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This paper addresses the problem of estimating the ratio of the means of independent
normal variables in agricultural research. The first part of the research examines the dis-
tributional properties of the ratio of independent normal variables, both theoretically
and using simulation. The second part of the research evaluates the relative merits of two
common estimators of the ratio of the means of independent normal variables in agri-
cultural research, an arithmetic average and a weighted average, via simulation experi-
ments using normal distributions. The results are then tested using research data from
rice breeding multi-environment trials in Jilin Province, China, in 1994. These data are
used to demonstrate the diagnostic approach developed for assessing the “safe” use of the
arithmetic and the weighted average methods for estimating the ratio of the means of
independent normal variables.

Copyright © 2006 C. G. Qiao et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

A ratio R= X/Y of independent normal variables is commonly used to capture the rela-
tive merits of two contrasting treatments, practices or methodologies in agricultural re-
search. Examples include the ratio of grain yield of a new crop variety to that of the com-
mercial control variety across a range of environments, harvest index (the ratio between
economical and biological yields of plants), and relative efficiency (the ratio between er-
ror estimates of two biological models in agricultural research). It is important to know
how the mean E(X/Y) of the ratio of the two independent normal variables should be
estimated when several such ratio estimates are available. Throughout, we assume that X
and Y are uncorrelated and that μY > 0.

The motivation for this research lies in the study of relative performance of rice va-
rieties in grain yield in Jilin Province of China in 1994 (see Jilin Provincial Seed Station
[4]), where a series of ratio estimates needed to be pooled or averaged over different en-
vironments. For this rice breeding multi-environment trial (MET) conducted over eight
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2 Ratio estimators of means of continuous variables

Table 1.1. Grain yields (kg/ha) of three rice varieties (850011, Chang 90–40, and Yan 501) and the
percent grain yield of each of these test varieties relative to the control variety (Jiyin 12) by the arith-
metic average (RA) and weighted average (RW ) in a multi-environment trial in 1994.

Location
850011 Control Chang 90–40 Control Yan 501 Control

(X) (Y) (X) (Y) (X) (Y)

Changchun 7353 5498 6304 5498 6753 5498

Gongzhuling 7574 6063 7917 6063 6485 6063

Jilin 9285 8820 8475 8820 5745 8820

Shuangyang 5646 7857 6504 7857 — —

Lishu 8940 8945 9250 8945 8625 8945

Shulan 8554 8049 9005 8049 9254 8049

Tonghua 6278 5002 — — 6627 5002

Yanbian 7889 7820 7545 7820 7956 7820

Correlation (X ,Y) 0.601 (p = 0.115) 0.648 (p = 0.116) 0.418 (p = 0.351)

Mean 7690 7257 7857 7579 7349 7171

Standard deviation 1264 1521 1154 1316 1279 1622

Coefficient of
0.164 0.210 0.147 0.174 0.174 0.226

variation

RA 108.6 — 105.1 — 105.8 —

RW 106.0
CVY =
0.074

103.7
CVY =
0.066

102.5
CVY =
0.086

locations, the grain yield data were analysed to quantify the percent increase in grain yield
of three varieties over the control variety (Table 1.1). In such studies, a subset of rice va-
rieties are added in or dropped out from the regional variety testing program every year,
based on their overall performance (mainly yield) relative to the control. This makes the
field evaluation of rice varieties progress in a roll-over pattern. The aim is to estimate the
mean percent yield increase of each of the test varieties over the control variety across a
range of environments. In Table 1.1, the percent grain yield of each test variety relative to
the control variety (Jiyin 12) is used to assess the yield improvement of the new variety
at these locations. The ratio of grain yield of each test variety to grain yield of the control
(expressed as a percentage), over all possible trials in the MET, is to be estimated.

Since the mean E(X/Y) of the ratio of two independent normal variables does not
exist (Lukacs and Laha [10]; Lukacs [9]; Springer [16]; Johnson et al. [5]), this causes a
practical problem in its estimation due to the non-existence of E(1/Y), because Y can in
theory assume values arbitrarily close to zero. Lai et al. [8] studied a punctured normal
distribution, where a small neighbourhood (|Y | ≤ ε with ε a small positive number) is re-
moved from consideration, through two left-truncated normal variables. They show that
the mean of the inverse of the punctured normal variable exists, whence E(X/Y | |Y | >
ε)= E(X)E(1/Y | |Y | > ε) also exists although E(X/Y) fails to exist. They also justify the
estimation of μX/μY as a surrogate for E(X/Y), because μX/μY is a satisfactory measure of
centre for X/Y . Hence, as the maximum likelihood estimator of μX/μY , X/Y is naturally
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the best estimator of μX/μY . The aim of this paper is to explore theoretical and numerical
aspects of the estimation of this ratio, leading to the provision of useful advice for the
practitioner.

