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This paper addresses scheduling problems in hybrid flow shop-like systems with a migra-
tion parallel genetic algorithm (PGA MIG). This parallel genetic algorithm model allows
genetic diversity by the application of selection and reproduction mechanisms nearer to
nature. The space structure of the population is modified by dividing it into disjoined
subpopulations. From time to time, individuals are exchanged between the different sub-
populations (migration). Influence of parameters and dedicated strategies are studied.
These parameters are the number of independent subpopulations, the interconnection
topology between subpopulations, the choice/replacement strategy of the migrant indi-
viduals, and the migration frequency. A comparison between the sequential and parallel
version of genetic algorithm (GA) is provided. This comparison relates to the quality of
the solution and the execution time of the two versions. The efficiency of the parallel
model highly depends on the parameters and especially on the migration frequency. In
the same way this parallel model gives a significant improvement of computational time
if it is implemented on a parallel architecture which offers an acceptable number of pro-
cessors (as many processors as subpopulations).

Copyright © 2006 K. Belkadi et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Sequential genetic algorithms (GAs) (see Algorithm 1.1) are stochastic research tech-
niques first introduced by Holland in early seventies [6, 8]. They are inspired by the
mechanisms of the biological evolution of the species and very much used for combi-
natorial optimization.

GA is an abstraction of the evolution process which is a strongly parallel process. So it
is well designed to parallelization. But GA suffers from a major problem which is prema-
ture convergence. In order to prevent excessive convergence rate into suboptimal solution,
several selection and replacement strategies were introduced to create a genetic diversity
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2 Parallel genetic algorithms with migration for HFS

Begin
– Generate an initial population;
– Evaluate each individual of the population;
– Determine the best solution;

Repeat
– Select M individuals;
– Crossover/Mutation;
– Evaluate the resulting children;
– Replacement of the children;
– Determine the best solution

Until Stop Criterion reached
End

Algorithm 1.1. Simplified sequential genetic algorithm.

in the population. Parallel genetic algorithms appeared and in particular the parallel ge-
netic algorithms with migration [4, 7].

In the parallel genetic algorithm model with migration (PGA MIG), the population
is divided into several subpopulations. The number of subpopulations should not be too
significant to guarantee that in each subpopulation there exists sufficient number of in-
dividuals to be able to carry out suitably a local GA without risk to be promptly absorbed
by a local minimum. Each processor executes, independently of the other processors, its
sequential GA on its partition. From time to time exchanges of individuals are managed
between the different subpopulations. This operation is denoted by migration. Subpop-
ulations evolve in parallel and exchange the genes at the same time. This parallelization
strategy is linked to several parameters which influence considerably on GA like the mi-
gration strategy, the migration frequency, the migration interval, and the interconnection
topology between subpopulations [11].

In the following sections, we shortly describe the HFS problem. Then we apply the
PGA MIG to the HFS problem by giving the numerical experiments and the results ob-
tained. A comparative study from the parallel GA version and sequential GA is provided.
This comparison relates to the quality of the solution and the execution time of the two
versions.

2. Presentation of hybrid flow shop

A hybrid flow shop (HFS) is a system composed of a set of stages, where each stage is
composed of one or more parallel machines. The different jobs visit the stages in the
same order. On each stage, a job is treated by one machine only. Between each stage, the
jobs can wait or not in limited or unlimited buffers [3, 15].

For the experimental study, the choice was directed first on hybrid flow shop with 2
stages and 3 machines on the first stage and 2 machines on the second one (Figure 2.1). A
buffer of infinite capacity is incorporated between stages of the system. Moreover all jobs
are assumed to be available at the system entrance with release date with value 0 [1, 12].
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Figure 2.1. FH2 (P3, P2) ‖ Cmax.

The problem consists in scheduling n jobs at the system entrance and the assignment
of these jobs on the machines. The objective consists in scheduling (sequencing) jobs on
machines and assigning each job on one machine at each stage in order to minimize a
criterion of performance. The criterion to be optimized (to minimize here) is Cmax (the
completion time of the last job on the last stage). By using the notation of Vignier [14],
the system can be defined by FH2 (P3, P2) ‖ Cmax.

3. Presentation of parallel genetic algorithm model with migration (PGA MIG)

PGA MIG consists in dividing the population into disjoined subpopulations and autho-
rizing from time to time to exchange individuals between the different subpopulations
(migration).

