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1. Introduction and motivation

There are many statistical problems in which the parameter of interest is restricted to
a subset of the parameter space. The constraint(s) may reflect prior knowledge about
the value of the parameter, or, may be a device used to improve the statistical prop-
erties of the estimator. Estimation and inferential procedures for such models may be
derived using the theorem of Kuhn-Tucker (KT). The theorem of KT is a theorem in
nonlinear programming which extends the method of Lagrange multipliers to inequality
constraints. KT theory characterizes the solution(s) to general constrained optimization
problems. Often, this characterization yields an algorithmic solution. In general, though,
this is not the case and the theorem of KT is used together with other tools or algo-
rithms. For example, if the constraints are linear or convex, then the tools of convex
optimization (Boyd and Vandenberghe [2]) may be used; of these linear and quadratic
programming are best known. More generally, interior point methods, a class of itera-
tive methods in which all iterations are guaranteed to stay within the feasible set, may be
used. Within this class, Lange [12] describes the adaptive barrier method with statistical
applications. Geyer and Thompson [6] develop a Monte-Carlo method for constrained
estimation based on a simulation of the likelihood function. Robert and Hwang [16]
develop the prior feedback method. They show that the constrained estimator may be
viewed as the limit of a sequence of formal Bayes estimators. The method is implemented
using MCMC methodology. In some situations constrained problems may be reduced to
isotonic regression problems. A variety of algorithms for solving isotonic regression are
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2 Constrained estimation and the theorem of Kuhn-Tucker

discussed by Robertson et al. [17]; PAVA, to be discussed later, and its generalizations and
the min-max and max-min formulas are perhaps the best known.

In this communication it is shown that KT theory is particularly attractive when the
unconstrained estimation problem is easily solved. Thus it is an ideal method for a broad
class of statistical models derived from the exponential family. We introduce KT the-
ory and apply it in three interesting and important statistical problems, namely ridge
regression, order-restricted statistical inference, and bioequivalence. KT theory has been ap-
plied to other statistical problems. For example, Lee [13, 14] and Mortaza and Bentler
[11] used KT theory to estimate covariance matrices with constrained structure. Linear
models with positivity constraints have been studied by among others, Liew [15] and
Wang et al.[20]. The goal of this communication is to acquaint a broad readership with
KT theory and demonstrate its usefulness by providing new insights, and further devel-
opments, in the study of some well-known and practically important problems.

2. The theorem of Kuhn and Tucker

We start with the standard set up. Let ® = R? be the parameter space and let [ (8) be the
objective function we wish to maximize. In most applications [ (8) = log f (x; 0) is simply
the log-likelihood. Often we seek the maximizer of I (8) over a subset of ® characterized
by m > 1 inequality constraints ¢;(8) = 0,...,¢,(0) = 0. The set F = {0 €O | () =
0,...,¢m(8) = 0} is called the feasible set. Formally, our goal is to find

~

0 = argmax [ (0), (2.1)

0eF

where the “argmax” notation simply indicates that 0 is the value which maximizes I (6)
on F. The functions [ (8) and ¢;(6), which map R? into R, are assumed to be continuously
differentiable. Their derivatives with respect to 0, are denoted by VI (0) and V¢;(0). We
start by presenting the theorem of KT and follow up with some clarifications.

TreOREM 2.1. Let 6 denote a local maximum on the feasible set and let € denote the set of

effective constraints at 0. If the rank of the matrix V cg(0) is equal to the number of effective
constraints, that is, if

p(Vee(0)) = [€], (2.2)

then there is a vector \ for which the relationships
V1) +> Ve (d) =0, (2.3)
i=1

1i=0, Lci(0)=0 fori=1,..,m (2.4)

hold.