Two methods are widely used for averaging different ratio estimates in agricultural re-
search. The first is the arithmetic average approach, which divides the sum of all the ratio
estimates by the total number of estimates (Kaeppler et al. [6]; Moreau et al. [11]; Qiao
et al. [13]). The second is known as the weighted average approach, which estimates the
true ratio via dividing the sum of all the numerators by the sum of all the denominators
of the individual ratio estimates (Robinson et al. [15]; Haque et al. [2]; Witcombe et al.
[17]). When used on the same set of data to estimate the mean of the ratio of two inde-
pendent normal variables, these two approaches may give different results or even reach
contradictory conclusions in some circumstances. We have not, however, found any re-
port in the literature comparing these two methods. We note that related research was
conducted in Qiao et al. [14], where the corresponding estimators of a binomial propor-
tion using several independent samples in agricultural research were investigated. That
work provided the impetus for the current study.

We pause now to describe the two estimators. Suppose a sample of observations
(Xi,Yi), i = 1,2, . . . ,n, is taken from a bivariate normal population N(μX ,μY ,σX ,σY ,ρ)
and for each observation, the ratio Xi/Yi is calculated. There are two popular ways in
agricultural research to estimate the ratio μX/μY , the arithmetic average approach, with
RA = (

∑
Xi/Yi)/n, and the weighted average approach, with

RW=
∑

Wi
Xi

Yi
=
[(

Y1∑
Yi

)(
X1

Y1

)

+

(
Y2∑
Yi

)(
X2

Y2

)

+ ···+

(
Yn∑
Yi

)(
Xn

Yn

)]

=
∑
Xi∑
Yi
= Xn

Yn
.

(1.1)

Intuition suggests that RA = (
∑
Xi/Yi)/n is a poor estimator of μX/μY . This is because Yi

can be small and positive, leading to large and positive Xi/Yi, thus biasing the final average
upwards. It averages after division. In contrast, RW = Xn/Yn should be a better estimator
of μX/μY as very small Yn values are less likely to occur, thus lessening the upward bias. It
averages before division. Hence, RW appears generally superior to RA.

For the motivation example, a ratio of means of independent normal variables (grain
yield in this instance) is to be estimated. The arithmetic and weighted average ratio esti-
mators produced different estimates in Table 1.1 and it is unclear which estimator should
be used. This forms the drive for investigations of the theoretical foundation of the dif-
ference between the two methods and for evaluation of them in a more general sense in
agricultural research.

The paper is presented in five sections. Section 2 explores the distribution of the ratio
of two independent normal variables; this is followed by an evaluation of the two esti-
mators of the ratio of normal means, both theoretically and using simulation. Section 4
applies the findings to a data set from an agricultural experiment, while Section 5 con-
tains general recommendations concerning the use of the two estimators in agricultural
research.



4 Ratio estimators of means of continuous variables

2. Distribution of the ratio of independent normal variables

2.1. The probability density function of the ratio of independent normal variables.
Springer (see [16, pages 139–148]) found the probability density function of W =
(X/σX)/(Y/σY ) and then R = X/Y through the use of the simple transformation R =
(σX/σY )W . This result is rather unwieldy for computational purposes. Kamerud [7] gave
the probability density function of R= X/Y explicitly. There is an error in her derivation
of the density function of W that we rectify in the following, making it necessary to adjust
the density function.

Define U = X/σX , V = Y/σY , and thus U ∼ N(μX/σX ,1), V ∼ N(μY /σY ,1). Set W =
U/V and let g be its density function. Replacing μ1 and μ2 in Kamerud [7] by μX/σX and
μY /σY , respectively, we have

g(w)= (2π)−1Qexp(M), (2.1)

whereM=−(1/2)((μY /σY )w−μX/σX)2s2,Q=ks(2π)1/2[1−2Φ(−k/s)]+2s2 exp(−k2/2s2),
s= (w2 + 1)−1/2, k = ((μX/σX)w+μY /σY )s2, and Φ is the standard normal cumulative dis-
tribution function. The probability density of R is then given by f (r)= (σY /σX)g((σY /
σX)r).

