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We discuss alternative approaches for estimating from cross-sectional categorical data
in the presence of misclassification. Two parameterisations of the misclassification model
are reviewed. The first employs misclassification probabilities and leads to moment-based
inference. The second employs calibration probabilities and leads to maximum likelihood
inference. We show that maximum likelihood estimation can be alternatively performed
by employing misclassification probabilities and a missing data specification. As an alter-
native to maximum likelihood estimation we propose a quasi-likelihood parameterisa-
tion of the misclassification model. In this context an explicit definition of the likelihood
function is avoided and a different way of resolving a missing data problem is provided.
Variance estimation for the alternative point estimators is considered. The different ap-
proaches are illustrated using real data from the UK Labour Force Survey and simulated
data.
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1. Introduction

The existence of measurement error in data used for statistical analysis can introduce se-
rious bias in the derived results. In a discrete framework the term measurement error can
be replaced by the more natural term misclassification. Methods that account for the exis-
tence of measurement error have received great attention in the statistical literature. In the
presence of measurement error such methods need to be employed in order to ensure the
validity of the inferential process. In a discrete framework, however, conventional errors
in variables models (Fuller [7]) cannot be applied. One of the traditional approaches for
adjusting for misclassification in discrete data is by assuming the existence of validation
information derived from a validation survey, which is free of error. The use of valida-
tion surveys can be placed into the framework of double sampling methods (Bross [3];
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2 Double sampling and quasi-likelihood

Tenenbein [17, 18].) In double sampling we assume that along with the main measure-
ment device, which is affected by measurement error, we have a secondary measurement
device (validation survey), which is free of error but more expensive to apply. Due to
its higher cost, the validation survey is employed only for a subset of units. Under the
assumption that the validation survey is free of error one can estimate the parameters of
the misclassification mechanism. Inference is then based on combining information from
both measurement devices.

The aim of this paper is to examine and compare alternative parameterisations of the
misclassification model when categorical data are subject to misclassification and vali-
dation information is available. The structure of the paper is as follows. In Section 2,
the framework of double sampling is presented along with moment-based and maxi-
mum likelihood inference. In Section 3, we present a quasi-likelihood parameterisation.
In Section 4, the alternative approaches are illustrated using data from the UK Labour
Force Survey and in Section 5 they are empirically compared using a Monte-Carlo simu-
lation study.

2. Using double sampling to adjust for misclassification

Suppose that the standard measurement device is subject to misclassification. As a re-
sult we have biased results. Unbiased estimates can be obtained by using more elaborate
measurement tools usually referred to as preferred procedures (Forsman and Schreiner
[6]; Kuha and Skinner [10].) An example of a preferred procedure in official statistics is
re-interview surveys (Bailar [1].) In bio-statistical applications the term gold standard is
more commonly used (Bauman and Koch [2].) Other examples include judgments of ex-
perts or checks against administrative records (Greenland [8].) The assumption that the
preferred procedure is free of error makes feasible the estimation of the parameters of the
misclassification mechanism. On the other hand, preferred procedures are considered to
be fairly expensive and thus unsuitable to be used for the entire sample hereafter main
sample. Therefore, these procedures are normally applied to a smaller sample usually re-
ferred to as validation sample. The validation sample can be either internal or external
(Kuha and Skinner [10]) depending on how this sample is selected. In the most com-
mon case an internal validation sample of size n(v) is obtained by sub-sampling n(v) units
from the main sample. Alternatively, an internal validation sample can be selected inde-
pendently from the main sample and from the same target population. Otherwise, the
validation sample is defined as external. In this paper we focus on internal designs.

