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Systems with different lifetime distributions, associated with increasing, decreasing, con-
stant, and bathtub-shaped hazard rates, are examined in this paper. It is assumed that a
failure is only detected if systems are inspected. New approximate solutions for the in-
spection period and for the expected duration of hidden faults are presented, on the basis
of the assumption that only periodic and perfect inspections are carried out. By minimiz-
ing total expected cost per unit of time, on the basis of numerical results and a range of
comparisons, the conclusion is drawn that these new approximate solutions are extremely
useful and simple to put into practice.

Copyright © 2006 J. Rodrigues Dias. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let us consider a system, which may be of any type or nature, whose lifetime is a contin-
uous random variable T with density function f (t) and expected value E(T). If F(t) is
the respective distribution function, then the reliability function R(t) and the hazard rate
h(t) are given by

R(t)= 1−F(t); h(t)= f (t)
R(t)

. (1.1)

Let us assume that a perfect or imperfect system state is only detected if the system is
inspected and that inspections are perfect and periodic.

We will regard a cycle as the interval of time between the initial instant and the instant
at which a failure is detected and corrected by means of an inspection. Let us assume that
system state is not changed by inspections and that their duration is nil. A failure having
been detected and corrected, we will assume that the system is as good as new; a renewal
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process thus takes place and a new cycle begins. In this paper, we will analyze the system
operation per unit of time over the duration of a cycle.

The proposed solutions that will be presented in this paper are applicable in a wide
variety of fields. Engineering, medicine, and maintenance scenarios would benefit from
these procedures where the goal is the minimization of expected costs in systems whose
lifetime is a random variable and where failures may occur. For example, they could be
applied in the detection of

(a) failures in nuclear systems;
(b) enemy missiles or airplanes;
(c) forest fires and fires in buildings;
(d) global or species-specific diseases affecting people, birds, and other animals; cur-

rent developments and recent experience highlight the importance of finding
such solutions.

If N is the number of system inspections per cycle (including the inspection at whose
instant a failure is detected), and if D represents the detection time of a hidden fault
(between the instant of system failure and the instant of its detection during the next
inspection), which are both random variables, while P is the inspection period (with
inspection times over P, 2P, 3P, . . .), then their expected values E(·) are given by

E(N)=
∞∑

k=0

(k+ 1)
∫ (k+1)P

kP
f (t)dt =

∞∑

k=0

R(kP), E(D)= P ·E(N)−E(T). (1.2)

If C1 is the cost of each inspection and C2 is the cost per unit of time of imperfect
operation before system failure is detected, then the total expected cost per cycle E(C)=
C1E(N) + C2E(D) is minimized for a value of P, which is a solution of the following
equation (see Rodrigues Dias [7]):

∞∑

k=0

R(kP)− (r +P)
∞∑

k=0

k f (kP)= 0, r = C1

C2
. (1.3)

It should be noted that there may be one, two, or more solutions, which do not de-
pend on the individual values of costs C1 and C2 (interestingly, they depend on their
quotient r).

This problem was initially presented and examined by Barlow et al. [3].
However, it has been shown that it is extremely difficult or perhaps impossible to ana-

lytically obtain a solution for (1.3), even when T has an exponential distribution. There-
fore, numerical approaches are required.

In (1.2), a simple and useful geometric interpretation of E(D) is presented. In fact,
E(T) = ∫∞0 R(t)dt is the area below the reliability function curve R(t) and above the x
axis for values between 0 and∝; meanwhile, P ·E(N)=∑+∞

k=0P ·R(kP) is the sum of the
area of the rectangles whose base is P centered on kP (k = 0,1,2, . . .) and whose height
is R(kP). Therefore, E(D) is the difference between the latter area and the former area,
with regard to E(T). The straightforward conclusion is that E(D) is approximately equal
to P/2; however, it may be either larger or smaller than half the inspection period P. This
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depends on the shape of the reliability functionR(t). There is no general expression which
approximates to E(D).