We say that the ith constraint is effective at 0 if ci(é) = 0. The requirement (2.2) is
called the constraint qualification. The left-hand side of (2.2) is the rank of the derivative
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matrix evaluated at the local maxima, and |€| is the number of effective constraints at 0.
Hence (2.2) means that the derivative matrix is of full rank at the local maxima. Recall
that the constraints require that ci(é) > 0. Hence (2.4) implies that if Xi >0, then ci(é) =0
andifA; = 0, then ¢;(8) > 0. Consequently the condition (2.4) is known as complementary
slackness. That is, if one inequality is “slack” (not strict), the other cannot be. The vector
A is known as the KT multipliers. The function

L(6,) =1(0)+ > Aici(6) (2.5)

i=1

is called the Lagrangian. In practice, local maxima are found by solving a system of equal-
ities (2.3) and inequalities (2.4) on the feasible set, that is,

VL (6,A) =0,

(2.6)
Ci(e)ZO, AiZO, AiCi(G)ZO fori= 1,...,m.

Here VL denotes the derivative with respect to 6. Note that the theorem of KT only gives
necessary conditions for local maxima. In general, these conditions are not sufficient.
However, in many statistical applications, including our examples, KT finds the unique
maximizer. For a more thorough and rigorous discussion, see Sundaram [19].

3. Applications

Three applications are discussed in detail. Section 3.1 develops the ridge estimator for lin-
ear models. Our perspective on ridge regression is a bit different from the usual approach
encountered throughout the statistical literature. Note that the constraints in ridge regres-
sion are usually not part of the model but a statistical device used to improve the mean
squared error of the estimator. Section 3.2 deals with order-restricted inference for binary
data. In this situation the values of the parameters are a priori and naturally ordered.
Constrained estimation is an obvious aspect of the model. Using KT theory we develop a
simple estimating procedure. We indicate how to generalize our result to the estimation
of stochastically ordered distribution functions for arbitrary random variables. Finally,
in Section 3.3 we develop an estimation procedure for the multitreatment bioequivalence
problem. Our estimation procedure, based on KT theory, generalizes the current practice
by which equivalence is assessed for two treatments at a time.

3.1. Ridge regression. Ridge regression is a well-known statistical method originally de-
signed to numerically stabilize the estimator of the regression coefficient in the pres-
ence of multicollinearity (Hoerl and Kennard [9]). More broadly ridge regression may
be viewed as a statistical shrinkage method (Gruber [7]) with multiple uses, one of which
is variable selection (Hastie et al. [8]). Consider the standard linear model

Y =X0+e¢, (3.1)

where YT = (y1,...,y,) is the vector of outcomes, X = ((xi;)) is the model matrix, and
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6T = (61,...,6,) is the unknown parameter vector. The ridge estimator is defined by

n 2

P
0:= argérelggr; { > (yi —;xijﬁj)

i=1

P
+AD 9;} (3.2)

j=1

for some fixed A > 0. Thus the ridge estimator is a penalized least square estimator with
penalty proportional to its length. Note that the ridge estimator is not equivariant under
scaling. Therefore it is common to standardize the data before fitting the model; most
commonly the dependent variable is centered about its sample average and the indepen-
dent variables are both centered and scaled. Consequently the intercept, 6y, is set equal to
y and plays no role in (3.2). A straightforward calculation reveals that the ridge estimator
is given by

(XTX+M)'XTY. (3.3)

Typically (3.2) is fit for a range of A values (also known as the complexity parameter)
and an “optimal” value of A, one which reduces the empirical mean squared error, is then
chosen.

Alternatively consider the following constrained estimation problem. Let

1()=—-(Y-X0)T(Y -X0), c(0) =K>-076, (3.4)
and find
max {I (8) | c¢(0) = 0}. (3.5)

In other words, find the estimator which minimizes the sum of squares over 0 values
within a distance of K from the origin. Clearly we may solve this optimization problem
using the theorem of KT. The Lagrangian is

L(0,A)=—(Y -XO)T(Y -X0)+A(K?>-079). (3.6)

Critical points are found by solving (2.3) and (2.4) on the feasible set. It is straightforward
to see that (2.3) reduces to

X'y —-xTxX0+16=0. (3.7)
Equation (2.4) and the constraint lead to three relations
K% =079, A=0, MK —079) = 0. (3.8)