2.1. Moment-based estimation. Let Y∗ξ denote a discrete random variable for unit ξ.
Denote by Πi = pr(Y∗ξ = i) the probability that unit ξ is classified in state i by the stan-
dard measurement device, which is subject to measurement error, by Pk = pr(Yξ = k)
the probability that unit ξ truly belongs in state k and by qik = pr(Y∗ξ = i | Yξ = k) the
misclassification probabilities. Define now a vector Π with elements Πi, a vector P with
elements Pk and the misclassification matrix Q with elements qik. Generally speaking,
one way to describe the misclassification model with r mutually exclusive states is by
expressing the marginal distribution of the observed classifications as a product of the
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misclassification probabilities and the true classifications as follows

pr
(
Y∗ξ = i

)=
r∑

k=1

pr
(
Y∗ξ = i | Yξ = k

)
pr
(
Yξ = k

)
. (2.1)

The unknown quantities involved in (2.1) are typically estimated using double sampling.
Solving (2.1) with respect to the vector of true classifications P and assuming that Q
is non-singular leads to the moment-based estimator P̂ = Q̂−1Π̂, which has been used
extensively in literature to adjust discrete data for measurement error. A drawback asso-
ciated with the use of the moment-based estimator is that under certain conditions it can
produce estimates that lie outside the parameter space. This can happen due to the inver-
sion of the misclassification matrix involved in the estimation process. Variance estima-
tion for the moment-based estimator can been performed using linearization techniques
and relevant solutions have been proposed among others by Selén [15] and Greenland
[8].

2.2. Maximum likelihood estimation. In order to describe the misclassification mecha-
nism estimator P̂=Q̂−1Π̂ employs misclassification probabilities defined as qik= pr(Y∗ξ =
i | Yξ = k). An alternative way of quantifying the misclassification mechanism is by using
what Carroll [4] refers to as calibration probabilities. The calibration probabilities are
defined as cki = pr(Yξ = k | Y∗ξ = i). Denote by C the matrix of calibration probabilities.
The misclassification model can be alternatively described with calibration probabilities
as follows

pr
(
Yξ = k

)=
r∑

i=1

pr
(
Yξ = k | Y∗ξ = i

)
pr
(
Y∗ξ = i

)
. (2.2)

Using double sampling, an estimator of (2.2) is given by P̂ = ĈΠ̂. Tenenbein [18] showed
that estimator P̂ = ĈΠ̂ is the maximum likelihood estimator of (2.2) and he also provided
an expression for its asymptotic variance using the inverse of the information matrix.
As noted by Marshall [12] and Kuha and Skinner [10] the maximum likelihood esti-
mator P̂ = ĈΠ̂ will be asymptotically more efficient than the moment-based estimator
P̂ = Q̂−1Π̂.

Maximum likelihood estimation can be also performed by employing misclassifica-
tion probabilities as follows. For the main sample of n units the classifications are made
using only the fallible classifier. For a smaller sample of n(v) units the classifications are
made using both the error free classifier and the fallible classifiers. Consider the cross-

classification of the observed with the true classifications. Denote by n(∗)
ik , n(v)

ik the counts
referring to this cross-classification in the main and in the validation samples respectively.

Denote also by n(∗)
·k , n(v)

·k , nk·, n
(v)
k· the total number of sample units classified in state k by

the the error free and the fallible classifiers in the main and in the validation samples re-
spectively. Note that a superscript (∗) is used to denote missing data. While for the main
sample we have only marginal information about the observed classifications, for the val-
idation sample full information exists. The idea is to estimate the model parameters by
combining information from both samples. This parameterisation will eventually lead to
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an optimisation problem that involves missing data. This is because the validation proce-
dure is not applied to the units of the main sample. Assuming independence between the
main and the validation samples and denoting by DComplete the complete data and by Θ
the vector of parameters, the full data likelihood is given by

L
(
Θ;DComplete)=

r∏

i=1

r∏

k=1

(
Pkqik

)n(v)
ik

r∏

i=1

r∏

k=1

(
Pkqik

)n(∗)
ik (2.3)

subject to the following constraints
∑r

k=1Pk = 1 and
∑r

i=1 qik = 1 for fixed k. The likeli-
hood function (2.3) contains unobserved data. One way of using this likelihood to max-
imise the likelihood of the observed data is via the EM algorithm (Dempster et al. [5].)
The EM algorithm is based on two steps, namely the expectation step (E-step) and the
maximisation step (M-step.) For the currently described model these steps are described
below. Denote by D(v) the observed data from the validation sample, by D(m) the observed
data from the main sample and by (h) the current EM iteration.