Thus, starting with the simplest approach E(D) ∼= P/2 (see Schneeweiss [15]), Naka-
gawa and Yasui [6] obtained the following approximate solution for the inspection period
PC1 per cycle (with E(N)∼= E(T)/P + 1/2):

PC1 =
√

2rE(T). (1.4)

In a later work (see Rodrigues Dias [8]), in which T has an exponential distribution,
based on the analysis of results previously obtained (see Rodrigues Dias [7]), a new
approximate solution for the inspection period was obtained by using the least-square
method which minimizes the total expected cost per cycle:

PC2 =
√

2rE(T)
1 + 0.234

√
r′
= PC1

G
, G= 1 + 0.234

√
r′; r′ = r

E(T)
. (1.5)

This solution is demonstrated to be nearly optimal because its relative error is ap-
proximately equal to zero in terms of costs. It can be regarded as a generalization of the
approach developed by Nakagawa and Yasui [6], where G is the generalization factor.

The practical usefulness of simple approaches should be stressed, as can be seen in a
quality control context of Saniga and Shirland in [14].

Problems of the same type can be found in Badı́a et al. [2], Dieulle [4], Rodrigues Dias
[9], Rodrigues Dias and Infante [12], Sheu et al. [16], and Vaurio [17], for example. In
Rodrigues Dias [10, 11], two new approaches dealing with different sampling intervals in
quality control are proposed.

2. A new approximate solution for the inspection period

Let us now discuss whether it is possible to obtain solutions which in some way corre-
spond to those previously presented in (1.4) and (1.5), with a view to minimizing ex-
pected total cost per unit of time of the cycle. In fact, the duration of each cycle is a
random variable, resulting from system lifetime T plus the duration of a hidden fault D.

Hence, if CU is the total cost per unit of time and E(CU) is its expected value, and there
is a renewal process (see Ross [13]), we have

E
(
CU
)= C1E(N) +C2E(D)

E(T) +E(D)
. (2.1)

What must be determined is the value of period P that minimizes the function given
by (2.1). With regard to the minimization of expected total cost per cycle, in general,
an analytical solution cannot be obtained. Therefore, it is essential that approximate so-
lutions be obtained and that an evaluation be carried out, for different situations, as to
whether they are satisfactory from a practical point of view.
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Let us suppose that E(D)∼= P/2. If E(N)∼= E(T)/P + 1/2, the following expression can
easily be obtained:

E
(
CU
)∼= 2C1E(T) +C1P +C2P2

2PE(T) +P2
. (2.2)

By calculating the respective derivative associated with P and making it equal to zero,
the following second-order equation can be obtained:

[
2C2E(T)−C1

] ·P2− 4C1E(T) ·P− 4C1E(T)2 = 0. (2.3)

As one of the two solutions will always be negative, the other one can be expressed as
follows:

P =
[
2rE(T) + 2E(T) ·√2rE(T)

]
[
2E(T)− r

] . (2.4)

By means of a suitable convenient algebraic transformation, assuming for instance an
auxiliary variable z, such that z2 = 2rE(T), the simple solution PU1 can be obtained:

PU1 = 2rE(T)√
2rE(T)− r

= P2
C1

PC1− r
. (2.5)

Thus, PU1 represents the first approximate solution presented in this paper for period
P that minimizes expected total cost per unit of time.

Interestingly, it is possible to express PU1 as a function of PC1 and r. Even more inter-
estingly, when r tends towards zero (which may mean increasingly lower costs for each
inspection), the two expressions PU1 and PC1 get closer together. In a sense, it can be said
that the approximate solution we have obtained, given by (2.5), is a generalization of the
approach given in (1.4).

As a simple example, let us consider a system with an average lifetime E(T) = 1000
hours, the numeric value of each inspection cost C1 being equal to 1 and the numeric
value of cost per hour of imperfect operation C2 being equal to 20. Thus, very simply, we
have r = 0.05 and from (2.5), we can calculate that PU1

∼= 10.05 hours. It should be noted
that no assumptions are made here about the type of distribution of T .

This new approximate solution will be analyzed in the following section.

3. Results obtained and analysis of results

We will present some numerical results and analyze, in brief, whether the new approxi-
mate solution for the inspection period PU1 can be regarded as satisfactory. To this end,
we will consider different situations. Firstly, let us attribute a different degree of signif-
icance to the cost of each inspection C1, comparing each with the cost per unit of time
of imperfect operation C2. In fact, we will use different values of r′, given in (1.5), which
is a dimensionless parameter, as can be seen in the following tables. This means taking
E(T) as the unit of time. Secondly, we will consider the case in which the system has dif-
ferent failure rates h(t), for three different lifetime distributions: (a) the Weibull, (b) the
log-normal, and (c) the Hjorth [5] distributions.
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(a) The Weibull distribution is a model very often used in this kind of reliability con-
text. Interestingly, this distribution, whose shape parameter is equal to 2.5, is used to
model the incubation period of the HIV1virus (see Amaral et al. [1]).