Algorithm PGA MIG is implemented in master/slaves mode and on a biprocessor ar-
chitecture [1].

Initially the master generates an initial population and divides it into P subpopula-
tions (P: the number of slaves). Each slave executes sequential GA for a number N of
iterations (Nbr Iter Mig), with N being the size of intervals which separates two migra-
tion operations (see Algorithm 3.1). At the point of migration, the master recovers the
results of the research carried out by the different slaves (see Algorithm 3.2) and launches
the migration operation which consists in copying genes of some individuals from one
subpopulation towards one of its neighbor subpopulations [2, 11].

4. Numerical experiments

The algorithm of the PGA MIG was implemented on a biprocessor architecture and it
was tested on hybrid flow shop of the same type as that studied for sequential GA (see
Section 2).

Sequential GA is based on a direct adaptation of the basic operators of GA for HFS
problem [14] in particular in the process of the coding/decoding of the chromosome
which is strongly linked to the problematic of HFS scheduling. The variables of deci-
sions linked to the HFS are of two types. One is linked to the assignment problem and
the other to the scheduling problem. The genome constitutes of two chromosomes, one
for the assignment and the other for scheduling (sequencing). For the assignment, the
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Begin
– Generate the initial population: Pop Ini;
– Evaluate Pop Ini;
– Determine the best solution: Best Global Sol;
– Global Sol← Best Global Sol;
– Divide Pop Ini into P subpopulations; (∗ P the number of slaves ∗)
– Calculate the migration interval size: Nbr Iter Mig; (∗ iteration

number to be made before a migration ∗)
– Calculate the number of migrations to carry out Nbr Mig;
– Nbr← 0; (∗ meter of the number of migrations, for the stop test ∗)
– Non improv← 0; (∗ meter of the number of generations without

improvement, for the stop test ∗)
– To launch the P slaves;
Repeat

– WaitFor (End Of Cycle j); (∗ Await the end of a treatment cycle
before the migration for all the slaves ∗)

– Suspend (P j) with j = 1,2,3, . . ., P; (∗ Suspend the execution
of the slaves temporarily ∗)

– Migration (Topology, Choice Strat); (∗ Migration according to the
topology and the choice strategy ∗)

– Nbr← Nbr +1;
If H (Global Sol) < H (Best Global Sol)
Then No improv← 0;
Else No improv← No improv + 1;
Endif

– To begin again (P j);
Until ((Nbr > Nbr Mig) or (Non improv > Max Non improv)) (∗ criterion
of stop reached ∗)

End

Algorithm 3.1. Algorithm of the master for PGA MIG.

chromosome is represented by a vector A (a vector for each stage) whose components
materialize each work. Thus the A(i) number indicates the number of the machine (in
the stage) witch performs task i. In the same way, for the sequencing problem, a matrix P
contains the set of the precedence constraints between the operations of works at a given
stage [14].

Example 4.1. We consider the hybrid flow shop (FH2, (P2, P1) ‖ Cmax) with 5 jobs to be
scheduled. The five jobs are J1, J2, J3, J4, and J5.

If jobs J1 and J3 are assigned in this order on machine 1 of the first stage and jobs J5,
J2, and J4 are assigned in this order on machine 2, then the order on the first stage is J1,
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Begin
– Iter← 1;
– End Of Cycle j ← False;
Repeat

– Selection; (∗ the selection operates on local subpopulation P j ∗)
– Crossover;
– Mutation;
– Replacement;
– Iter←Iter +1;

Until (Iter > Nbr Iter Mig) (∗ max number of iterations to make
a migration ∗)

– Determine the best local solution: Best Local Sol;
– Lock (Global Sol);
If H (Global Sol) > H (Best Local Sol)
Then Global Sol← Best Local Sol
End If
– Unlock (Global Sol);
– End Of Cycle j ← True;

End

Algorithm 3.2. Algorithm of a slave P j for PGA MIG.

J3, J5, J2, and J4. We need 2 vectors (A(1) and A(2)) for the assignment:

1 1
2 1

A(1) = 1 A(2) = 1
2 1
2 1

.

We need 1 matrix P for the sequencing:

J1 J2 J3 J4 J5
J1 0 2 1 2 2
J2 −2 0 −2 1 −1

P1= J3 −1 2 0 2 2
J4 −2 −1 −2 0 −1
J5 −2 1 −2 1 0

.