Result 2.1. For the E-step, the conditional expectations of the missing data in the main
sample are estimated using the following expression

Ê
(
n(∗)
ik |D(m),Θ(h)

)
= ni·

(
P(h)
k q(h)

ik
∑r

k=1P
(h)
k q(h)

ik

)

. (2.4)

Result 2.2. For the M-step, the maximum likelihood estimators are given below

q̂ik =
Ê
(
n(∗)
ik |D(m),Θ(h)

)
+n(v)

ik

Ê
(
n(∗)
·k |D(m),Θ(h)

)
+n(v)

·k
, P̂k =

Ê
(
n(∗)
·k |D(m),Θ(h)

)
+n(v)

·k
∑r

k=1 Ê
(
n(∗)
·k |D(m),Θ(h)

)
+n(v)

·k
. (2.5)

Results 2.1 and 2.2 are obtained by implementing the EM algorithm with multinomial
data (see also Tanner [16].)

Variance estimation for the maximum likelihood estimates requires the use of the in-
verse of the information matrix. However, due to the formulation of the misclassification
model as a missing data problem, the variance estimates should account for the additional
variability introduced by the existence of missing data. One way to perform variance es-
timation in an EM framework is by applying the Missing Information Principle (Louis
[11].) Denote by Θ̂ the vector of maximum likelihood estimates. The Missing Informa-
tion Principle is defined as

Observed Information = Complete Information − Missing Information. (2.6)

Following (Louis [11]), the complete information and the missing information are eval-
uated at Θ̂ using respectively the expectation of the complete information matrix and the
variance of the score functions.

A prerequisite for formulating a measurement error model is the specification of the
measurement error process. We have already described two ways of doing this, that is, via
calibration or misclassification probabilities. Although it is more natural to parametrise
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the measurement error process in terms of misclassification probabilities, in a cross-
sectional framework the parameterisation of the misclassification model using calibra-
tion probabilities or misclassification probabilities leads to identical results. In general,
for an unconstrained (saturated) model, like the one described in this paper, there will
be a one to one correspondence between (P,Q) and (Π,C). This is not the case, however,
with a constrained model. For example, assume that the standard measurement device
is a panel survey but only cross-sectional validation data are available (Tzavidis [19].)
The cross-sectional nature of the validation data dictates the use of a conditional inde-
pendence assumption for estimating the parameters of the longitudinal misclassification
mechanism. More specifically, the author assumes that misclassification at time t depends
only on the current true state and not on previous or future true states. This assumption
implies that the misclassification probabilities are the same at each wave of the panel sur-
vey. As shown by Meyer [13] this assumption should be used only with misclassification
probabilities and not with calibration probabilities. Therefore, parameterising the model
using misclassification probabilities is a more general method.

3. A quasi-likelihood parameterisation of the misclassification model

In this section we present a quasi-likelihood parameterisation of the misclassification
model. This parameterisation offers an alternative, to the EM algorithm, way of resolving
a missing data problem. The advantage of this approach is that it does not require any
explicit definition of the likelihood function. The approach we follow was introduced
by Wedderburn [20] as a basis for fitting generalised linear regression models. As de-
scribed in Heyde [9], Wedderburn observed that from a computational point of view the
only assumptions for fitting such a model are the specification of the mean and of the
relationship between the mean and the variance and not necessarily a fully specified like-
lihood. Under this approach Wedderburn replaced the assumptions about the underlying
probability distribution by assumptions based solely on the mean variance relationship
leading to an estimating function with properties similar to those of the derivative of a
log-likelihood. This estimating function is usually referred to as the quasi-score estimat-
ing function. The quasi-likelihood estimator is then defined as the solution of the system
of equations defined by the quasi-score estimating function. To illustrate, consider the
following model

Y = μ(Θ) + ε, (3.1)

where Y is a n× 1 data vector and E(ε)= 0. The quasi-score estimating function G(Θ) is
then defined (Heyde, [9, Theorem 2.3]) as

G(Θ)=
{
∂μ(Θ)
∂Θ

}T{
var(ε)

}−1{
Y −μ(Θ)

}
. (3.2)