The system (3.7) and (3.8) may seem, at a first glance, complicated, but in fact it is very
simple. We start by noting that for any fixed value of A (3.7) is linear, thus

=00 = (XTX+MI)"'XTY. (3.9)

At this stage complementary slackness comes in handy because it can be used to de-
duce the value of A. Note that 8 (0) is the ordinary least squares estimator. Suppose
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that (O)Té (0) < K2, that is the unconstrained and constrained maxima coincide. It
follows from complementary slackness that we must have 1 = 0. On the other hand
if 8 (0)78 (0) > K2, then by complementary slackness we must have A>0and K2 —
0 (/T)Té (/,1\) = 0. Thus we obtain the following equation for A:

YIX(XTX+M) 7 (XTX +AI) "' XTY = K~ (3.10)

It is easily verified that the left-hand side of (3.10) is a decreasing function of ) therefore
(3.10) has a unique solution on the set 6 (0)76 (0) > K. To summarize,

o [(6(0),0) ifYTX(XTX)XTY < K2,
@M= . (3.11)
(6 (A),A) if otherwise,

where A solves (3.10). It is easy to verify that (é,/i) above satisfy (2.3) and (2.4). In addition

Ve(d) = —20+0 V0 satisfying the constraint 670 = K2. (3.12)

Therefore the constraint qualification (2.2) holds and by KT 6 must be a local maxima.
Moreover by the theorem of Weierstrass, which states that a continuous function on a
compact set must have a maxima on it, / (8) must have a global maxima on the feasible set.
Since we identified only one maxima point, it must be the global maximum and therefore
6 is the constrained MLE. More generally it is known that if the objective function is
concave and the feasible set is convex, then KT provides both necessary and sufficient
conditions to identify the global maximum provided that for some 8 € F, ¢;(6) > 0 for all
i (this requirement is known as Slater’s condition). Clearly these conditions hold in this
case.

The above analysis shows that the solution to the constrained estimation problem (3.5)
is the ridge estimator. In fact our derivations clarify the relationship between the dual pa-
rameters A and K and provide further insight to the statistical properties of the ridge
estimator. The relationship K — A is a function whose range and image is R, the nonneg-
ative reals. Note that if K2 > 8 (O)Té (0), then A = 0, otherwise A > 0. In statistical terms
this means that if the unconstrained estimator is within distance K from the origin, there
is no need to shrink it. Clearly A increases as K decreases. Furthermore if the 6, the true
value, satisfies 6] 6y < K2, then the constrained estimator will be consistent. Otherwise
it will not. The relationship A — K is a correspondence, not a function because although
positive A's relate to a single value of K, the value A = 0 relates to all K in [5 (O)Té (0),00).

Viewing the ridge estimator as a solution to the optimization problem (3.5) is very
appealing conceptually. It clarifies the role of A in (3.2) and explicitly relates it to the
magnitude of constraint. Furthermore it suggests some interesting statistical problems,
for example, the testing of Hy : 676 < K? versus the alternative that H; : 676 > K? (and its
dual in terms of 1) and suggests an alternative approach to calculating the large sample
distribution of the ridge estimator. Relating the value of the constraint K to the sample
size is also of interest. These problems will be discussed elsewhere.
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3.2. Order-restricted inference. There are situations in which the parameters describ-
ing a model are naturally ordered. For a comprehensive, highly mathematical, overview
of the theory of order-restricted inference and its application in a variety of settings see
Robertson et al. [17] and Silvapulle and Sen [18]. Briefly, their approach to estimation
under order constraints is geometrical with a strong emphasis on convexity. Our deriva-
tions are more practical in their orientation. However they are easily generalized to more
complicated models. To fix ideas, consider a study relating the probability of disease with
an exposure such as smoking history. Suppose that three categories of exposure are de-
fined and that it is expected that the probability of disease increases with exposure. Let
n; denote the number of individuals in each group and let X; be the number with disease
where X; ~ Bin(n;,6;). The ordering of the exposures implies that 63 > 8, > 6,. Therefore
the log-likelihood and constraints are

