

2
x2

1 tan
(
2λx2

)
+
k2

2λ
x1 tan

(
2λx2

)
+
(
k3− k2

2

4λ2

)
x2

}

× exp
{

3k2
2

16λ3
tan

(
2λx2

)
}
w
((

x1 +
k2

2λ2

)
sec

(
2λx2

)
,

1
2λ

tan
(
2λx2

)
)

,

w
(
y1, y2

)= y−3γ/2

2c√πy2
exp

{−(y1− y(1−γ)/c(1− γ)− k2/2λ2
)2

4y2
− k2

2

8λ2
y2

}

×exp
(

1
c2

∫ y A(x)
x2γ dx

)
.

(3.36)

Example 3.4. A solution to (3.28) with

α= μ2

c2
, β = 0, ε = μ(1− 2γ) +

2μr
c2

, m=−r +
r2

c2
= c2γ2

4
− c2γ

2
(3.37)

is A= μx+ rx2γ−1, where

r = (2− γ)c2

2
or r = γc2

2
, (3.38)

and where μ is arbitrary.
The corresponding stochastic differential equation (1.4) for x is

dx = (
rx2γ−1 +μx

)
dt+ cxγdX , (3.39)
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Figure 3.2. TDFs for the variable x which follows (a) dx = (0.003̇x1/3 + 0.5x)dt + 0.1x2/3dX , (b) dx =
(0.006̇x5/3 + 0.5x)dt+ 0.1x4/3dX , with x = 10, t = 0 at times t′ = 0.1,0.2,0.5,1.

with r given in (3.38). The TDF for x with r = γc2/2 is

p(x, t; y, t′)= 1
cyγ
√
π

√
√
√ (1− γ)μ

exp
{

2μ(t′− t)(1−γ)
}−1

exp

{ −μ
c2(1− γ)

(
x1−γeμ(1−γ)(t′−t)−y1−γ)2

(
e2μ(t′−t)(1−γ)−1

)

}

,

(3.40)

and when r = (2− γ)c2/2, the TDF for x is

p(x, t; y, t′)= xγ−1y1−2γ

c
√
π

√
√
√ (1− γ)μ

exp
{

2μ(t′ − t)(1− γ)
}− 1

× exp

{ −μ
c2(1− γ)

(
x1−γeμ(1−γ)(t′−t)− y1−γ)2

(
e2μ(t′−t)(1−γ)− 1

)

}

exp
{−μ(1− γ)(t′ − t)

}
.

(3.41)

Sample plots of the TDF p(x, t; y, t′) are given in Figure 3.2, where c = 0.1, μ = 0.5, and
r = γc2/2 for γ = 2/3 and γ = 4/3.
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3.2. A=A(x, t). For A= A(x, t), with B = cxγ, from (2.3d),

A= c2x2γ−1
(
γ

2
+
α′(x)
α(x)

x+ k′(x)xt
)
. (3.42)

With x defined in terms of x1 as given by (3.1a), x2 = t/2 and z as given by (2.3c) and
(2.3d), (1.6a) reduces to

zx2 + zx1x1 +Q
(
x1,x2

)
z = 0, (3.43)

where

Q =− c2x2γ−1
[
γk′(x) + xk′′(x) +

2α′(x)
α(x)

xk′(x)
]
t− c2x2γ(k′(x)

)2
t2

− c2
(
x2γ−1γ

α′(x)
α(x)

+ x2γ α
′′(x)
α(x)

)
− 2k(x).