The quasi-score estimating function defined by (3.2) is also referred to as Wedderburn’s
quasi-score estimating function.
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3.1. The model. Denote by P(v)
k the probability of correct classification in category k for

units in the validation sample, by q(v)
ik the probability of misclassification for units in the

validation sample, by nk· the number of units in the main sample classified in category k
by the standard measurement device and by n the sample size of the main survey. With-
out loss of generality, we describe the model in the case of two mutually exclusive states
to which a sample unit can be classified. Instead of specifying the form of the likelihood
function, the model can now be described by a system of equations. The number of equa-
tions we need is defined by the smallest possible set of independent estimating equations
that can be established for the underlying problem. For the two-state cross-sectional mis-
classification model one possible system of equations is the following

P̂(v)
1 = P1 + ε1, q̂(v)

11 = q11 + ε2

q̂(v)
12 = q12 + ε3, n1 = n

[
P1q11 +

(
1−P1

)
q12
]

+ ε4.
(3.3)

The left-hand side of the equations given in (3.3) describes the estimates obtained from
the main and the validation samples whereas the right hand side describes the unknown
parameters of interest plus an error term. Equations described by (3.3) incorporate the
extra constraints also employed under maximum likelihood estimation, that is, P2 =
1− P1, q21 = 1− q11 and q22 = 1− q12. As with maximum likelihood estimation, we as-
sume that the main and the validation samples share common parameters since both
are representative of the same population. Assuming the general form of the model de-
fined by (3.1) denote by ε the vector of errors, by μ(Θ) the vector of means and by
Θ = (P1,q11,q12) the vector of parameters. Following Heyde [9], Wedderburn’s quasi-
score estimating function for the two-state model is defined as follows

G(Θ)=

⎛

⎜
⎜
⎝

1 0 0 n
(
q11− q12

)

0 1 0 nP1

0 0 1 n
(
1−P1

)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

σ2
1 σ12 σ13 σ14

σ21 σ2
2 σ23 σ24

σ31 σ32 σ2
3 σ34

σ41 σ42 σ43 σ2
4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

−1⎛

⎜
⎜
⎜
⎜
⎜
⎝

ε1

ε2

ε3

ε4

⎞

⎟
⎟
⎟
⎟
⎟
⎠
. (3.4)

Setting (3.4) equal to zero leads to three quasi-score normal equations. These equations
need to be solved using numerical techniques. In addition, the elements of the covariance
matrix of the error terms are unknown and need to be estimated using the sample data.
Under simple random sampling (i.e., assuming a multinomial distribution), σ2

1 , σ2
4 are

estimated respectively by

σ̂2
1 =

P̂(v)
1

(
1− P̂(v)

1

)

n(v)
, σ̂2

4 = n
∧
pr
(
Y∗ξ = 1

){
1− ∧

pr
(
Y∗ξ = 1

)}
. (3.5)

Regarding the covariance matrix of the estimated misclassification probabilities, let us de-

note by n(v)
ik the number of sample units in the validation sample classified by the standard

measurement device in state i when they truly belong in state k. The estimated misclas-

sification probabilities are then defined as q̂ik = n(v)
ik /

∑r
i=1n

(v)
ik and the estimated matrix

of misclassification probabilities by Q̂. While n(v) =∑r
i=1

∑r
k=1n

(v)
ik can be treated as fixed,
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∑r
i=1n

(v)
ik is random. Consequently, in the computation of this covariance matrix we need

to account for the non-linearity introduced by the fact that both the numerator and the
de-numerator of q̂ik are random. To estimate the covariance matrix of interest we apply

the δ-method. Let Θ̂∗ = (n(v)
11 ,n(v)

21 ,n(v)
12 ,n(v)

22 ) and vec{Q(Θ̂∗)} = { f1(Θ̂∗), . . . , fr2 (Θ̂∗)}T
be an r2× 1 vector of nonlinear functions of Θ̂∗. Applying the δ-method to vec{Q(Θ̂∗)}
we obtain the following approximation

vec
{
Q
(
Θ̂∗
)}− vec

{
Q
(
Θ∗
)}≈∇Θ∗

(
Θ̂∗ −Θ∗

)
, (3.6)

where ∇Θ∗ = ∂vec{Q(Θ∗)}/∂Θ∗ |Θ∗=Θ̂∗ . Taking the variance operator on both sides of
(3.6) leads to

var
{

vec(Q)
}≈∇Θ∗ var

(
Θ̂∗
)(∇Θ∗

)T
. (3.7)