In the Weibull distribution, α being a scale parameter and β a form parameter, the
reliability function is given by

R(t)= exp
(−t
α

)β
, t ≥ 0. (3.1)

In this paper, let us assume that form parameter β has the following values: 0.7,1,2,3,4,
and 5. System hazard rate h(t) is decreasing where it is less than 1, and where it is greater
than 1, h(t) is increasing. When β = 1, we have an exponential distribution corresponding
to a constant hazard rate h(t)= 1/α. Finally, when the form parameter is close to 3, there
is a degree of approach to normal distribution.

(b) In a system in which the lifetime distribution is log-normal, we have

R(t)= 1−Φ
(

ln(t)−μ

σ

)
, t ≥ 0, (3.2)

where Φ(·) is the standard normal distribution function and μ and σ are two parameters.
Interestingly, with the log-normal distribution, h(t) increases initially but then decreases.

(c) The Hjorth [5] lifetime distribution, depending on 3 parameters δ, γ, and θ, has a
reliability function given by

R(t)= exp
(
− δt2

2

)
· (1 + γt)−θ/γ, t ≥ 0. (3.3)

This is significant because h(t) can present a range of very different shapes. In partic-
ular, if θ = γ = 1, and if δ = 0.01, then h(t) is bathtub-shaped.

Thus, the above three distributions allow us to consider all possible shapes of system
failure rate h(t).

Now, let us begin by comparing the approach PU1 given by (2.5) with the exact solution
PU obtained minimizing E(CU) given by (2.1), E(N) and E(D) being obtained from (1.2).
Usually, when E(N) increases, E(D) decreases. This “exact” solution is calculated using
numerical methods. Thus, we consider the quotientQ1, given by the following expression,
which gives the deviation, in relative terms and in percentage terms, between the two
solutions for the inspection period:

Q1 = PU1−PU
PU

· 100%. (3.4)

Secondly, let us analyze the sensitivity of E(CU) as a function of P, in terms of evalu-
ating the validity of the approximate solution PU1 in practical terms. To this end, let us
consider Q2, which gives the relative error, as a percentage, of the expected total cost
associated with the solution PU1, when compared with minimum cost, for the exact



6 New approximate solutions per unit of time

Table 3.1. Values of relative errors Q1, Q2, and Q3, in percentages, for different values of β of the
Weibull distribution and for four values of r′.

r′ = 0.0125 r′ = 0.0250 r′ = 0.0500 r′ = 0.1000

β Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

0.7 7.3 0.2 8.4 9.0 0.3 10.5 11.2 0.5 13.1 13.6 0.6 16.4

1 2.7 0.0 2.7 3.9 0.1 3.9 5.7 0.1 5.6 8.3 0.2 8.1

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0 0.0 0.0 −0.1 0.0 −0.1 −0.6 0.0 −0.2

4 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 −7.2 0.2 −1.0

5 0.0 0.0 0.0 0.0 0.0 0.0 −3.2 0.0 0.0 −8.0 1.1 −5.0

solution PU :

Q2 = E
(
CU1

)−E
(
CU
)

E
(
CU
) · 100%. (3.5)

Thirdly, as PU1 was obtained by considering E(D)∼= P/2, we are keen to evaluate this
assumption. Thus, with E(DU) as the expected detection time of a system failure and PU
the optimum inspection period, we define Q3 as

Q3 = E
(
DU
)−PU/2

E
(
DU
) · 100%. (3.6)

Results obtained for Q1, Q2, and Q3 are shown in Table 3.1, for the Weibull distribu-
tion, for four values of r′.

It can be shown that for values of β which approximate to 2, 3, and 4, if r′ is not great
(which means a very low expected number of inspections per cycle, which is unusual in
practical applications), the relative errors of PU1 are practically nil in absolute values: they
do not exceed 0.1% (r′ ≤ 0.05). The same can be shown for greater values of β, since r′

values are not great. Meanwhile, when the system failure rate is constant (β = 1), it can
be shown that values of Q1 are significant, increasing whenever r′ increases.