The value and the significances of the elements of P are indicated in Table 4.1.
The selection and the replacement are the two basic operators of GAs. The selection

strategy used is the roulette wheel strategy [6] where the resulting children, and after
being evaluated, replace certain individuals in the initial population and they can be se-
lected several times according to their fitness value. The replacement strategy used is the
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Table 4.1. Value and significances of the elements of P.

Value of P1(i, j) Significances

1
If the operation l of job i precedes the

operation of the job j on a machine

−1
If the operation l of job j precedes the

operation of the job i on a machine

0 If i is equal to j

2

If the operation l of job i and the operation of the job i are

carried out by two different machines and the operation l

of job i starts to be carried out before the operation of job j

−2

If the operation l of job i and the operation of the job i are

carried out by two different machines and the operation l

of job i starts to be carried out after the operation of job j

Table 4.2. Average Cmax and average CPUs for sequential GA.

A number of jobs Average Cmax Average CPUs (s)

5 145,0 0.5

10 260.4 2

15 447.5 3

20 526.1 6

selective breading strategy [9], where a given child replaces an individual only if its fitness
value is better than of the individual that to be replaced.

The crossover and mutation operators apply to the two chromosomes (assignment and
scheduling) of the genome of any individual. The crossover used is a classical uniform
crossover. The mutation operator is very similar to the crossover operator but it operates
only on the sequencing (scheduling) chromosome by choosing a random machine and
changing the order of a couple of the works assigned to this machine [14].

Concerning the parameters for sequential GAs which must be defined, their values are
fixed and given as follows [12]: the population size is 200, the probability of crossover is
0.5, the probability of mutation is 0.005, and the number of iterations is 100.

Sequential GA applied to the HFS scheduling problem gave the results presented in
Table 4.2 (the cost values of average Cmax and execution time). These values will be used
as reference for a comparison between the sequential and parallel implementation of GA.

The PGA MIG depends on several parameters: the number of subpopulations, the in-
terconnection topology between subpopulations, the choice/replacement strategy of the
migrant individuals, and the migration frequency.

We studied the influence of these parameters on quality of the solution obtained by
the PGA MIG.
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4.1. Influence of interconnection topology and choice/replacement strategies on the
results. (a) The notion of interconnection determines the neighboring of subpopula-
tion which is the set of subpopulations which carried out the migration. In the imple-
mentation, we chose two interconnection topologies (or neighboring): ring topology and
grid 2D topology [10].

– Ring topology. A logical interconnection or a logical neighboring is established between
subpopulations. Each one of subpopulations is connected (logically) to two subpopula-
tions, one as upstream and the other downstream. During a migration, a choice of di-
rection of migration is established. This direction determines for each subpopulation his
neighbor subpopulation. Thus it can send and receive its individuals. This direction of
migration is respected by all subpopulations (Figure 4.1).

– Grid topology with two dimensions (Grid 2D). Each of subpopulations is connected
with four other subpopulations The interconnection is a matrix with two dimensions
(Figure 4.2). During a migration, each subpopulation chooses a population among its
four direct neighbors. In this topology, the choice of direction is not imposed.

(b) The choice/replacement strategy of the migrant individuals determines which in-
dividuals are selected to migrate from the current subpopulation, and which individuals
to replace in the next subpopulation. Two strategies have been investigated: random and
best/bad [5].

– Random. the individuals who migrate from the current subpopulation are selected
randomly and replace individuals chosen randomly in the next subpopulation.

– Best/bad. the individuals who migrate from the current subpopulation are selected
among the best individuals, that is, the one with the greatest fitness value in the current
subpopulation, and replace the worst individuals with the lowest fitness in the next sub-
population.
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Figure 4.3. Variation of Cmax for different interconnection topologies.

(c) The two interconnection topologies of subpopulations (Ring, 2D) described previ-
ously were implemented for the PGA MIG. The two choice/replacement strategies of the
migrant individuals (Best/Bad, Random) were also implemented for each interconnec-
tion topology. Four mechanisms can be investigated by coupling the topology with the
choice/replacement strategy: Ring Random, Ring Best, 2D Random, and 2D Best.

Figure 4.3 presents the variation of average Cmax as regards the different mechanisms
implemented. This variation is for the different numbers of jobs taken in test (N = 5,10,
15, and 20). The figure is composed of four series, each one is reserved for an intercon-
nection mechanism given.

In this figure, it is possible to note that the influence of the interconnection topology is
not significant in the variation of Cmax. Nevertheless ring topology is the topology which
gave the greatest number of best results.
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In what follows, we chose the ring interconnection topology, with the best choice/
replacement strategy, for studying better the influence of the other different parameters.