(3.44)

With (3.44), (3.43) will be reducible to a constant coefficient equation when

Q = f1(t)x2−2γ

c2(1− γ)2
+

f2(t)x1−γ

c(1− γ)
+ f3(t), (3.45)

that is, a quadratic in x1.
Comparing (3.44) and (3.45), we find that this will occur when k(x)= βx1−γ and when

k(x)= βx2−2γ, where β is constant. With k(x)= βx1−γ, admissible functions for α(x), so
that Q is a quadratic in x1, are α(x) = e(ε/(1−γ))x1−γ

and α(x) = e(ε/(2−2γ))x2−2γ
, where ε is

constant. These together with α(x)= x1−γ are also admissible functions for k(x)= βx2−2γ.
In all of these cases, (3.43) is further reducible to the classical heat equation. We now
summarize the results with the fundamental solutions of (1.6a) written in such a way
that shows the transformations that were necessary for reduction to the classical heat
equation.

3.2.1. k(x)= βx1−γ.

Case 1. α(x)= exp((ε/(1− γ))x1−γ).

This case corresponds to the stochastic differential equation

dx = c2
(
γ

2
x2γ−1 + εxγ +β(1− γ)xγt

)
dt+ cxγdX (3.46)

for x. The solution to (1.6a)-(1.6b) is

p(x, t; y, t′)= exp
{ −ε

1− γ
x1−γ −βx1−γt

}
z
(

x1−γ

c(1− γ)
,
t

2

)
, (3.47)

where

z
(
x1,x2

)= exp
{

2βc(1− γ)x1x2 + c2ε2x2 + 2c2εβ(1− γ)x2
2

}

×w
(
x1− 2βc(1− γ)x2

2,
t′

2
− x2

)
,

(3.48)
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Figure 3.3. TDFs for the variable x which follows dx = 0.01x3/4[t/4 + (3/8)x−1/4]dt + 0.1x3/4dX with
x = 10, t = 0 at times t′ = 0.1,1,5.

and where

w
(
y1, y2

)= y−γ

2c√πy2
exp

{−(y1− y1−γ/c(1− γ) + cβ(1− γ)(t′)2/2
)2

4y2

}

× exp

{
εy1−γ

c(1− γ)
− c2ε2t′

2
− c2εβ(1− γ)

(t′)2

2

}

.

(3.49)

Example 3.5. With β = 1, ε = 0, the above solution can be simplified to

p(x, t; y, t′)= y−γ

c
√
π
√

2(t′ − t)
exp

{−(− 2x1−γ − c2(1− γ)2
(
(t′)2− t2

)
+ 2y1−γ)2

8c2(1− γ)2(t′ − t)

}

.

(3.50)

This is plotted in Figure 3.3 with x = 10, γ = 3/4, c = 0.1.
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Case 2. α(x)= exp((ε/(2− 2γ))x2−2γ), ε �= 0.

This case corresponds to the stochastic differential equation

dx = c2
(
γ

2
x2γ−1 + εx+β(1− γ)xγt

)
dt+ cxγdX (3.51)

for x.
The solution to (1.6a)-(1.6b) is

p(x, t; y, t′)= exp
( −ε

2− 2γ
x2−2γ −βx1−γt

)
z
(

1
c(1− γ)

x1−γ,
t

2

)
, (3.52)

where

z
(
x1,x2

)

= exp

{
c2ε(1− γ)

2
x2

1 + 2cβ(1− γ)x1x2

}

×w
((

x1 +
2β
cε

x2 +
β

c3ε2(1−γ)

)
e−2c2ε(1−γ)x2 ,

1
4c2ε(1−γ)

(
e−4c2ε(1−γ)x2 − e−2c2ε(1−γ)t′)

)
,

w
(
y1, y2

)

= y−γ

2c√πy2
exp

(− c2ε(1− γ)t′
)

×exp

[−(y1−
{
y1−γ/c(1− γ) +βt′/cε+β/c3ε2(1− γ)

}
e−c2ε(1−γ)t′)2

4y2

]

.

(3.53)

3.2.2. k(x)= βx2−2γ, β > 0.

Case 1. α(x)= exp((ε/(1− γ))x1−γ).