3
1(0) = > xilog (6;) + (n; — x;) log (1 — 6;),
i-1

3.13
c1(0) =0, -0, ( )
Cz(e) = 63 - 02.
Clearly 0 can be estimated by applying KT. The Lagrangian is
L(6,1)=1(0)+A1c1(0)+Ac2(0), (3.14)
and we find solutions to
X1 ny —Xxi
6, 1-6, —h
X2 ny — Xp
VL=|%3 "7 ¢, +tAhi—A | =0 (3.15)
X3 ns — X3
5, 1-0, "
together with
oL oL
87/11:92_6120, A]ZO, AITM:AI(GZ_BI):O)
(3.16)
JdL oL
8_/12 293—9220, /\220, Aza—b :/12(63—92) =0.

To find the critical points of the Lagrangian we need to solve (3.15) as well as (3.16). This
system is easily solved by applying the principle of complementary slackness. The general
form of the solution is summarized in Table 3.1.

Clearly, the solution is determined by which constraint(s) are effective at the opti-
mum. For example if)Atl = /Tz =0 (case I), then (3.16) implies that 51 < éz < §3 and (3.15)
yields @i = x;/n;. Thus the constraints are satisfied in the unconstrained problem as well.
In statistical terms the restricted and unrestricted maximum likelihood estimates (MLEs)
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Table 3.1. Solutions for the constrained estimation problem involving three-ordered binomial pro-
portions. We label x;; = x; + x; for all 1 <, j < 3. The quantities #;; are similarly defined. Clearly x23
is the total number of events and 7,5 is the total sample size.

Case Case II Case 111 Case IV
é X1 X1 X12 X123
. jad S jad ~12 2123
n n ni ni23
A X X23 X12 X123
0, = = 22 2
ny a3 ni N3
A X3 X23 X3 X123
0; = B = Az
ns Na3 ns Nni23
> N X1y — XM Ni23 X1M23 — N1X23
A 0 0 S — —_—
X12 M2 —X12 X123 M123 — X123
> N3 XoN3 — X3Mp Ni123 N3X12 — X312
Ay 0 s 0 —_—
X23 M3 — X23 X123 Mi123 — X123

coincide. Similarly if /\1 0, /\2 >0 (case II), then (3 16) 1mply that 01 < 92 = 93 Substi-
tuting back into (3.15) we find that 91 = x1/n; and 92 = 93 = (x2 +x3)/(ny +n3). A simple
substituting reveals the value of /\2. Cases (III) and (IV) are similarly solved. It is easily
verified that these are indeed the only solutions. In addition

Ve (8) =(-1,1,0), Ve (8) =(0,-1,1) (3.17)

are independent of 6 and of full rank, both separately and together, for all 6 in the feasible
set, thus the constraint qualification holds and the conditions of KT are satisfied. More-
over, [ (6) is concave and the feasible set is both convex and compact. Therefore the local
maxima identified must be the global maxima points. Our derivations show that the KT
solutions result in the famous pool adjacent violators algorithm (PAVA), which works in
the following way. Let 6;° denote the naive MLEs. Compare 6} and 65 If 6] < 65, then
set B, = 6 and continue by comparing 65 and 65, and so forth. If, however, 6] > 65,
then reestimate 0] and 65 assuming that they are equal and reassign them the value
(6n + 05 ny)/(n + ny). Continue as before treating both groups as if they were one.
Note that there are six possible (3!) orderings for the unconstrained MLES. Table 3.2 re-
lates the ordering of the naive MLEs with the constrained ones.

Rows 1 through 3 and 6 of Table 3.2 are self-explanatory. In row 4 the unconstrained
MLEs satisfy 65 < 65 < 0;. Recall that 6, < 6, is required. It follows that A, is positive
and that the estimators for 6, and 6, are equal; their initial value is set to be (6{n; +
05 ny)/(n1 + ny). If this value is smaller than 65, then él = 52 < 53, otherwise the con-
straint 6, < 65 is invoked and @1 = §2 = §3. Similar considerations apply in row 5.