In contrast to the method given in Springer [16], Kamerud’s expressions are easy to
compute numerically. Hence, Kamerud’s probability density function is used to generate
graphs of X/Y against its density, shown in Figure 2.1, to assess the distributional proper-
ties of the ratio of two independent normal variables. Some typical plots (Figures 2.1(a)–
2.1(c)) are drawn using this density function, with varying coefficient of variation (CV)
for the denominator variable. From the considerations of Section 2 and Qiao et al. [14],
it is evident that the CV of the denominator is of critical importance. In Figure 2.1(a), the
CV of both X and Y is small (0.1). Hence, the density function is fairly symmetric around
μX/μY = 1, having the bell-shape of a normal distribution. The long tail in Figure 2.1(b)
and multiple peaks in Figure 2.1(c), where the CV is small for the numerator but large
for the denominator, indicate that the moments, especially the mean of the distribution,
may not exist.

For small coefficient of variation of Y(CVY ), the moments of the ratio appear to exist.
This is due to the fact that very small Y values were not sampled in the above graphical
presentation and hence we were effectively sampling from (X/Y) | |Y | > ε, a punctured
normal for the denominator variable (Lai et al. [8]). The moments of X/Y appear to exist
in this situation. Both the arithmetic and the weighted average methods involve ratios
of independent normal variables. We will demonstrate later that, as far as estimation
of μX/μY is concerned, both the arithmetic and the weighted average methods can be
used when CVY is sufficiently small. The circumstances under which the ratio of two
independent normal values can be used to safely estimate the ratio of the means are now
investigated using simulation.

2.2. Simulation of the distribution of the ratio of normal random variables. Software
SAS 8.2 was used to simulate the distributional properties of the ratio R = X/Y of two
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(c) σX = 10, σY = 500, CVX = 0.1,
CVY = 5.0

Figure 2.1. Density functions for the ratio R of two independent normal variables X ∼ N(100,σX)
and Y ∼ N(100,σY ), so μX/μY = 1, as CVY varies.

normal variables X ∼ N(μX ,σX) and Y ∼ N(μY ,σY ). The population means of both vari-
ables were fixed at 100 and hence μX/μY = 1. The population standard deviations of both
variables took the values 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, and 500, leading to
both CVX and CVY taking values 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, and 5. For
each of these 144 combinations, 500 000 pairs of (Xi,Yi) were sampled; the mean and
standard deviation of the ratios Ri = Xi/Yi were examined.

Before considering the simulation results, we offer some theoretical reflections. The
mean of X/Y does not exist, but under sampling, X/Y and X/Y | |Y | > ε are essentially
the same random variable for sufficiently small ε. For example, if μY > 0 and CVY < 0.2,
it is possible to find an ε such that 0 < ε < μY − 5σY . Hence, fewer than one in a million
sample values of Y will have absolute value less than ε. As argued in the introduction,
E(X/Y | |Y | > ε) = E(X)E(1/Y | |Y | > ε) and this is approximately μX/μY (Lai et al. [8,
Section 4.2]) as long as CVY < 0.2. As pointed out in (Lai et al. [8, Section 5.2]), X/Y is the
maximum likelihood estimator of μX/μY , and hence the estimator of choice. In summary,
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as long as CVY < 0.2, theory tells us that X/Y is a sound estimator for the centre of X/Y .
Our simulation results now confirm these findings.

The simulation results, listed in Table 2.1, indicate that the sample mean and standard
deviation of the ratio estimates are all strongly influenced by CVY . This supports our
earlier remark that CVY , not CVX , is a critical parameter. When CVY < 0.2, the mean of
R remains close to μX/μY = 1, while the standard deviation of R increases approximately
linearly as CVX increases (Table 2.1). It appears that the variation of R is almost purely
determined by the variation in the numerator variable when CVY is small. Evidently,
CVY = 0.2 is an appropriate cut-off point for the denominator; for larger CVY values,
the mean deviates substantially from μX/μY = 1 and the standard deviation increases ac-
cordingly. In contrast, CVX has no influence on the mean of R, and a relatively small
influence on the standard deviation. Hence, the deleterious effect of increasing CVY is
much stronger than that when increasing CVX .