In (3.7), under simple random sampling, var(Θ̂∗) is estimated by

∧
var
(
n(v)
ik

)
= n(v) ∧pr

(
Y∗ξ = i,Yξ = k

){
1− ∧

pr
(
Y∗ξ = i,Yξ = k

)}
,

∧
cov

(
n(v)
ik ,n(v)

i∗k∗

)
=−n(v) ∧pr

(
Y∗ξ = i,Yξ = k

) ∧
pr
(
Y∗ξ = i∗,Yξ = k∗

)
,

(3.8)

for (i,k) �= (i∗,k∗). Thus, we are able to obtain estimates for σ2
2 , σ2

3 , σ23 and σ32, where
σ23 = σ32.

For estimating the covariance terms σ14, σ24 and σ34 we need to consider the way we
select the validation sample. Independence is assumed when the validation sample is se-
lected independently from the main sample. Independence is also assumed when the vali-
dation sample is selected by sub-sampling units from the main sample. This is achieved by
dividing the sample into units that belong only in the main sample and units that belong
both in the main and in the validation samples. Under the assumption of independence
it follows that σ14 = σ41 = σ24 = σ42 = σ34 = σ43 = 0.

It only remains to estimate the following covariance terms σ12 = σ21 and σ13 = σ31.
These covariance terms can be more generally defined as follows

cov
(
q̂(v)
ik , P̂(v)

k

)
= cov

(
n(v)
ik

∑r
i=1n

(v)
ik

,

∑r
i=1n

(v)
ik

n(v)

)

. (3.9)

Estimation of these covariance terms is performed using the results below.

Lemma 3.1 (Mood et al. [14]). An approximate expression for the expectation of a function
g(X ,Y) of two random variables X , Y using a Taylor’s series expansion around (μX ,μY ) is
given by

E
{
g(X ,Y)

}≈ g
(
μX ,μY

)
+

1
2
∂2

∂y2
g(X ,Y) |μX ,μY var(Y) +

1
2
∂2

∂x2
g(X ,Y) |μX ,μY var(X)

+
∂2

∂x∂y
g(X ,Y) |μX ,μY cov(X ,Y).

(3.10)
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Result 3.2. Assume that X , Y , A are three random variables and n is fixed. A first order
approximation for cov(X/Y ,A/n) is given by

cov
(
X

Y
,
A

n

)
≈ 1

nE(Y)

{
cov(A,X)− E(X)

E(Y)
cov(A,Y)

}
. (3.11)

Proof of this result is given in the appendix. SettingX=n(v)
ik ,Y=∑r

i=1n
(v)
ik ,A=∑r

i=1n
(v)
ik

and n= n(v) in Result 3.2 we can then estimate the remaining covariance terms of interest.
Having obtained estimates for the variance terms, the final step in deriving the quasi-
likelihood estimates requires solving the system of equations defined by (3.4). This is
achieved using a Newton-Raphson algorithm. Define by Θ the vector of parameters of
dimension ω× 1 and by A a ω×ω matrix with elements Aij = ∂Gi(Θ)/∂ϑj , i, j = 1, . . . ,ω.
The system of quasi-score normal equations is then solved numerically as follows. Assume
a vector of initial solutions Θ̂(0). The vector of initial solutions is updated using

Θ̂(1) = Θ̂(0)−A−1{Θ̂(0)}G
{
Θ̂(0)}, (3.12)

and iterations continue until a pre-specified convergence criterion is satisfied.
Variance estimation for the quasi-likelihood estimates is performed using the follow-

ing result

Result 3.3. The variance of the quasi-likelihood estimates is estimated using the expression
below

∧
var(Θ̂)≈

[{
∂μ(Θ)
∂Θ

|Θ=Θ̂
}T{ ∧

var(ε)
}−1

{
∂μ(Θ)
∂Θ

|Θ=Θ̂
}]−1

. (3.13)

Proof of this result is given in the appendix.
The system of (3.3) can be modified for tackling more complex situations. Let us con-

sider the case described at the end of Section 2 where the standard measurement device is
a panel survey but only cross-sectional validation data are available. In this case we need
to incorporate a conditional independence assumption to enable estimation of the longi-
tudinal misclassification mechanism. A quasi-likelihood solution can be offered using a
system of equations similar to (3.3). This system will consist of equations for Pi and for
qi j . However, the difference now is that the conditional independence assumption needs
to be incorporated appropriately into the system of equations.