The corresponding stochastic differential equation for x is

dx = c2
(
γ

2
x2γ−1 + εxγ +β(2− 2γ)xt

)
dt+ cxγdX. (3.54)

The solution to (1.6a)-(1.6b) is

p(x, t; y, t′)= exp
( −ε

1− γ
x1−γ −βx2−2γt

)
z
(

1
c(1− γ)

x1−γ,
t

2

)
, (3.55)
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where

z
(
x1,x2

)= exp
{

2rx2
1x2 + cεx1

}

×w

(

x1e
−4rx2

2 − ε
√
π

2
√
β(1− γ)2

erf
(
2
√
rx2

)
,
√
π

4
√

2r

[
erf

(√
2rt′

)− erf
(√

8rx2
)]
)

,

w
(
y1, y2

)

= y−γ

2c√πy2
exp

{− r(t′)2}

× exp

{−[y1−
(
y1−γ/c(1− γ)

)
e−r(t′)2

+ (cε
√
π/2

√
r)erf

(√
rt′
)]2

4y2

}

,

(3.56)

and where r = c2β(1− γ)2.

Example 3.6. With β = 1, ε = 0, the TDF can be simplified to

p(x, t; y, t′)= y−γ21/4

cπ3/4

√
√
√ c(γ− 1)

erf
(√

2c(γ− 1)t′
)− erf

(√
2c(γ− 1)t

)

× exp

{ √
2
(
x1−γe−c2(1−γ)2t2 − y1−γe−c2(1−γ)2(t′)2)2

(1− γ)
√
πc
[

erf
(√

2c
(
γ− 1)t′

)− erf
(√

2c(γ− 1)t
)]

}

× exp
{− (1− γ)2c2(t′)2}.

(3.57)

This TDF is plotted in Figure 3.4 with x = 10, c = 0.1, γ = 1/4.

Case 2. α(x)= exp((ε/(2− 2γ))x2−2γ).

The corresponding stochastic differential equation for x is

dx = c2
(
γ

2
x2γ−1 + εx+β(2− 2γ)xt

)
dt+ cxγdX. (3.58)

The solution to (1.6a)-(1.6b) is

p(x, t; y, t′)= exp
( −ε

2− 2γ
x2−2γ −βx2−2γt

)
z
(

1
c(1− γ)

x1−γ,
t

2

)
, (3.59)
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Figure 3.4. TDFs for the variable x which follows dx = 0.01x[(3/2)t + (1/8)x−3/2]dt + 0.1x1/4dX with
x = 10, t = 0 at times t′ = 0.1,1,5.

where

z
(
x1,x2

)= exp
{

2rx2
1x2 +

x2
1

2
εc2(1− γ)

}

×w
(

x1 exp
(
− 4r

(
x2 +n

)2)
,
√
π

4
√

2r

{

erf
(

2
√

2r
(
t′

2
+n

))
− erf

(
2
√

2r
(
x2 +n

))
})

,

w
(
y1, y2

)= y−γ

2c√πy2
exp

(
− 4r

(
t′

2
+n

)2)
exp

{−[y1− y1−γ/c(1− γ)e−4r(t′/2+n)2]2

4y2

}

,

(3.60)

and where r = βc2(1− γ)2 and n= ε/4β(1− γ).

Case 3. α(x)= x1−γ.

The corresponding stochastic differential equation for x is

dx = c2
(
x2γ−1

(
1− γ

2

)
+β(2− 2γ)xt

)
dt+ cxγdX. (3.61)

The solution to (1.6a)-(1.6b) is

p(x, t; y, t′)= xγ−1 exp
(−βx2−2γt

)
z
(

1
c(1− γ)

x1−γ,
t

2

)
, (3.62)
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where

z
(
x1,x2

)= exp
(

2rx2
1x2 + 4rx2

2

)
w
(
x1e

−4rx2
2 ,
√
π

4
√

2r

[
erf

(√
2rt′

)− erf
(

2
√

2rx2

)])
,

w
(
y1, y2

)= y1−2γ

2c√πy2
exp

(− r(t′)2)exp

{−(y1−
(
y1−γ/c(1− γ)

)
e−r(t′)2)2

4y2

}

(3.63)

with r = βc2(1− γ)2.

