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We present an analysis for evaluating the probability density function (pdf) of the noise
at the output of the frequency demodulator. It is shown that the noise is non-Gaussian
and that for low to medium signal-to-noise power ratios, its pdf differs very significantly
from the Gaussian pdf commonly assumed in simplified analysis. These results are very
important for analyzing the performance of the PCM/FM type of modulation schemes
used in telemetry systems as illustrated in the paper.
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1. Introduction

This paper presents an exact analysis for the probability density function (pdf) of the
noise at the output of a frequency demodulator. In the literature [1, 5], the FM demod-
ulator output noise is assumed to be Gaussian-distributed at high signal-to-noise power
ratio (SNR). At low SNR, it is analyzed in terms of a Gaussian noise and a sequence of
impulse functions (clicks) based on the classical theory propounded by Rice [4]. In such
an analysis, assuming relatively low bandwidth of the postdemodulator lowpass (LPF) fil-
ter, the variance of the total noise power at the filter output is evaluated. The probability
distribution of the filter output noise is assumed to be Gaussian. While such an analysis is
adequate for the case of analog information signals such as speech, for the case of digital
signals, one of the most important characteristics of the noise is its pdf.

This paper presents an exact analysis of the FM demodulator output noise under the
assumption of low-modulation index and Gaussian-distributed noise at the demodulator
input. It is shown that the pdf is given in terms of hypergeometric function. The derived
expression is applicable to all SNRs. At relatively low to medium SNR levels, the pdf of
noise differs drastically from the Gaussian pdf with the difference becoming progressively
smaller with increasing SNR. At high SNRs (> 25 dB), the difference is relatively small.
However, since the typical SNR used in digital telemetry is in the 10–15 dB range, the non-
Gaussian distribution is very important in evaluating the probability of bit error. Due
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Figure 2.1. Frequency demodulator.

to the analytical difficulties, the analysis does not take into account the effect of lowpass
filter following the FM demodulator. However, this effect is expected to be relatively small
when the lowpass filter bandwidth is of the order of the IF bandwidth which has been
shown to be optimum from earlier simulation results.

2. Signal model

The received frequency-modulated RF signal is filtered and down-converted to an inter-
mediate frequency ωIF before detection. The frequency-modulated signal at the output of
the IF filter is given by

v(t)= Acos
(
ωIFt+ θs(t)

)
+n(t), (2.1)

where ωIF denotes the IF frequency, θs(t) is the signal modulation and is equal to Df∫ t
−∞m(τ)dτ where Df denotes the frequency modulator sensitivity, and m(t) is the mes-

sage signal. Note that the derivative of the phase θs(t), termed the instantaneous fre-
quency deviation, is equal to Df m(t) thus signifying the term frequency modulation for
v(t) in (2.1). The term n(t) represents band-limited “white” noise with one-sided power
spectral density equal to N0 and is assumed to have a Gaussian distribution. The variance
of n(t) is equal to N0BIF where BIF is the IF filter equivalent noise bandwidth. The noise
term n(t) may be expressed in terms of the following in-phase and quadrature represen-
tation:

n(t)= xn(t)cos
(
ωIFt

)− yn(t)sin
(
ωIFt

)
, (2.2)

where xn(t) and yn(t) are baseband “white” noise processes with (one-sided) power spec-
tral density 2N0 and of bandwidth BIF/2. The processes xn(t) and yn(t) are independent
Gaussian and have variance σ2 =N0BIF.

Figure 2.1 shows the block diagram of a frequency demodulator [1] wherein the signal
at the input to the demodulator is specified by (2.1). The bandpass filter of bandwidth
BIF following the hard limiter in the figure selects only the fundamental zone signal while
filtering out all the higher-order zone signals.