It has been noted by an associate editor that the constrained estimators are depen-
dent whereas the unconstrained ones are independent. The degree of dependence is a
function of the true parameter values. If the inequalities 65 > 6, > 0, are strict, that is,
if 65 > 0, > 0y, then as n; — oo, i = 1,2,3 the constrained and unconstrained estimators
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Table 3.2. The relationship between the naive MLEs and the order-restricted MLEs.

Observed order of naive MLEs Case Ordering of constrained MLEs
0 <65 <05 I 01<0,<0;
0f < 0F <05 11 §1<§2=§3
05 < 0F < 0F 11 6, = 6, < 65
05 < 05 <05 IlorlV §1=§2<§30r§]=§2=§3
0F < 07 < 65 Il or IV 0,<0,=050r0 =0, =0,
05 <65 <0; v 0,=0,=0,

agree with probability tending to one. Consequently the constrained estimators are nearly
independent in large samples. Clearly if there are equalities among the parameters, the es-
timators will be dependent.

The ideas above can be implemented directly when estimating binomial proportions
in K > 3-ordered populations. More interestingly the same ideas apply in the context of
nonparametric estimation of two (or more) distribution functions. Suppose that Xji,...,
Xin; ~ Fi for i = 1,2 and that it is known that the distribution functions are arbitrary but
stochastically ordered, that is, F»(x) = F;(x) for all x € R. Fix the value of x and note that

n;
Yi=> lix,=x (3.18)
j=1

follows a Bin(n;,0;) distribution where 6; = Fi(x) and it follows that 6, > ;. Estimating
the binomial parameters (6;,6,) under order restrictions is straightforward as indicated
above. Varying the value of x we derive estimates for the distribution functions over their
entire range. Pursuing the mathematics, we recover the estimates derived initially by Hogg
[10] and discussed in depth by El Barmi and Mukerjee [5] and the references therein. We
note that this estimator is not the nonparametric maximum likelihood estimator derived
by Brunk et al. [3]. Let F*(x) and Fi(x) denote the naive and constrained estimators of
F; at x. Note that F;*(x) is the well-known empirical distribution function. It follows that
Fi(x) = F{*(x) and B(x) = Ff(x) whenever F (x) > F;"(x), otherwise

m Fi' (x) + mF5 (x)

Fi(x) = By(x) = s

(3.19)

A proof that Fi(x), i = 1,2 are distribution functions may be found in the appendix. Note
that the resulting estimates are nothing but the point-wise isotonic regression of the un-
constrained empirical distribution functions. For more on isotonic regression see Robert-
son et al. [17].

3.3. Bioequivalence. Two treatments are said to be equivalent if their mean responses
are similar. The term bioequivalence is widely used in the pharmaceutical industry to de-
scribe different drug formulations with similar absorption characteristics. We will say
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that treatments i and j are bioequivalent if [0; — 6;| < A, where 6; denotes the mean re-
sponse in group i, 6; is similarly defined, and A is a prespecified, positive constant, de-
scribing our tolerance for differences among the means. This form of bioequivalence is
known as average bioequivalence. For an in-depth statistical analysis of the bioequivalence
problem see Berger and Hsu [1] and the references therein. The bioequivalence null hy-
pothesis states that the differences between the treatment means are larger than A, that
is, Hy : |0; — 6;] > A. The alternative hypothesis is H, : [0; — 6;| < A. Thus rejecting the
null implies bioequivalence. Estimating the parameters under both the null and the alter-
native is of great interest. Both are constrained estimation problems that may be solved
using KT theory. We develop an estimation procedure under the alternative. A similar
procedure applies under the null.