Now, let us analyze what happens with Q2. It can be easily shown that the relative
errors of expected total costs per unit of time are almost always nil (to one decimal place).
Interestingly, even when the value of Q1 is 13.6%, the corresponding value of Q2 does not
exceed 0.6%. This means that E(CU) shows a low degree of sensitivity to variations in
period P, which clearly increases the significance of approximate solutions, especially as
they are simple and can be rapidly obtained.

To conclude our analysis of the PU1 approach, let us see what happens with Q3. It can
typically be shown that the better the approximation E(D) ≈ P/2 is, the better the ap-
proach given by (2.5) is. At the same time, it can be shown that E(D) may be larger or
smaller than P/2, depending on the distribution used. Meanwhile, in the case of expo-
nential distributions, it is always greater, increasing as the value of r′ increases.

Now, in Table 3.2, with regard to the log-normal and Hjorth distributions, relative
errors Q1, Q2, and Q3 are shown only for 2 values of r′, since these are sufficient for
arriving at a conclusion.
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Table 3.2. Values of the relative errors Q1, Q2, and Q3, in percentages, for the log-normal and the
Hjorth distributions and for r′ = 0.0125 and r′ = 0.0500.

r′ = 0.0125 r′ = 0.0500

Distribution Q1 Q2 Q3 Q1 Q2 Q3

Log-normal −0.3 0.0 −0.3 2.4 0.0 0.4

Hjorth −2.2 0.2 6.7 −6.1 0.5 11.8

Among other possible conclusions, we would point to the following.
(a) Depending on values of r′ and the system lifetime distribution, values of the PU1

solution may be smaller or larger than those of the exact solution PU ; the same
conclusion may be drawn with regard to E(DU), if it is compared with PU/2.

(b) The type of lifetime distribution may be of great significance, as can be seen for
r′ = 0.05.

(c) Finally, values of Q2 are small, and may be extremely small; this generally means
that approximate solutions for the inspection period are always significant for all
shapes of the system hazard rate h(t).

4. Systems with a constant hazard rate: some new approximate solutions

In a similar manner to what was done above using (1.5), when the system lifetime is an
exponential distribution with a constant hazard rate h(t)= 1/α, let us introduce a second
new approach PU2 given by

PU2 = PU1

1 + 0.234
√
r′
= PU1

G
. (4.1)

It should be possible to search for another generalization factor which is slightly dif-
ferent from G. However, it seems best to keep this one as it has the advantage of being the
same as in the case of the solution given by (1.5).

In order to determine its degree of accuracy, let us calculate relative errors Q4:

Q4 = PU2−PU
PU

· 100%. (4.2)

Some values for Q4 are presented in Table 4.1.
As can be seen from the table, with Q4 approximately equal to zero, PU2 is a nearly

optimal solution for PU .
Having concluded that both PC2 and PU2 are nearly optimal solutions when the system

has a constant hazard rate, we will now move on to consider the following questions. Are
values of PC2 and PU2 very different? In other words, is there a difference in terms of
minimizing total expected cost of the cycle and unit of time? If there is a difference, what
is its magnitude? In order to provide a quick answer to these questions, let us calculate
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Table 4.1. Values of relative errors Q4, Q5, Q6, Q7, and Q8, in percentages, for different values of r′

and β = 1.

r′ = 0.0125 r′ = 0.0250 r′ = 0.0500 r′ = 0.1000

Q4 0.1 −0.2 −0.4 −0.8

Q5 8.6 12.6 18.8 28.8

Q6 −0.0861 −0.2078 −0.3879 −0.7562

Q7 −0.0045 −0.0152 0.0547 0.0757

Q8 −0.0104 −0.0271 0.0309 0.0278

the relative differences between PU2 and PC2, using Q5 given by

Q5 = PU2−PC2

PC2
· 100%= 1√

2/r′ − 1
· 100%. (4.3)

Some calculated values are presented in Table 4.1.
In this case, as in other situations, it is obvious that Q5 values show a considerable

degree of difference, as do values for optimal periods PC and PU , with PU > PC. Thus, a
key conclusion can now be drawn: it is essential to specify how optimal inspection times
are calculated.