The sample mean of the ratios fails to estimate μX/μY when CVY > 0.4, while the stan-
dard deviation is extremely large, with erratic behaviour, when CVY > 0.3. For the sam-
ple means to serve as reasonable estimators of μX/μY for this sample size (500 000), CVY

apparently has to be kept sufficiently small (CVY < 0.2 appears to suffice). In practical
applied research, it is rare for the CV of a normal variable to be larger than 5.0. Thus, as
long as CVY < 0.2, it makes empirical sense use the ratio estimator X/Y .

This simulation was repeated first with μX/μY = 10/100= 0.1, and then with μX/μY =
100/10 = 10. The mean and standard deviation of the ratio behave similarly to the case
where μX/μY = 1. This provides circumstantial evidence that the magnitude of μX/μY
does not influence the manner in which the sample mean estimates μX/μY .

2.3. Implications in applied research. The non-existence of moments of the ratio of
normal variables presents a problem. In practical applications, as long as we avoid sam-
pling in an interval around Y = 0, moments of X/Y will appear to exist. If we let ε be a
sufficiently small positive quantity, then Xi/Yi can be used to estimate the ratio of μX/μY ,
provided |Yi| > ε. Hall [1] showed that if a positive random variable Y has a normal dis-
tribution singly truncated from below, denoted by Na(μ,σ), where 0 < a < Y , then the
inverse moments E(Y−1) and E(Y−2) can be approximated accurately by expressions in-
volving Dawson’s integral. The expressions are independent of the truncation point a,
provided that (σ/μ)2 < a/μ < 1/25. This will ensure the apparent existence of the expec-
tation of the ratio of two independent normal variables E(X/Y) when (σ/μ)2 < 1/25, or
CVY = σ/μ < 1/5= 0.2. The central idea behind this and behind our investigations is sim-
ilar, namely to make the denominator variable nonzero, a condition easily met in practical
research.

The findings also suggest that if we want to use the sample mean of ratios Xi/Yi to
estimate μX/μY , then the larger the sample we use, the smaller the CVY we will need to
avoid sample points getting close to zero in the denominator. When CVY is sufficiently
small, there is almost no chance for a value of Y very close to zero being sampled, thus
ensuring the apparent existence of sample moments.

When CVY is very small, Y behaves as Y | |Y | ≥ ε for some ε > 0, thus the moments
of 1/Y can be accurately approximated (Hall [1]; Nahmias and Wang [12]). This leads to
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Table 2.1. Simulation of the ratio distribution: mean and standard deviation for 500 000 pairs of
observations Xi/Yi, where Xi ∼ N(μX ,σX) and Yi ∼ N(μY ,σY ), under varying coefficients of variation
(CV), with μX/μY = 100/100= 1.

CVX
CVY

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 5.0

Mean

0.1 1.010 1.046 1.149 1.168 1.738 1.077 3.653 1.199 0.466 −1.810 −0.144 −0.054

0.2 1.011 1.046 1.150 1.167 1.771 0.967 3.485 1.123 0.271 −1.910 −0.143 −0.031

0.3 1.011 1.047 1.152 1.166 1.803 0.857 3.318 1.046 0.076 −2.009 −0.142 −0.007

0.4 1.011 1.047 1.153 1.164 1.835 0.747 3.150 0.970 −0.120 −2.108 −0.140 0.017

0.5 1.011 1.047 1.155 1.163 1.868 0.637 2.982 0.893 −0.315 −2.207 −0.139 0.041

0.6 1.011 1.047 1.156 1.162 1.900 0.527 2.815 0.817 −0.510 −2.307 −0.138 0.065

0.7 1.011 1.047 1.158 1.161 1.932 0.417 2.647 0.740 −0.706 −2.406 −0.137 0.089

0.8 1.011 1.047 1.160 1.159 1.965 0.307 2.479 0.664 −0.901 −2.505 −0.136 0.113

0.9 1.012 1.047 1.161 1.158 1.997 0.197 2.312 0.587 −1.096 −2.605 −0.134 0.137

1.0 1.012 1.047 1.163 1.157 2.029 0.088 2.144 0.511 −1.292 −2.704 −0.133 0.160

2.0 1.013 1.049 1.178 1.145 2.353 −1.012 0.467 −0.255 −3.245 −3.697 −0.121 0.399

5.0 1.017 1.053 1.107 1.225 3.323 −4.311 −4.563 −2.550 −9.105 −6.676 −0.085 1.116