Consider the following simplified set up. Let X; denote the sample average in the ith
group. Assume that X; all follow a normal distribution with equal variances, which we
set, without loss of generality, equal to unity. Therefore the log-likelihood is

3
1(0)=- Z(%i —0)%. (3.20)
i=1

1
2

The bioequivalence hypothesis states that [0; — 0;| < A for 1 <, j < 3. Clearly these con-
straints are not differentiable. However they may be equivalently rewritten as

Cl(e)ZA—(Gl—ez), Cz(e) = (01—92)+A, C3(9)ZA—(92—93),

cs(0) = (6, —65) + A, cs(0) =A— (6, - 6s), c6(0) = (61— 65) + A
(3.21)

Note that there are three pairs of constraint functions. Each pair of constraints cor-
responds to one of the original equivalence relations. In order to maximize the log-
likelihood on the feasible set we differentiate the Lagrangian and set the resulting equa-
tions equal to zero. Thus we solve

X1 — 01 —A1+A — A5+ g

VEL=|%—-0,+M —A A3+ [ =0 (3.22)
X3—05+A3 — Ay +A5 — Ag
together with
ci(0)=0, 1;=20, Lc(6)=0 fori=1,...,6. (3.23)

Obviously, the solution is determined by which constraints are effective at the opti-
mum. In principle, a complete solution of (3.22) and (3.23) requires the consideration
of all possible combinations of effective constraints. Enumeration shows that there are
(potentially) 2° such possibilities. However a careful analysis shows that the true number
of possibilities is much smaller.

Without loss of generality, relable the treatments in such a way that x; > X, > X3.
Clearly this ordering of the observed data induces the same ordering for the estimated
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Table 3.3. Solutions for the constrained estimation problem involving three bioequivalent means.

Case I Case I1 Case III Case IV Case V
~ X1+X3+A X1+XZ+X3+2A X1+X2+X3+A X1+XZ+X3+A
91 X1
2 3 3 3
~ X1+XZ+X3—A .X1+X2+X3+A X1 +Xx +Xx3
91 X2 X2 _— P — oo T
3 3 3
é\ X X1+X3—A x1+x2+x3—A X1+X2+X3—2A X1+XZ+X3—A
: ’ 2 3 3 3
XI 0 0 XI—ZXZ+X3—A 0 2}61—X2—X3—A
3 3
Xa 0 0 0 *X]‘FZXZ*X_?,*A X1+X2*2X3*A
3 3
Xs 0 xlfzng x1+x2;2x37A 2x17x237x37A 0

means. The differences x; — x; for i < j are always positive. Therefore after relabelling, the
constraints ¢, ¢4, and ¢ hold automatically. Applying the principle of complementary
slackness, we set Xz = )AL; = X6 = 0. Thus only combinations of the constraints ¢;, ¢3, and
cs need be considered. There are 2° possible combinations of these constraints that can,
in principle, be effective at the optimum. These are {@}, {c1}, {c3}, {¢s}, {c1,¢3}, {c1,65),
{cs,65), and {c1,¢3,¢5}. By construction X; — X3 > X — X, therefore if ¢; is effective, cs
must also be. Similarly, if the constraint ¢ is effective, then ¢s must be. Moreover it is
easy to check that the three constraints c;, ¢3, and ¢s are not jointly compatible but all
pairs are. Therefore if ¢; and ¢3 are effective, then c¢5 is automatically ineffective. Hence
only five solutions are possible; these are summarized in Table 3.3: see [4].
In addition

Ve (0) =(-1,1,0), Ves(0) = (0,-1,1), Ves(0) = (-1,0,1). (3.24)

It follows that the constraint qualification holds for all possible combinations of con-
straints which can be effective at the optimum. Therefore the conditions of KT are satis-
fied. Moreover it is easily verified that these are global maxima. Extensions to more than
three treatments are clear. It is worth noting that typically, even in multivariate bioequiv-
alence problems, treatments are compared two at a time. Our derivations point the way
for estimation and testing procedures which consider simultaneous bioequivalence for
large number of treatments. Further research on inferential procedures for this model are
warranted.