The fundamental zone signal vL(t) has a constant amplitudeAL which is equal to (4/π)
times the hard limiter output voltage level, frequency ωIF, and phase θT(t) and is given by

vL(t)= AL cos
(
ωIFt+ θT(t)

)
, (2.3a)

θT = θs + tan−1

{
Rn sin

(
θn− θs

)

A+Rn cos
(
θn− θs

)

}

, (2.3b)
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where the dependence of various terms in (2.3b) on time t has been suppressed for no-
tational simplicity, θs(t) denotes the desired signal, and Rn(t) and θn(t) represent the
amplitude and phase of the additive noise n(t) with its complex envelope given by

gn(t)= Rn(t)e jθn(t); gn(t)= xn(t) + j yn(t). (2.4)

The complex envelope of the received signal is similarly given by

gs(t)= Aejθs(t). (2.5)

Thus the envelope of the derivative of vL(t) denoted by v0(t) in Figure 2.1 is equal to

v0(t)= AL
[
ωIF +

dθT(t)
dt

]
(2.6)

under the assumption that ωIF > max |dθT(t)/dt|, which is always satisfied in practice.
Assuming that AL is equal to 1 without any loss of generality and ignoring the constant
term, the output of the frequency demodulator is simply equal to (dθT/dt). Note that
Figure 2.1 shows a more conventional implementation of the frequency demodulator and
there are other equivalent analog and digital implementations of the same.

In the first instance it is assumed that the frequency modulation index is relatively
small which is equivalent to assuming that the phase modulation index defined by
max |θs(t)| is much smaller compared to 1 (θs(t) is small compared to θn(t)). In this
case the noise term in (2.3b) may be approximated as

φn ∼= tan−1

{
Rn sin

(
θn
)

A+Rn cos
(
θn
)

}

. (2.7)

Equivalently one may express φn as

φn = tan−1

[
yn

Ac + xn

]

, (2.8a)

xn = Rn cos
(
θn
)
; yn = Rn sin

(
θn
)
. (2.8b)

Differentiation of (2.8a) with respect to the time t yields the following expression for the
FM demodulator output noise:

φ̇n =
(
A+ xn

)
ẏn− ẋn yn

[(
A+ xn

)2
+ y2

n

] . (2.9)

In the following, an expression for the pdf of φ̇n is derived, which is valid for the complete
range of SNR.
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3. Demodulator output noise distribution

To derive the requisite pdf, the set of random variables (RV)X1,X2,X3, andX4 are defined
for notational convenience by

X1 =
(
A+ xn

)
; X2 = yn; X3 = ẋn; X4 = ẏn, (3.1)

then the desired RV φ̇n may be expressed in terms of RVs X1, X2, X3, and X4 as

φ̇n = X1X4−X2X3

X2
1 +X2

2
. (3.2)

From the discussion of the in-phase and quadrature representation of n(t) in (2.2), it fol-
lows that X1 and X2 are independent and Gaussian-distributed with variance σ2 =N0BIF.
Therefore X3 and X4 are also Gaussian and probabilistically independent. The power
spectral density (one-sided) of ẋn(t) is given by Pẋn( f ) = (2π f )2Pxn( f ) where Pxn( f ) is
the power spectral density (PSD) of xn(t), and thus the variance of ẋn(t) denoted by σ2

d is
given by

σ2
d =

∫∞

0
4π2 f 2Pxn( f )df . (3.3)

For the case when the IF filter is assumed to be ideal with bandwidth BIF = 2B, σ2
d may be

evaluated to be

σ2
d = (2πB)2 σ

2

3
. (3.4)

Note however that (3.3) is more general and applies to any filter shape. Similarly the
variance of ẏn(t) is also given by σ2

d . It easily follows as is well known that the cross-
correlation function of yn(t) and ẏn(t) denoted by Ryn ẏn(τ)≡ yn(t) · ẏn(t+ τ) is given by

Ryn ẏn(τ)= dR(τ)
dτ

, (3.5)

and thus the variables yn and ẏn are uncorrelated if R(τ) has a maximum at τ = 0 which
is true for most practical filters including the ideal filter case. Because of the Gaussian
distribution of the two variables, it follows that they are also statistically independent.
Similarly the variables xn and ẋn are also independent. In summary, X1, X2, X3, X4 are
statistically independent and Gaussian-distributed random variables. In order to evalu-
ate the pdf (probability density function) of φ̇n, a set of intermediate random variables
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Y1, Y2, Y3, Y4 is defined by

Y1 = X1X4−X2X3; Y2 = X2
1 +X2

2 ; Y3 = X1X4; Y4 = X2
1 . (3.6)

To evaluate the pdf of the random vector Y = [Y1 Y2 Y3 Y4]; the set of (3.6) is solved
for the value of the random vector

X = x = [x1 x2 x3 x4
]

with Y = y = [y1 y2 y3 y4
]
. (3.7)