Standard deviation

0.1 0.1 0.3 12.4 49.1 548.6 433.7 1606.9 255.3 1020.0 2145.6 552.5 93.4

0.2 0.2 0.3 12.6 50.7 575.8 439.2 1552.3 244.4 1143.8 2175.4 545.2 84.1

0.3 0.3 0.4 12.9 52.3 604.0 459.6 1498.9 240.1 1269.0 2206.5 538.3 79.9

0.4 0.4 0.5 13.4 54.1 633.1 493.2 1446.8 242.7 1395.1 2238.9 531.9 81.5

0.5 0.5 0.6 13.9 55.9 663.0 537.5 1396.2 252.0 1521.9 2272.6 526.0 88.8

0.6 0.6 0.7 14.4 57.8 693.5 590.1 1347.3 267.3 1649.3 2307.5 520.6 100.4

0.7 0.7 0.8 15.1 59.8 724.6 648.9 1300.1 287.6 1777.1 2343.6 515.7 115.1

0.8 0.8 0.9 15.8 61.8 756.2 712.5 1254.9 311.9 1905.2 2380.8 511.3 131.8

0.9 0.9 1.0 16.5 63.9 788.3 779.6 1212.0 339.5 2033.6 2419.0 507.5 149.8

1.0 1.0 1.1 17.3 66.1 820.8 849.4 1171.6 369.5 2162.3 2458.3 504.2 168.8

2.0 2.0 2.2 26.4 89.3 1160.1 1615.1 965.4 730.3 3455.8 2896.7 503.7 376.8

5.0 5.1 5.4 58.4 167.2 2234.0 4055.0 2305.0 1931.0 7357.4 4490.4 779.2 1029.9

apparent existence of the sample moments of X/Y . From our simulations and the results
of Hall [1], CVY < 0.2 can be used as a condition which determines the usefulness of RA

and RW .

3. Comparison of the two estimators

In this section, we examine the performance of the two estimators of μX/μY , first in the
light of the conclusion of Section 2, then theoretically, and finally using simulation.

3.1. Estimators and coefficient of variation. From the previous section, it is evident that
Xi/Yi is a reasonable estimate of μX/μY provided CVY < 0.2. This observation will provide



8 Ratio estimators of means of continuous variables

the reason why RW improves as the sample size n increases, while for RA, this is not the
case; hence, RW will be regarded as a superior estimator. We now examine RW and RA

separately and conclude that RW can be used if CVYn
< 0.2, while RA can be adopted if

CVY < 0.2. The error in RA as an estimator of μX/μY does not decrease with sample size,
whereas the error in RW as an estimator of μX/μY decreases to zero with sample size,
hence RW is to be favoured.

3.2. Weighted average ratio estimator. Recall that RW is called the weighted average
estimator, named so because it can be written as

RW = Xn

Yn
=
(

Y1∑
Yi

)(
X1

Y1

)

+

(
Y2∑
Yi

)(
X2

Y2

)

+ ···+

(
Yn∑
Yi

)(
Xn

Yn

)

. (3.1)

Since X ∼ N(μX ,σX) and Y ∼ N(μY ,σY ), it follows that Xn ∼ N(μX ,σX/
√
n) and Yn ∼

N(μY ,σY /
√
n). Hence, CVXn

= (σX/
√
n)/μX and CVYn

= (σY /
√
n)/μY . If μX ,μY �= 0 and

(σY /
√
n)/μY < 0.2, then our simulations demonstrate that RW = Xn/Yn is an acceptable

estimator of μX/μY . Thus, for practical purposes, we recommend that RW is used to esti-
mate μX/μY , since taking a sample of sufficiently large size n will reduce the coefficient of
variation of Yn.

In designing a research experiment or survey, the sample size n required to provide
a reasonably good estimate of μX/μY can be determined in the following way. Take a
sample of size n from X ∼ N(μX ,σX) and Y ∼ N(μY ,σY ). In order for RW = Xn/Yn to
estimate μX/μY , the coefficient of variation for the denominator of RW has to satisfy
CVY = σY /

√
n/μY < 0.2, or n > 25(σ2

Y /μ
2
Y ). Here, CVY , rather than CVY , being small is

the condition that needs to be fulfilled. In practical situations, the population means
and standard deviations of interest are rarely known, but can be estimated by the relevant
sample means and standard deviations. Hence, the above inequality can be approximated

by n > 25(s2
Y /Y

2
n).