4. B(x)= (α1 +α2x+α3x2)1/2.

For A= A(x, t) and B(x)= (α1 +α2x+α3x2)1/2, the transformation

x1 =
∫

1
√
α1 +α2x+α3x2

dx,

x2 = t

2
,

z = α(x)ek(x)t p

(4.1)

subject to (2.3d) transforms (1.6a) to

zx2 + zx1x1 +Q
(
x1,x2

)
z = 0, (4.2)

where

Q =− (
k′(x)

)2(
α1 +α2x+α3x

2)t2

−
[(

k′′(x) + 2k′(x)
α′(x)
α(x)

)
(
α1 +α2x+α3x

2)+
k′(x)

2

(
α2 + 2α3x

)
]
t

−
[
α′′(x)
α(x)

(
α1 +α2x+α3x

2)+ 2k(x) +
α′(x)
2α(x)

(
α2 + 2α3x

)
]

(4.3)

in which we have used from (2.3d) that

A= k′(x)t
(
α1 +α2x+α3x

2)+
α′(x)
α(x)

(
α1 +α2x+α3x

2)+
1
4

(
α2 + 2α3x

)
. (4.4)

In turn, (4.2) with (4.3) is reducible to a constant coefficient equation when Q is a qua-
dratic in x1. This can be achieved when k(x) is a multiple of x1, and α(x) takes one of the
two forms as considered below. In both cases, (4.2) is further reducible to the classical
heat equation. The results are summarized below.
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Case 1. k(x)= βx1, α(x)= exp{ε ∫ (dx/(
√
α1 +α2x+α3x2))}.

The corresponding stochastic differential equation for x is

dx =
[

(βt+ ε)
√
α1 +α2x+α3x2 +

1
4

(
α2 + 2α3x

)
]
dt+

√
α1 +α2x+α3x2dX. (4.5)

The solution to (1.6a)-(1.6b) is

p(x, t; y, t′)= exp
(
− (ε+βt)

∫
1

√
α1 +α2x+α3x2

dx
)
z
(∫

1
√
α1 +α2x+α3x2

dx,
t

2

)
,

(4.6)

where

z
(
x1,x2

)= exp
(

2βx1x2 +
4
3
β(1−β)x3

2 + 2βεx2
2 + ε2x2

)
w
(
x1− 2βx2

2,
t′

2
− x2

)
,

w
(
y1, y2

)= 1

2√πy2

√
α1 +α2y +α3y2

exp
(
ε
∫

1
√
α1 +α2y +α3y2

dy
)

× exp

(−(y1−
∫ (

dy/
√
α1 +α2y +α3y2

)
+β(t′)2/2

)2

4y2

)

× exp
{
− β(1−β)

6
(t′)3 +

βε(t′)2

2
+
ε2t′

2

}
.

(4.7)

Example 4.1. For β = ε = 0, the TDF for α3 > 0 and α1/α3− (α2/2α3)2 > 0 can be simpli-
fied to

p(x, t; y, t′)= exp
{
− (

1/2α3(t′ − t)
)[

arcsinh
((
α2 + 2α3x

)
/
√

4α1α3−α2
2

)

− arcsinh
((
α2 + 2α3y

)
/
√

4α1α3−α2
2

)]2
}

× 1
√

2π(t′ − t)
√
α1 +α2y +α3y2

.

(4.8)

Case 2. k(x)= βx1, α(x)= exp{(ε/2)(
∫

(dx/
√
α1 +α2x+α3x2))2}, ε �= 0.

The corresponding stochastic differential equation for x is

dx =
{[

βt+ ε
∫

dx
√
α1 +α2x+α3x2

]√
α1 +α2x+α3x2 +

1
4

(
α2 + 2α3x

)
}
dt

+
√
α1 +α2x+α3x2dX.