The desired solutions of (3.6) are given by

x = g−1(y)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

±√y4

±
√(
y2− y4

)

±
(
y3− y1

)

√(
y2− y4

)

± y3√
y4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.8)

In (3.8) x1 and x4 (resp., x2 and x3) have same sign. Thus there are four possible solutions
for (3.8). Considering first the solution with all signs positive, the Jacobian J of the set of
(3.8) may be shown to be

J ≡
∣
∣
∣
∣
∣
∂x

∂y

∣
∣
∣
∣
∣=

−1
[
4y4

(
y2− y4

)] . (3.9)

In (3.9), |A| denotes the determinant of any matrix A. As the random variables X1, X2,
X3, and X4 are statistically independent, the joint pdf of the random vector X denoted by
fX(x) is given by

fX(x)= fX1

(
x1
)
fX2

(
x2
)
fX3

(
x3
)
fX4

(
x4
)

(3.10)

and the component (corresponding to the selected solution from (3.8)) of the pdf of the
random vector Y denoted by f 1

Y (y) is given by

f 1
Y (y)= |J| · fX1

(
g−1

1 (y)
) · fX2

(
g−1

2 (y)
) · fX3

(
g−1

3

(
y3
)) · fX4

(
g−1

4

(
y4
))
. (3.11)

In the subsequent development f 1
Y (y) and its integral with respect to components of y

are referred to as pdf and marginal pdf ’s, respectively. The actual pdf is the sum of such
components evaluated for all four solutions in (3.8). In (3.11), g1, g2, g3, and g4 represent
the components of the vector function g(y). The various functions appearing in (3.11)
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are given by

fX1

(
g−1

1 (y)
)= 1√

2πσ
exp

{

−
(√

y4−A
)2

2σ2

}

, (3.12a)

fX2

(
g−1

2 (y)
)= 1√

2πσ
exp

{

−
(√
y2− y4

)2

2σ2

}

, (3.12b)

fX3

(
g−1

3 (y)
)= 1√

2πσd
exp

{

−
(
y3− y1

)2

[
2
(
y2− y4

)
σ2
d

]

}

, (3.12c)

fX4

(
g−1

4 (y)
)= 1√

2πσd
exp

{

− y2
3

2y4σ
2
d

}

, (3.12d)

where σ2 and σ2
d denote the variances of random variables X1 and X3 (resp., X2 and X4).

Now the product of the last two terms in (3.12) may be written in the following form:

fX3

(
g−1

3 (y)
) · fX4

(
g−1

4 (y)
)= 1

2πσ2
d

exp

{

− y2
1

2y2σ
2
d

}

· exp

{

−
(
y3−m

)2

2σ2
0

}

, (3.13)

m≡ y1y4

y2
; σ2

0 =
y4

y2

(
y2− y4

)
σ2
d . (3.14)

Substitution of (3.12) and (3.9) in (3.11) yields the joint pdf of the random vector Y . The
desired joint pdf of the random variables Y1, Y2 is obtained by integrating the joint pdf
f 1
Y (y) with respect to y3, y4. Since only the last two product terms in (3.11) are functions

of y3, the marginal pdf of Y1, Y2, Y4 is given by

f 1
Y1,Y2,Y4

(
y1, y2, y4

)= 1
4y4

(
y2− y4

) fX1

(
g−1

1 (y)
)
fX2

(
g−1

2 (y)
)

×
∫∞

y3=−∞
fX3

(
g−1

3 (y)
)
fX4

(
g−1

4 (y)
)
dy3.

(3.15)

The integral in (3.15) may be easily evaluated by substitution from (3.13) and is given by

∫∞

y3=−∞
fX3

(
g−1

3 (y)
)
fX4

(
g−1

4 (y)
)
dy3 = 1√

2πσd

{
y4
(
y2− y4

)

y2

}1/2

exp

{

− y2
1

2y2σ
2
d

}

.

(3.16)

With the substitution for the integral from (3.16) and the expressions for fX1 (·) and fX2 (·)
from (3.12a), (3.12b) in (3.15), the desired marginal pdf of Y1, Y2, Y4 is given by

fY1,Y2,Y4

(
y1, y2, y4

)= 1
4
√

2πσd
exp

{

− y2
1

2y2σ
2
d

}
1

2πσ2y3/2
2

exp

{

−
(
A2 + y2

)

2σ2

}

×
[
y4

y2

](−1/2)[
1− y4

y2

](−1/2)

exp
{
A
√
y4

σ2

}
.