In practical terms, the sample size n is always predetermined. Thus, sample results can
be examined to see if they satisfy the requirement sY /

√
n/Yn < 0.2. This will provide a

general guideline for evaluating the suitability of the weighted average method in esti-
mating the ratio of the means of two normal variables.

3.3. Arithmetic average ratio estimator. Estimator RA =
∑n

i=1(Xi/Yi)/n is an equally
weighted average of n ratios Xi/Yi. We can adopt the same methodology used in eval-
uating the weighted average method to assess the suitability of RA. The coefficient of vari-
ation of Yi, however, is σY /μY in this case, instead of σY /

√
n/μY . If σY /μY ≥ 0.2, for exam-

ple, then Xi/Yi is a poor estimator of μX/μY . Taking a larger sample size n is of little use.
Naturally, the sample value of sY /Yn can be used as a diagnostic tool for the evaluation
of the appropriateness of RA. Thus, we recommend the use of RA only if the coefficient
of variation of Yi is sufficiently small, that is, CVY = sY /Yn < 0.2. The simulation results,
which follow, support our recommendation.
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3.4. Theoretical considerations. Here we prove thatRW does converge to μX/μY in prob-

ability, as the sample size increases. Recall that Xn
P−→ X , convergence in probability, if for

every ε > 0, P(|Xn−X| ≥ ε)→ 0 as n→∞. We now present the following relevant results.

Lemma 3.1 (Lukacs [9, Corollary to Theorem 2.3.3]). Let g(x, y) be a continuous function

of the real variables x and y. If Xn
P−→ X and Yn

P−→ Y , then g(Xn,Yn)
P−→ g(X ,Y) as n→∞.

Theorem 3.2. Let Xn and Yn be means of samples of size n, drawn independently from

normal populations. Then Xn/Yn
P−→ μX/μY .

Proof. From the weak law of large numbers, Xn
P−→ μX and Yn

P−→ μY . Take g(x, y) = x/y,
Xn = Xn, Yn = Yn, X = μX , and Y = μY in the above lemma and the theorem follows
immediately. �

It is the behaviour of X/Y for Y is near zero that permits us only to conclude that RW

converges to μX/μY in probability. Ensuring that μY �= 0 and CVY < 0.2 in practice allows
us to avoid estimation difficulties, when using RW .

3.5. Simulation study of the two estimators. Random samples were generated, using
software SAS 8.2, from two independent normal distributions, N(μX ,σX) and N(μY ,σY ),
to evaluate the relative merits of the two ratio estimators. The coefficients of variation of
the two populations were assumed equal, or σX/μX = σY /μY = CV. A preliminary sim-
ulation was conducted to compare the distributions of the two estimators graphically.
Systematic simulations were then conducted for a more in-depth evaluation of the dis-
tributions using parameter values typically found in agricultural studies. Mean and stan-
dard deviation were examined for each of the two estimators.

3.6. A preliminary simulation. The distributions of RA and RW were simulated from
two independent normal populations for the particular case, where μX = σX = 200 and
μY = σY = 100, hence μX/μY = 2 and there is moderately large population variation
(CVX = CVY = 1). Two hundred samples, each of size n = 300, were drawn from each
of the numerator and denominator populations. The distributions of RA and RW are
graphically compared in Figure 3.1.

The central tendency is different between the two estimators, with the mean of the
RW estimates being almost the same as the true ratio of two, and that of the RA esti-
mates further away. Furthermore, the variance of the former is much smaller than that
of the latter. This indicates that RA gives some unusually large or extraordinarily small
values while RW is concentrated near the true ratio. In this fairly typical example, it is
evident that the weighted average is better at estimating the ratio of the two popula-
tion means. The reason for this contrast is explained as follows. For ratio estimator RA,
since X ∼ N(200,200) and Y ∼ N(100,100), CVY = 100/100= 1 > 0.2. Thus the RA esti-
mates are meaningless, since the values of RA = (

∑300
i=1Xi/Yi)/300 are extremely variable.