Finally, let us look at values of Q1 and Q3 shown in Table 3.1 when β = 1. It can easily
be shown, especially if r′ is small, that Q1

∼=Q3. Hence, on the basis of (3.4) and (3.6), we
have

PU1−PU
PU

∼= E
(
DU
)−PU/2

E
(
DU
) . (4.4)

As values of Q4 are approximately equal to zero, we can consider PU ∼= PU2 and on the
basis of (4.1), PU1

∼=G ·PU . Using (4.4), and carrying out some analysis, the approximate
solutions E(DU)1 and E(DU)2 can be obtained for the expected duration of hidden faults
E(DU):

E
(
DU
)

1 =
PU

2
(
1− 0.234

√
r′
) , (4.5)

E
(
DU
)

2 =
PU1

2G
(
1− 0.234

√
r′
) . (4.6)

Similarly, considering that in (4.6), we have

G · (1− 0.234r′1/2
)= (1 + 0.234r′1/2

) · (1− 0.234r′1/2
)∼= (1− 0.05r′), (4.7)
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then a third simple approximation for E(DU)3 can be derived:

E
(
DU
)

3 =
PU1

2(1− 0.05r′)
. (4.8)

In order to evaluate how satisfactory these solutions are, let us consider Q6, Q7, and
Q8 given by

Q6 = E
(
DU
)

1−E
(
DU
)

E
(
DU
) · 100%,

Q7 = E
(
DU
)

2−E
(
DU
)

E
(
DU
) · 100%,

Q8 = E
(
DU
)

3−E
(
DU
)

E
(
DU
) · 100%.

(4.9)

Some values are shown in Table 4.1.
From Table 3.1, it can be concluded that E(DU) > PU/2. Other conclusions can easily

be drawn. In all cases, approximate solutions E(DU)1, E(DU)2, and E(DU)3 can be consid-
ered as being nearly optimal. E(DU)2 and E(DU)3 are quite similar approaches in terms
of relative error: one of them is better for smaller values of r′ and the other is better for
larger values of r′. Finally, E(DU)2 contains the constant G, which is a possible advantage,
and is consistent with other results presented here. Meanwhile, E(DU)3 is certainly the
simplest approach.

5. Conclusions

In order to minimize the expected total cost of the operation of a system whose opera-
tional state can only be determined by means of inspections, it must be inspected either
periodically or not. In this paper we consider the case of periodic inspections with two
costs: one pertaining to the cost of each inspection and the other pertaining to the cost per
unit of time of imperfect operation, following a system failure, before failure is detected
and corrected. System lifetime is regarded as a random variable, and several situations
with different types of hazard rates are examined, using the Weibull, log-normal, and
Hjorth [5] distributions.

In this paper, firstly we review some previous works regarding the minimization of
expected total cost per cycle: two approximate solutions for the inspection period are
examined.

Secondly, the main point of this paper is presented; by minimizing expected total cost
per unit of time, we obtain a new approximate solution for the inspection period. Our
results are carefully analyzed for a range of different situations. System lifetime distribu-
tion is significant, as it can be seen by means of examples. As our main conclusion, the
solution proposed is nearly optimal, for an extremely wide range of contexts, especially
if it is considered in terms of costs. At the same time, it is easy to calculate, which is an
important point when considering practical applications. In addition, this approximate
solution can be regarded as a generalization of a previous solution. These two approaches
approximate to each other when the relationship between costs tends towards zero.
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Thirdly, when system hazard rate is constant, we propose a second solution for the
inspection period, which is also extremely satisfactory. Using an exponential distribution,
three approximate solutions for the expected duration of hidden faults are presented and
analyzed using numerical results.

The optimum value of the inspection period may be very different depending on
whether the minimization of total expected costs is carried out with respect to a cycle
or to the unit of time, especially where the relative significance of inspection costs in-
creases. However, in the opposite situation, the corresponding results are increasingly
similar where the expected number of system inspections increases.

Generally, for practical purposes, it is our opinion that the new solutions put forward
in this paper can be regarded as extremely satisfactory, and they are also very simple
and easy to obtain. In particular, the relative errors of associated total expected costs are
almost zero.
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