(3.17)
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Finally the marginal pdf of Y1, Y2 is obtained by integrating the right-hand side of (3.17)
with respect to y4. Let I represent the following integral:

I =
∫ y2

y4=0

[
y4

y2

](−1/2)[
1− y4

y2

](−1/2)

exp
{
A
√
y4

σ2

}
dy4. (3.18)

With the change of variables v =
√

(y4/y2), the integral may be rewritten as

I = 2y2

∫ 1

v=0

(
1− v2)−1/2

exp(βv)dv; β ≡ A

σ2

√
y2. (3.19)

Using the identity of [2, (3.389/1)] reproduced below,

∫ 1

0
x2ν−1(1− x2)ρ−1

exp(μx)dx

= 1
2
B(ν,ρ)1F2

[
ν;

1
2

,ν + ρ;
μ2

4

]

+
μ

2
B
[(

ν +
1
2

)
,ρ
]

1F2

[(
ν +

1
2

)
;
3
2

,
(

ν + ρ+
1
2

)
;
μ2

4

]
[Reρ > 0; Reν > 0],

(3.20)

where 1F2 represents the hypergeometric function. The application of identity (3.20) with
ρ = 1/2 and ν= 1/2 yields

I = B
[

1
2

,
1
2

]

1F2

[
1
2

;
1
2

,1;
β2

4

]
+βB

[
1,

1
2

]

1F2

[
1;

3
2

,
3
2

;
β2

4

]
, (3.21)

where B denotes the beta function (Euler’s integral of first kind) [2]. Representing the

1F2(·) functions in terms of their series expansions, the integral I may be expressed as

I =
∞∑

k=0

ckβ
k =

∞∑

k=0

ck

(
A

σ2

)k
(√
y2
)k

, (3.22)

where the coefficients ck may be evaluated in terms of the coefficients in the series expan-
sions of the 1F2(·) functions appearing in (3.21), such an evaluation is carried out in the
subsequent development. Therefore, the marginal pdf of the random variables Y1, Y2 is
given by

f 1
Y1,Y2

(
y1, y2

)= 1
4
√

2πσd
exp

{

− y2
1

2y2σ
2
d

}
1

2πσ2y1/2
2

exp
{
− A2

2σ2

}
× exp

{
− y2

2σ2

} ∞∑

k=0

ckβ
k.

(3.23)

Now the pdf of the desired random variable Z ≡ Y1/Y2 is given by [3]

f 1
Z (z)=

∫∞

w=−∞
|w| f 1

Y1,Y2
(zw,w)dw. (3.24)
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Substitution of the joint pdf of Y1, Y2 from (3.23) into (3.24) results in the following
expression for the pdf of Z:

f 1
Z (z)= 1

4(2π)3/2σdσ2
exp

[
− A2

2σ2

] ∞∑

k=0

ck

(
A

σ2

)k

×
∫∞

w=0
(
√
w)k+1 exp

{

−
[

1 +
(
zσ

σd

)2
]
w

2σ2

}

dw.

(3.25)

Using the identity in [2, (3.351)] reproduced in (3.26) below,

∫∞

0
xν−1 exp(−μx)dx = 1

μν
Γ(ν) [Reν > 0; Reμ > 0], (3.26)

where Γ(·) denotes the gamma function, the integral in (3.25) denoted by I2 is given by

I2 =
[

2σ2

1 +
(
zσ/σd

)2

](k+3)/2

Γ
[
k+ 3

2

]
. (3.27)

Substituting for I2 from (3.27) into (3.25), the desired pdf fZ(z) may be expressed in the
following form:

f 1
Z (z)= σ/σd

4(π)3/2

⎧
⎨

⎩
exp

(−A2/(2σ2
))

[
1 +

(
zσ/σd

)2]3/2

⎫
⎬

⎭

∞∑

k=0

ckΓ
[
k+ 3

2

][
2(A/σ)2

1 +
(
zσ/σd

)2

]k/2

. (3.28)

Form the definition of the coefficients ck given implicitly by (3.21)-(3.22) and using the
series expansion for the hypergeometric functions [2], the expression for ck is given by

c2 j = B
[

1
2

,
1
2

] (1/2) j
(1/2) j · (1) j

1
j!