For ratio estimator RW , in contrast, X300 ∼ N(200,200/
√

300), Y 300 ∼ N(100,100/
√

300),
thus CVY 300

= 100/
√

300= 0.0577 < 0.2. Hence, the values of RW = X300/Y 300 are close to
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Figure 3.1. A comparison of the distributions of RA and RW using 200 ratio estimates. Note the dif-
ferent scales used in (a) and (b), where the mean and standard deviation over the 200 estimates are
1.430 and 18.465 for RA and 2.015 and 0.152 for RW , respectively.

Table 3.1. Impact of sample size on the mean and standard deviation of RA and RW .

Sample size 1 4 25 100 400

Mean of RA 3.135 0.669 0.744 0.540 0.478

Standard deviation of RA 32.968 19.407 7.820 7.328 6.216

Mean of RW 3.135 1.042 1.038 1.014 1.001

Standard deviation of RW 32.968 1.591 0.302 0.147 0.073

CVY 1 0.5 0.2 0.1 0.05

μX/μY = 2, leading to useful RW values. In conclusion, RW here is a better estimator of
μX/μY than RA.

3.7. Comparison as sample size changes, with coefficient of variation fixed. Here we
illustrate the effect of increasing sample size on the two estimators, when CVY > 0.2. We
use X and Y independently drawn from two N(100,100) distributions, whence CVX =
CVY = 1; 200 random samples of 1, 4, 25, 100, and 400 pairs of observations (xi, yi)
were generated. Table 3.1 summarised the distributions of RA and RW for each sample
size, where the means and standard deviations are based on 200 samples in each cell of
the table and RA = RW when n= 1. Results show that the weighted average settles down
to the true ratio of one as the sample size increases. The arithmetic average RA always
fails to estimate μX/μY , whereas with increasing sample size, CVY falls under 0.2 and the
weighted average RW becomes a useful estimator of μX/μY .

Note that RA, even as the sample size increases, shows no tendency to approach the
true ratio of one. In fact, the mean of RA took arbitrary values as sample size increased.
On the other hand, the distribution of RW centres on the true ratio as the sample size
increases. In particular, for sample sizes of 25 or more (whence CVY < 0.2), RW performs
well.
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In summary, RW unlike RA, improves as an estimator of μX/μY under moderate in-
creases in sample size. The major difference between RA and RW is mainly because the
latter has a better theoretical basis as an estimator for μX/μY . The advantage of RW over
RA in reducing the estimation bias, however, depends on the sample size.

4. Application of the two estimators in rice trials

The grain yield data of the rice breeding MET are used in an attempt to evaluate the
relative merits of the two estimators of the ratio of independent normal variables in agri-
cultural research. Detailed results of the analyses using both estimators were listed in
Table 1.1. An examination of the correlations between the numerator (X) and denomi-
nator (Y) variables shows that there was no significant correlation between the yield of
each of the three test varieties (X) and that of the control variety (Y). Hence, the follow-
ing analysis assuming independent normal variables is justified. (Under the assumption
of (X ,Y) having a bivariate normal distribution, corr (X ,Y)= 0 implies that X and Y are
independent.)

4.1. Estimation of the pooled percent yield improvement over control. Here the ratio
of averages RW represents the expected performance of the test variety across the whole
region, while the average ratio RA could be regarded as an indicator of what might be
expected at any particular location. The choice of the two estimators depends predomi-
nantly on the aims of the research, rather than purely on their statistical properties. Since
the emphasis was on testing for broad adaptation of the crop varieties, or to summarise
information on the overall performance of each cultivar, relative to the control, over the
whole range of environments (region), RW is thus a naturally better option than RA. As
far as specific adaptation is concerned, the RA may have its merit in that it has a better
relationship with the expected performance of the variety at a particular location. This,
however, is out of the scope of the present study.

The results show that there is a degree of variation in the difference between RA and
RW for the three test varieties, ranging from 1.4% to 3.3% (Table 1.1). Estimators RA and
RW demonstrate greater difference for the two test varieties 850011 and Yan 501 than for
Chang 90–40. From the plant breeding point of view, there is reason (to be discussed in
the next subsection) to believe that differences of such magnitude between RA and RW for
rice varieties are sufficiently large to change the conclusions of the plant breeding METs.