4. Summary and discussion

We introduce the theorem of KT and describe how it applies in three very different con-
strained estimation problems. In our examples the objective function is the log-likelihood
and our estimators are MLEs. The method, however, is clearly applicable in more gen-
eral settings and to other types of estimating equations. In our examples KT finds the
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global maximum. This remains true in many statistical problems because the objective
functions are often concave and the constraints define a convex (even bounded) region.
Although the models in Section 3 are well known and had been analyzed using different
approaches, our derivations add a unique perspective. For example, in the case of ridge
regression we explicitly relate the dual parameters A and K. Next, estimators for ordered
(event) probabilities under binomial sampling, which are of intrinsic interest, are used
to derive estimators for the empirical distributions function. Finally our treatment of the
bioequivalence problem extends the usual analysis and shows how to generalize to an ar-
bitrary number of treatments. Note that explicit expressions for the MLEs are obtained in
all three cases. This is not always true even when the constraints are linear. Consider, for
example, the regression problem with positivity constraints (i.e., 8 > 0 component-wise).
As noted by Wang et al. [20] a constrained linear model can be solved using the simplex
method in small number of steps. However constrained estimation in generalized linear
models is more complicated because the objective function is nonlinear. More powerful
tools need to be used in conjunction with KT to find a solution in such situations. Finally
we would like to mention the papers Dykstra and Wollan [4] who introduce a partial it-
erated KT theorem for problems with large number of constraints. Such methods seem
applicable, for example, in the evaluation of bioequivalence of a large number of treat-
ments.

Appendix

In Section 3.2 we derived estimators for the distribution functions under the assumption
that F,(x) > F(x) for all x € R. In particular we showed that

(Ff (x),F5 (x)) if F5'(x) = F(x),

~ ~

(F1(x), F2(x)) = m Fif (x) + npFf (x) n Fif(x) + noFy (x)
ny+np ’ ny +np

) if B (x) < Ff(x),
(A1)

where F;*(x) for i = 1,2 are the empirical distribution functions. By construction Fi(x) <

F>(x) for all x.

PrOPOSITION A.1. The functions Fy(x) defined in (A.1) are proper distribution functions.

Proof. We divide the proof into three parts. (1) Let

m=min{Xj; | i=1,2, j = 1,...,n},
(A.2)
M = max{Xij | i= 1,2, ] = 1,...,1’1,‘}.

Clearly F;*(x) = F5(x) = 0 for all x < m and Fj* (x) = F;'(x) = 1 for all x > M. Substituting
in (A.1) we find that F(x) = F,(x) = 0 for all x < m and that F,(x) = F,(x) = 1 for all
x > M. Consequently

lim Fi(x)=0, lim Fi(x)=1 fori=1,2. (A.3)

X—— xX— 0
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(2) Let s < t. By definition we have
Ff(s) < Ff(8), Fi(s)<F5(t). (A4)
In addition only one of the four possible events may occur, either (i) F;*(s) < F5(s) and
F(t) < Ff (t); or (ii) F{*(s) < FS(s) and F;* (¢) > F;(t); or (iii) F;* (s) > FS(s) and F;* (¢) <

E¥(t); or (iv) F{*(s) > F5(s) and F{*(¢) > F;" (¢). It is easily verified that (i) and (A.4) imply
that

Fi(s) = Ff(s) < F (1) = Fi(0). (A.5)
Condition (ii) and (A.4) imply that

n1F (s) + myF5 (s)

Fi(9) = Ff(9) < Ff (9 = = =

(A.6)
_ mEf O+ mFL () _ mFy (0 +mF5 (0

< = Fi(t).
ny+np ny+np

Condition (iii) and (A.4) imply that

ES * B3 *
Fi(s) = MFi () +mFy(s) _ mFy(s)+mFy(s) Fi(s) < F¥(8) < F* (1) = Bi(t).
ny+ny ny+ny
(A.7)
Condition (iv) and (A.4) imply that
* * * *
B o MEEOTmENE) _ mFE®tmED) o as)
ny+np ny +mny
We conclude that
Fi(s) < Fi(t) fori=1,2. (A.9)

(3) The functions F;*(x) are right continuous and therefore so are their linear combi-
nations, maximums, and minimums. It immediately follows that

limFy(x) = Fi(x) fori=1,2. (A.10)
xlxo
Hence the constrained estimators satisfy (A.4), (A.8), and (A.10), the defining properties
of distribution functions. |
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