(
1
4

) j
; j = 1,2, . . . ;

c2 j+1 = B
[

1,
1
2

] (1) j
(3/2) j · (3/2) j

1
j!

(
1
4

) j
; j = 1,2, . . . ;

c0 = B
[

1
2

,
1
2

]
; c1 = B

[
1,

1
2

]
;

(α) j ≡ (α)(α+ 1)···(α+ j− 1); j ≥ 1; (α)0 = 1 for any α.

(3.29)

Therefore, substituting the expansion for the gamma function, one obtains the following
expression for the summand in (3.28):

ckΓ
[
k+ 3

2

]
wk/2 = B

[
1
2

,
1
2

]
Γ
[

3
2

] (1/2) j · (3/2) j
(1/2) j · (1) j

1
j!

(
w

4

) j
; k = 2 j;

ckΓ
[
k+ 3

2

]
wk/2 = B

[
1,

1
2

]√
w

(1)i · (2)i
(3/2)i · (3/2)i

1
i!

(
w

4

)i
; k = 2i+ 1;

(3.30)
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where in (3.30) w has been defined as

w ≡
[

2(A/σ)2

1 +
(
zσ/σd

)2

]

. (3.31)

From (3.30) it follows that

∞∑

k=0

ckΓ
[
k+ 3

2

]
wk/2 = B

[
1
2

,
1
2

]
·Γ
[

3
2

]

2F2

[
1
2

,
3
2

;
1
2

,1;
w

4

]

+B
[

1,
1
2

]√
w 2F2

[
1,2;

3
2

,
3
2

;
w

4

]
.

(3.32)

Finally the substitution of (3.32) into (3.28) results in the following expression for fZ(z):

f 1
Z (z)= σ/σd

4(π)3/2

{
exp

[−A2/
(
2σ2

)]

[
1 +

(
zσ/σd

)2]3/2

}

×
{
B
[

1
2

,
1
2

]
·Γ
[

3
2

]

2F2

[
1
2

,
3
2

;
1
2

,1;w̃
]

+ 2B
[

1,
1
2

]√
w̃ 2F2

[
1,2;

3
2

,
3
2

;w̃
]}

;

(3.33a)

w̃ ≡
[ [

A2/
(
2σ2

)]

1 +
(
zσ/σd

)2

]

. (3.33b)

It may be shown in a manner similar to the derivation of f 1
Z (z) that the component of the

pdf fZ(z) corresponding to the negative sign for x1 and x4 in (3.8) is obtained by replacing
the positive sign associated with the second term in (3.33a) by negative sign. The solutions
corresponding to the other two solutions are identical to the first two solutions. Hence
the pdf fZ(z) is equal to four times the first term in (3.33a), that is,

fZ(z)= σ/σd
2(π)3/2

⎧
⎨

⎩
exp

[−A2/
(
2σ2

)]

[
1 +

(
zσ/σd

)2]3/2

⎫
⎬

⎭×B
[

1
2

,
1
2

]
·Γ
[

1
2

]

1F1

[
3
2

;1;w̃
]

, (3.34)

where using the definition of the hypergeometric functions, the 2F2(·) function has been
simplified to the 1F1(·) function and the Γ(3/2) has been replaced by (1/2)Γ(1/2). Equa-
tion (3.34) with (3.33b) represent the final desired result. Finally substituting the values
of the beta and gamma functions, B[(1/2),(1/2)] = π and Γ[1/2] = √π, the expression
for the pdf fZ(z) simplifies to

fZ(z)= σ/σd
2

⎧
⎨

⎩
exp

[−A2/
(
2σ2

)]

[
1 +

(
zσ/σd

)2]3/2

⎫
⎬

⎭ 1F1

[
3
2

;1;w̃
]

, w̃ ≡
[ [

A2/
(
2σ2

)]

1 + (zσ/σd
)2

]

. (3.35)

More conveniently defining the normalized random variable Ψ = Z/(2πB) in view of
(3.4) (frequency fluctuation normalized by the filter bandwidth in rad/s), the pdf of the
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FM noise
Gaussian

var (linear model)= 0.103

Figure 3.1. FM demodulator output noise pdf (SNR = 12 dB).