4. A numerical example

The alternative approaches are illustrated using data form the UK labour force survey
(LFS). The UK LFS is a panel survey of households living at private addresses. One of
its main purposes is to provide cross-sectional estimates of the proportion of individu-
als in each of the main labour force states, that is, employed, unemployed and inactive.
However, as with every sample survey, the UK LFS is subject to response error. Validation
data (Table 4.1) are obtained from a validation survey, which is not explicitly defined due
to confidentiality restrictions. In addition, we use unweighted UK LFS data (Table 4.2)
between summer-autumn 1997.
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Table 4.1. Data from the validation sample.

Correct classifications

Employed Unempl./Inact. Margins

Fallible Employed 2178 56 2234

classifications Unempl./Inact. 22 744 766

Margins 2200 800 3000

Table 4.2. Data from the main sample.

Correct classifications

Employed Unempl./Inact. Margins

Fallible Employed n(∗)
11 n(∗)

12 44460

Classifications Unemp./Inact. n(∗)
21 n(∗)

22 15540

Margins n(∗)
·1 n(∗)

·2 60000

Table 4.3. Proportion of units classified as employed, estimated standard errors in parentheses.

Point estimator Proportion of employed

Naive (unadjusted estimator) 0.741 (1.79∗10− 3)

Moment-based 0.730 (3.61∗10− 3)

Maximum likelihood

(Calibration probabilities) 0.730 (3.20∗10− 3)

Maximum likelihood

(Misclassification probabilities) 0.730 (3.00∗10− 3)

Quasi-likelihood 0.729 (3.21∗10− 3)

The target is to adjust cross-sectional (summer 1997) UK LFS estimates for response
error. For simplicity we consider a two-state model where individuals can be classified
in two states, that is, employed and unemployed or inactive. The estimators we consider
are the unadjusted estimator (Naive), the moment-based estimator (Section 2), the max-
imum likelihood estimator with callibration probabilities (Section 2), the maximum like-
lihood estimator with misclassification probabilities (Section 2) and the quasi-likelihood
estimator (Section 3.) The convergence criterion for the EM and the Newton-Raphson
algorithms is δ = 10−6. Variance estmation for the naive (unadjusted) estimator is per-
formed assuming a multinomial distribution. The variance of the moment-based estima-
tor is estimated using results from Selén [15]. The variance of the maximum likelihood
estimator that employs calibration probabilities is estimated using the results of Tenen-
bein [18] while variance estimation for the maximum likelihood estimator, using the EM
algorithm, and for the quasi-likelihood estimator is performed using the Missing Infor-
mation Principle and Result 3.3 respectively. The results are summarised in Table 4.3.
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Table 4.4. Simulation results (averages over 1000 simulations).

Estimators P̂ Bias(P̂) var(P̂) MSE(P̂)

Moment-based 0.6061 1∗10− 4 1.40∗10− 5 1.40∗10− 5

Maximum likelihood

(Misclassification) 0.6059 −1∗10− 4 1.28∗10− 5 1.28∗10− 5

Quasi-likelihood 0.6059 −1∗10− 4 1.28∗10− 5 1.28∗10− 5

The estimators that adjust for response error produce reasonable estimates, which are
close to the proportion of truly employed people estimated from the validation sample.
Although the alternative estimators produce identical point estimates, differences exist in
the estimated standard errors.