4.2. Influence of number of subpopulations on the results. The number of subpopula-
tions determines the size of subpopulation because the origin population is distributed
between subpopulations. The more the number of subpopulations is high, the more the
size of each population is reduced [4]. The influence of the number of subpopulations
on the quality of solution is investigated. The number of subpopulation (slaves) varied
from 4 to 10. To measure the influence of the number of subpopulations, a migration
frequency equal to 90% is used.

Figures 4.4, 4.5, 4.6, and 4.7 represent the variation of average Cmax compared to the
variation of the number of subpopulations. This variation is for the different number of
jobs taken in test (N = 5,10,15, and 20).
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In these figures, one can note that the quality of the solution decreases progressively at
the same time as the number of subpopulations increases. Indeed, the number of subpop-
ulations has a direct influence on the genetic diversity of this parallel model (PGA MIG).
A great number of subpopulations implies a reduction of the number of individuals by
subpopulation (reduction of the number of genes). Subpopulation becomes quickly ho-
mogeneous and is prevented from evolving to interesting subspaces of solutions.

One can also note that the gap between the upper bound and the lower bound in ab-
solute terms is increasing but in relative terms it is stable with the number of studied jobs
(increase in complexity of HFS system). Thus, the PGA MIG with a significant number of
subpopulations loses a little its genetic diversity as soon as the size of the space of solution
becomes significant (see Figures 4.12(a) and 4.12(b)). We can say that the subpopulation
number is not a parameter which influences truly the results.
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4.3. Influence of migration frequency on results. The migration frequency gives infor-
mation on the number of generations carried out in parallel by the different subpopu-
lations between two migration operations, often it is noted by “migration interval.” It
represents the iteration interval which separates two migration operations [13]. To study
the impact of this parameter, the migration frequency is successively assigned to 90%,
80%, 70%, 60%, and 50%. This frequency determines the number of migrations carried
out during the execution of algorithm PGA MIG. It determines also the migration inter-
val which separates two migration operations. We studied the impact of this parameter
for the HFS problem taken in example and the results are given by Figures 4.8, 4.9, 4.10,
and 4.11. Each figure encompasses a series which represent the Cmax variation as regards
the migration frequency variation. The number of subpopulations used is 4.
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In these figures, we notice first that the quality of the solution tries to improve gradu-
ally with the migration frequency. One can accept that subpopulations strongly increase
the GA performance of HFS problem. Subpopulations receive foreign individuals with
the genetic history of origin subpopulations.

Let us note that the interval [60%, 80%] for the migration frequency gives a linear
decrease. It is the stability interval for the algorithm. For the value 90%, a considerable
improvement is noted for all the figures, but the value 50% gives the weakest quality
solutions.

Concerning the influence of the migration frequency, the gap between the upper
bound and the lower bound in absolute and relative terms is increasing with the increase
in the complexity of the HFS. That shows the influence of this parameter on the solution
quality. Also it should be noted that this gap is relatively significant compared with that
obtained by varying the number of subpopulations.



K. Belkadi et al. 13

5 10 15 20
0

20

40

60

80

100

120

140

160

G
ap

M
in

-m
ax

C
m

ax

Number of jobs

Gap absolute S Pop
Gap absolute Freq Mig

0 10.6 15.1

20.1

0
26

102

151

(a)

5 10 15 20
0

5

10

15

20

25

30

35

G
ap

M
in

-m
ax

C
m

ax

Number of jobs

Gap relative S Pop
Gap relative Freq Mig

0

5.11 4.38 4.56
0

12.13

29

33.19

(b)

Figure 4.12. (a) Influence of subpopulations number and the migration frequency on the absolute
gap between the bounds of Min-max Cmax, (b) influence of subpopulations number and the migra-
tion frequency on the relative gap between the bounds of Min-max Cmax.

Figure 4.12(a) represents the influence of the subpopulation number (Gap absolute S
Pop) and the migration frequency (Gap absolute Freq Mig) on the absolute gap be-

tween the bounds of Min-max Cmax. Figure 4.12(b) represents the influence of the sub-
population number (Gap relative S Pop) and the migration frequency (Gap relative
Freq Mig) on the relative gap between the bounds of Min-max Cmax.

We can say that the migration frequency is a parameter which influences the results of
the PGA MIG but on the other hand we can say that the subpopulation number is not a
parameter which influences truly the results.
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subpopulations.