It is regulated by the Jilin Provincial Crop Variety Evaluation Committee [3] that a
new variety of a self-pollinated crop species such as rice has to exceed the control, in
grain yield, by at least 5% over three consecutive years before it can be considered for re-
lease and commercialisation. The regulation imposed by the committee is most stringent,
and it is usually difficult for a test variety to increase grain yield by an extra 1% against the
control variety. Thus a 1% difference between the two ways of estimating the pooled ratio
of the two rice varieties under comparison can make a real difference in deciding whether
a particular variety should be released. Therefore, based on the observed difference be-
tween RA and RW for the three varieties, it is evident that the two ways of estimating the
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ratio of normal variables can influence the decision of plant breeding in terms of recom-
mendation for release and commercialisation. The findings of this paper indicate that the
weighted average ratio estimator RW should be used in practical agricultural research.

4.2. Application of the diagnostic approach in rice trials. The difference between these
two estimators ranges from 1.4% to 3.3%, depending on the coefficient of variation for
the denominator variable, the grain yield of the control. When the CV of the control is
larger than 0.2, as in the case for 850011 and Yan 501, the two estimators differ by a rea-
sonably large amount, 2.6% and 3.3%, respectively. The RA is unreliable in this case, while
RW should be used to demonstrate the yield potential of the two varieties relative to the
control. In comparison, in the case of Chang 90–40, the CV of the control is only 0.174
(below 0.2) and hence the difference between RW and RA is relatively much smaller. Thus,
the difference between RW and RA is dependent on the CV of the grain yields for the con-
trol (denominator variable) over the range of environments in which the test variety is
being compared with the control. Furthermore, CVY , the CV of the denominator of esti-
mator RW , is always much smaller than CVY , the CV of the denominator of estimator RA,
for each of the three comparisons between the test varieties and the control (Table 1.1).
This clearly demonstrates the advantage of using the weighted average method in these
situations.

Based on the RW estimates of all test rice varieties, only 850011 exceeded the control in
grain yield by more than 5% in 1994. By standards commonly adopted in the province, a
particular variety will qualify for possible release only if it has outperformed (exceeded)
the control in grain yield by 5% or more for all three years of the Provincial Regional
Test. Thus, if 850011 continued to outperform the control by 5% or more in grain yield
for another two years in the Regional Test, it would be recommended for release, as long
as its other agronomic traits have reached the relevant levels of standards. The other two
test varieties (Chang 90–40 and Yan 501) have both failed to exceed the control in grain
yield by the threshold of 5%. Hence, both varieties were regarded as having no potential
for future release from this round of regional trials.

Further studies will focus on a comparison of weighted and arithmetic average es-
timators under assumption of dependence. Another potential estimator of μX/μY , the
geometric mean of the X/Y ratios, may prove useful under this circumstance, since it
may possess some potentially valuable attributes. A comprehensive investigation of these
estimators is thus justified.

5. Conclusions

The mean of the ratio X/Y of two independent normal variables does not exist. The mean
appears to exist, however, and is close to μX/μY , if we avoid sampling points for which
|Y | ≤ ε, with ε being a small positive quantity. This favourable situation is approximated
in practice when the coefficient of variation of the denominator variable is sufficiently
small (less than 0.2). In such circumstances, the ratio of two independent variables can
be used to estimate μX/μY .
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The coefficient of variation of the denominator should thus be considered when es-
timating a ratio of independent normal variables; the weighted average method auto-
matically reduces denominator coefficient of variation as sample size increases and so is
better than the arithmetic average method. We recommend the use of the weighted aver-
age approach for estimating the true ratio from a series of ratio estimates in agricultural
research. The arithmetic average approach, however, has to be adopted when only the
individual ratios are recorded.

Using the weighted average estimates of all test rice varieties in the motivation exam-
ple, we concluded that only rice variety 850011 exceeded the control in grain yield by
more than 5% in 1994. If 850011 continued to outperform the control by 5% or more in
grain yield for another two years in the three-year Provincial Regional Test, it would be
recommended for release, as long as its other agronomic traits have reached the relevant
levels of standards.

The empirically determined critical coefficient of variation value (0.2) for the denom-
inator of the ratio of independent normal variables can be used to evaluate the suitability
of both estimators. A practical diagnostic formula has been proposed to assess the relia-
bility of the weighted average ratio estimator, namely that the coefficient of variation for
the denominator mean Yn is smaller than 0.2. The arithmetic average ratio estimator is
of less use and should be employed only when the coefficient of variation for the denom-
inator is smaller than 0.2. The development of a satisfactory estimator of the ratio when
X and Y are dependent remains an area for future research.
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