(4.9)
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The solution to (1.6a)-(1.6b) is

p(x, t; y′, t′)= exp
{
− ε

2

(∫
dx

√
α1 +α2x+α3x2

)2}
exp

{
−βt

∫
dx

√
α1 +α2x+α3x2

}

× z
(∫

dx
√
α1 +α2x+α3x2

,
t

2

)
,

(4.10)

where

z
(
x1,x2

)= exp
(
ε
2
x2

1 + 2βx1x2 +
4
3
β(1−β)x3

2

)

×w
((

x1 +
2β
ε
x2 +

β

ε2

)
e−2εx2 ,

1
4ε

(
e−4εx2 − e−2εt′)

)
,

w
(
y1, y2

)= exp
(−β(1−β)

(
(t′)3/6

)− εt′)

2√πy2

√
α1 +α2y +α3y2

× exp

{

−
(
y1−

[∫ (
dy/

√
α1 +α2y +α3y2

)
+βt′/ε+β/ε2

]
e−εt′

)2

4y2

}

.

(4.11)

5. Summary of results

In this section, we summarize the results of this paper by quoting the equation numbers
for the solutions p(x, t; y, t′) to (1.6a)-(1.6b) for given functions A(x, t) and B(x, t). These
solutions can be viewed as TDFs for processes x that follow (1.4).

5.1. B(x)= cxγ, γ �= 1.

5.1.1. A=A(x). The solutions found for A=A(x) depend on the form of A′ − (2γ/x)A+
(1/c2x2γ)A2.

A′ − 2γ
x
A+

1
c2x2γ

A2 Equation number for

p(x, t; y, t′)

mx2γ−2 +n (3.9)

αx2γ−2 +βx2−2γ + ε where β > 0 (3.19)

αx2γ−2 +βx2−2γ + ε where β < 0 (3.21)

αx2−2γ +βx1−γ + ε+mx2γ−2 where α= 0 (3.31)

αx2−2γ +βx1−γ + ε+mx2γ−2 where α > 0 (3.33)

αx2−2γ +βx1−γ + ε+mx2γ−2 where α < 0 (3.35)



Joanna Goard 23

5.1.2. A=A(x, t).

A(x, t)
Equation number for

p(x, t; y, t′)

c2

(
γ

2
x2γ−1 + εxγ +β(1− γ)xγt

)
(3.47)

c2

(
γ

2
x2γ−1 + εx+β(1− γ)xγt

)
, ε �= 0 (3.52)

c2

(
γ

2
x2γ−1 + εxγ +β(2− 2γ)xt

)
, β > 0 (3.55)

c2

(
γ

2
x2γ−1 + εx+β(2− 2γ)xt

)
, β > 0 (3.59)

c2

(
x2γ−1

(
1− γ

2

)
+β(2− 2γ)xt

)
, β > 0 (3.62)

5.2. B(x)= √
α1 +α2x+α3x2.

A(x, t)
Equation number for
p(x, t; y, t′)

(βt+ ε)
√
α1 +α2x+α3x2 +

1
4

(
α2 + 2α3x

)
(4.6)

(
βt+ ε

∫
dx

√
α1 +α2x+α3x2

)√
α1 +α2x+α3x2

(4.10)

+
1
4

(
α2 + 2α3x

)
, ε �= 0

6. Concluding remarks

In this paper we have demonstrated how it is possible to find fundamental solutions to the
backward Kolmogorov equations by reducing the equations to their canonical form. In
all our examples,(1.6c) is satisfied and so these fundamental solutions are interpretable as
transition density functions (TDFs) for variables following certain stochastic processes.

In this way, we were able to extend the list of fundamental solutions and TDFs for the
processes (1.4) considered by Craddock and Platen, that is, B = cx1/2, and where A= f (x)
satisfies (1.13a)–(1.13c), and also find fundamental solutions and TDFs for the more
general cases when B = cxγ, and B = √

α1 +α2x+α3x2, and when A is time-dependent.
Some of these more general cases have proven to agree well with real financial data.
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