5. Comparison between the PGA MIG and sequential GA

In this section analysis, we present a comparison between the performances of the PGA
MIG and sequential GA. This comparison relates to the quality of the solution and the
execution time of the two versions.

(a) Concerning the performances on the quality of solution of the PGA MIG, they are
represented in Figure 5.1. This figure is composed of two series of data: the series of the
sequential GA results and the series of the PGA MIG results, obtained with 4 Threads
(indeed the number of four subpopulations was the number which gave good results in
term of quality of solution) and the migration frequency is taken to 90%.

According to this figure, the Cmax obtained by the PGA MIG is always better com-
pared with sequential GA. This result remains valid while increasing the HFS instance
scale (number of jobs). This phenomenon is highlighted by the progressive divergence
between the two curves in the preceding figure.

(b) Concerning the performances in execution time of the PGA MIG, theoretically,
this model must lead to a considerable acceleration if subpopulations are distributed at
a rate of subpopulation by processor. Indeed, the architecture chosen in our implemen-
tation does not permit to have such an acceleration. Nevertheless the estimation of the
time taken by each Thread (each Thread is assigned to one subpopulation) gives us in-
formation on the acceleration which can lead this implementation if it is executed on an
adequate multiprocessors architecture.

Table 5.1 represents CPUs time taken by sequential GA and CPUp time taken by the
PGA MIG executed with 10 subpopulations (10 Threads). Threads execute each one with
the same number of generations as sequential GA; therefore, 10 times more generations
but on a population size reduced by a factor of 1/10 for each Thread. CPUp time is the
time which the two processors of architecture take to lead to the solution. Each proces-
sor is thus responsible to evaluate 5 Threads. By dividing CPUp time on the 5 Threads,
we will have the time taken by each Thread in the execution of the algorithm on its
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Table 5.1. Data for Figure 5.2.

Number of jobs CPUs CPUp CPUp 1Th

5 0.5 2 0.4

10 2 4 0.8

15 3 6 1.2

20 6 11 2.2
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Figure 5.2. Comparison of the execution time of sequential GA and parallel GA.

subpopulation. Note that the time of migration is distributed equitably between different
Threads. The time taken by each Thread is noted CPUp Th and it is also represented in
Table 5.1. The time taken by sequential GA (CPUs) is represented in Figure 5.2. And in
the same way the time taken by a Thread of the PGA MIG executed on 10 subpopulations
is represented in Figure 5.2.

We clearly notice the acceleration which this parallelization model can reach. This
acceleration is not due to the reduction of the number of generations compared to se-
quential GA, since this model executes P times the number of generations carried out by
sequential GA (P: number of subpopulations), but rather to the reduction of the num-
ber of individuals treated by each Thread (size of subpopulations). This reduction results
from the distribution of the origin population on different Threads.

6. Conclusion

The goal of the article is the resolution of the hybrid flow shop production systems sched-
uling problem by using a parallel genetic algorithm. The implementation investigated is
based on the parallel genetic algorithms model with migration (PGA MIG).

The parallelization model used for the genetic algorithms, which is migration (PGA
MIG), proved its capability and adequacy in the resolution of the HFS scheduling prob-
lem. It shows also the efficiency of the population distribution in the resolution of the
premature convergence problem.
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Indeed parallelization according to the migration model strongly improves quality of
the solutions, compared as regards sequential GA. The efficiency of this parallel model
highly depends on parameters including but not limited to the number of independent
subpopulations, the interconnection topology between subpopulations, the choice/re
placement strategy of the migrant individuals, and the migration frequency. The migra-
tion frequency maintains the link between the different subpopulations and guarantees
the aspect of the single population which is distributed in distinct subpopulations.

This parallel model (PGA MIG) gives an acceleration if it is implemented on a parallel
architecture which offers an acceptable number of processors. Indeed, in this model an
acceleration is significant if the parallel architecture contains as many processors as of
subpopulations and if the communication cost is low.

This resolution of the HFS by the PGA MIG was not treated in the literature. In the
literature, the authors have used another parallel model for the resolution of this problem
(HFS) or they solved another problem with this parallel model (PGA MIG).

Our research is now directed
(i) to an implementation of our proposed model in a grid computing to obtained a

fully parallel implementation;
(ii) to a full evaluation of the proposed model with previous published one including

but not limited to parallel taboo search.
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