5. A simulation study

In this section the alternative methods are empirically compared using a Monte-Carlo
simulation study. The simulation algorithm consists of the following steps. Step 1: At the
first step we generate true classifications for each sample unit ξ. This is done by assuming
the probability distribution function of the true classifications (P1 = 0.606, P2 = 0.394).
Using this distribution, we draw a with replacement sample of size n= 60000. Step 2: At
the second step we assume the existence of misclassification described by the misclassifi-
cation probabilities qik (q11 = 0.98, q22 = 0.96). Using the misclassification probabilities,
we generate the observed status, given the true status (Step 1), for each sample unit ξ.
Step 3: At the third step we generate validation data (n(v) = 3000). After all three steps
have been completed, the generated data are employed for computing the alternative es-
timators. The properties of the alternative point estimators P̂ are evaluated using (a) the
bias of a point estimator, (b) the variance of a point estimator and (c) the mean squared
error (MSE) of a point estimator. The results from the Monte-Carlo simulation are sum-
marised in Table 4.4. Note that since for the simple case considered by this paper there
is only one set of maximum likelihood estimates, obtained using either calibration or
misclassification probabilities, we only report the maximum likelihood estimates derived
with the use of misclassification probabilities.

The simulation results verify that using the maximum likelihood or the quasi-
likelihood estimators, instead of the moment-based estimator, leads to gains in efficiency.

6. Discussion

Two alternative parameterisations for maximum likelihood estimation using either cal-
ibration or misclassification probabilities are presented. In a cross-sectional framework
both parameterisations lead to identical results. However, using misclassification prob-
abilities instead of calibration probabilities is more reasonable with complex data such
as longitudinal misclassified data. We therefore suggest that the formulation of the mis-
classification model as a missing data problem is a more general method. As an alterna-
tive approach we further presented a quasi-likelihood formulation of the misclassification
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model. This approach offers an alternative to the EM algorithm way of resolving a missing
data problem, which at the same time does not require full specification of the likelihood
function. Results from a simulation study indicate that the quasi-likelihood estimator is
almost as efficient as the maximum likelihood estimator. Regarding the moment-based
estimator we suggest that this should be avoided since it can produce estimates that lie
outside the parameter space and is less efficient compared to either the maximum likeli-
hood estimators or the quasi-likelihood estimator.

Appendix

A. Proofs of the results in Section 3

Proof of Result 3.2. Apply Lemma 3.1 to E(AX/Y) and E(X/Y), we obtain

E
(
AX

Y

)
≈ μXμA

μY
+

1
2

2μXμA
μ3
Y

var(Y)− μA
μ2
Y

cov(X ,Y)

+
1
μY

cov(X ,A)− μX
μ2
Y

cov(A,Y),

E
(
X

Y

)
≈ μX

μY
+

1
2

2μX
μ3
Y

var(Y)− 1
μ2
Y

cov(X ,Y).

(A.1)

Therefore,

cov
(
X

Y
,
A

n

)
= 1

n

{
E
(
AX

Y

)
−E

(
X

Y

)
E(A)

}

≈ 1
nE(Y)

{
cov(X ,A)− E(X)

E(Y)
cov(A,Y)

} (A.2)

as required. �

Proof of Result 3.3. Let Θ̂ denote the vector of quasi-likelihood estimates and ε the vec-
tor of errors. The quasi-score estimating function is defined by G(Θ) = {∂μ(Θ)/∂Θ}T
×{var(ε)}−1ε. By Taylor expansion, G(Θ̂) can be approximated by

G(Θ) +
{
∂μ(Θ)
∂Θ

|
Θ=

∧
Θ

}T{
var(ε)

}−1
[{

∂μ(Θ)
∂Θ

|
Θ=

∧
Θ

}T
]T
(
Θ̂−Θ

)
. (A.3)

Thus, var{G(Θ̂)} = {∂μ(Θ)/∂Θ |
Θ=

∧
Θ
}T{var(ε)}−1[{∂μ(Θ)/∂Θ |

Θ=
∧
Θ
}T]T can be approxi-

mated by

var

[{
∂μ(Θ)
∂Θ

|Θ=Θ̂
}T{

var(ε)
}−1

[{
∂μ(Θ)
∂Θ

|Θ=Θ̂
}T
]T
(
Θ̂−Θ

)
]

. (A.4)
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This leads to

∧
var
(
Θ̂
)≈

[{
∂μ(Θ)
∂Θ

|Θ=Θ̂
}T{ ∧

var(ε)
}−1

{
∂μ(Θ)
∂Θ

|Θ=Θ̂
}]−1

. (A.5)

�
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