RV Ψ is given by

fΨ(ψ)= σ/σ f
2

⎧
⎨

⎩
exp

[−A2/
(
2σ2

)]

[
1 + (ψσ/σ f

)2]3/2

⎫
⎬

⎭ 1F1

[
3
2

;1;w̃
]

, w̃ ≡
[ [

A2/
(
2σ2

)]

1 +
(
ψσ/σ f

)2

]

, (3.36)

where σ f = σd/(2πB) in (3.36) and thus σ2
f represents the variance of the normalized

frequency fluctuations. Note that under the high-SNR condition and ideal filter shape
usually treated in the literature, σ2

f = σ2/(3A2)≡ σ2
l .

3.1. Comparison with Gaussian pdf. Figures 3.1-3.2 plot the pdf of the demodulator
output noise as computed from (3.36) for the input SNR = (A2/2σ2) equal to 12 and
20 dB, respectively, plotted versus ψ normalized by σl where σ2

l = σ2/(3A2) is the variance
of ψ predicted on the basis of linear Gaussian assumption [1, 5]. As may be observed
from these figures, the pdf as computed from (3.36) differs very markedly from its value
predicted from the linear theory for SNR up to 15 dB with lower SNR resulting in higher
difference. For an SNR equal to 20 dB the difference is relatively small. Table 3.1 shows
the rms value of the noise σ f as computed from (3.36) and its value σl as predicted from
linear approximation for various values of SNR.

While the linear theory gives good approximation for the noise variance for SNR
greater than or equal to 12 dB, the results in terms of pdf differ significantly at these
SNRs. For example, at SNR of 12 dB, at x = ψ/σl equal to 5, the value of pdf predicted
from linear approximation is 1.5× 10−5 compared to 1.1× 10−4 predicted from the re-
sults of this paper. Thus the non-Gaussian nature of the noise is of high significance in
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Figure 3.2. FM demodulator output noise pdf (SNR = 20 dB).

Table 3.1. Comparison of theory with Gaussian approximation.

SNR (dB) σl σ f 20*log(σ f /σl)

6 0.2046 0.305 3.47

8 0.1625 0.1895 1.34

12 0.1025 0.1062 0.308

15 0.0726 0.0738 0.142

20 0.0408 0.0410 0.042

25 0.0230 0.0230 0

determining the probability of bit error in digital communication even when the correct
variance can be evaluated by independent means.

3.2. Probability of bit error. To evaluate the impact of non-Gaussian noise distribution
on the digital signal bit error probability Pe, the probability of error is computed both
with Gaussian and non-Gaussian distribution given by (3.36). For the case of bipolar
NRZ signaling, the sampled signal at the FM demodulator output takes values ±V for
some voltage V . The sampled output SNR equal to (V/σ f )2 is dependent upon the input
SNR, the modulation index, and several other factors. In this paper to evaluate the im-
pact of non-Gaussian noise distribution, the probability of error is computed for a given
output SNR both for the Gaussian and non-Gaussian distribution of noise both with the
same variance. The non-Gaussian noise distribution is parameterized by the input SNR.
Figure 3.3 compares the results for the non-Gaussian noise distribution corresponding to
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Figure 3.3. Probability of bit error for NRZ signal (SNR i = 12 dB).

input SNR of 12 dB. The figure shows in very clear terms, the difference in Pe resulting
from the non-Gaussian distribution.

4. Conclusions

This paper has presented an exact analysis of the FM demodulator output noise under the
assumption of low-modulation index and Gaussian-distributed noise at the demodulator
input. It has been shown that for low to medium SNRs the pdf of the FM demodulator
output noise differs significantly from the Gaussian pdf. A detection example has been
presented to illustrate possible impact of the non-Gaussian noise on the probability of
detection error. The derivation of the paper assumed low-modulation index and does
not include the effect of the postdemodulation (lowpass) filter on the probability distri-
bution (the effect on the variance is implicitly accounted for in the detection example).
For the digital modulation schemes, earlier simulation studies show that the best perfor-
mance is achieved when the lowpass filter bandwidth is of the order of the IF bandwidth.
In such cases the impact of the lowpass filter is expected to be relatively small. A semian-
alytical approach can be used to evaluate the impact of lowpass filter under more diverse
conditions.
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