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We consider two Gaussian measures. In the “initial” measure the state variable is Gauss-
ian, with zero drift and time-varying volatility. In the “target measure” the state variable
follows an Ornstein-Uhlenbeck process, with a free set of parameters, namely, the time-
varying speed of mean reversion. We look for the speed of mean reversion that minimizes
the variance of the Radon-Nikodym derivative of the target measure with respect to the
initial measure under a constraint on the time integral of the variance of the state variable
in the target measure. We show that the optimal speed of mean reversion follows a Riccati
equation. This equation can be solved analytically when the volatility curve takes specific
shapes. We discuss an application of this result to simulation, which we presented in an
earlier article.

Copyright © 2006 Henry Schellhorn. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We consider two Gaussian measures. In the “initial” measure the state variable is Gauss-
ian, with zero drift, (we chose zero drift for ease of exposition, but the same development
applies to a nonzero drift) and time-varying volatility. In the “target measure” the state
variable follows an Ornstein-Uhlenbeck process, with a free set of parameters, namely,
the time-varying speed of mean reversion. We look for the speed of mean reversion that
minimizes the variance of the Radon-Nikodym derivative of the target measure with re-
spect to the initial measure under a constraint on the time integral of the variance of the
state variable in the target measure.

We studied this problem in an earlier article (see Schellhorn [10]), where we explained
one application of this result to the field of Monte Carlo simulation. It is sometimes im-
portant to resimulate a system under a different measure than the initial measure. The im-
mediate example is sensitivity analysis. Another example is in the field of finance, where
practitioners are often interested in seeing the results of their simulations in two different
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2 Formulae for change of Gaussian measures

measures, the “actual measure,” and the “risk-neutral” measure. One of these measures
has typically a free parameter, or sets of parameters. Suppose the goal is to calculate
E[z] under two different measures, and that the integrand z(ω)—which is expensive to
compute—was initially simulated in the initial measure. We argued that a computation-
ally better resimulation estimator (compared to resimulating z(ω) in the target measure)
was the sum of the initial z(ω) weighted by the Radon-Nikodym derivative g(ω) of the
target measure with respect to the initial measure. However, the product g(ω)z(ω) tends
to have a larger variance than z(ω), and this fact may outweigh the performance gain of
not resimulating z. Care must be therefore taken in selecting a target measure for simula-
tion performance, and we suggested that a good performance measure was the variance
of g. When the state variable x is assumed Gaussian in both measures (which is very often
the case in practice for better analytical tractability), the only free parameter is the speed
of mean reversion a of x in the target measure.

The problem above is completely characterized once one of several constraints on the
autocovariance function of x in the target measure are introduced—we do not consider
the usually less interesting case, where x is not first-moment stationary in the target mea-
sure. In Schellhorn [10] we considered in turn two possible constraints:

(i) a constraint on the terminal variance of x,
(ii) a constraint on the average variance of x,

and showed that, in both cases, the control satisfied (together with other variables) a sys-
tem of four nonlinear ordinary differential equations. This system happened to be quite
difficult to solve numerically. Nevertheless, the so-called “change of measure” resimula-
tion technique proved out to be effective on various examples.

Another potential application of this problem is the theory of incomplete markets
in mathematical finance. Several authors (see, e.g., Rouge and El Karoui [8], Delbaen et
al.[2]) explore the duality between utility maximization and optimal choice of measure. If
the utility function is exponential, the dual objective to minimize is the relative entropy of
the target measure, that is, the first moment of g log g. If the utility function is quadratic,
the dual objective to minimize is the second moment of g (see Duffie and Richardson [3],
Schweizer [11], Bellini and Frittelli [1]). A majority of authors seems to have pursued the
first avenue, that is, minimizing entropy, because among others of its better tractability
(Rheinlaender [7]). We conjecture that the result of this paper may help research in the
second avenue, that is, quadratic utility functions.

In this article, we consider only a constraint on the average variance of x. Compared
to our earlier article, we use a different representation of the second moment of g, which
turns out to be easier to handle analytically. Using the maximum principle, we show that
the optimal speed of mean reversion follows a Riccati equation. We show solutions of the
problem in two cases, when volatility is constant, and when volatility is an exponential
function of time. We suspect that other cases are also amenable to closed form formulae.
Finally, we compare our exact results to the approximation given in Schellhorn [10].

2. Model and results

Notation 1. The complete filtered probability space (Ω,�,PI) supports a Brownian mo-
tion WI . We use the superscripts I and T to refer to the probability measure, expectation
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operator, variance (Var) operator, and Brownian motion in the initial/terminal measure.
When not shown otherwise, the expectation and variance operators are taken at time
zero.

The dynamics of the variable x of interest are

dx(t)= σ(t)dWI(t),

x(0)= 0,
(2.1)

where σ > 0 is a deterministic function of time. The terminal measure PT supports one
Brownian motion WT , with

dWT(t)= dWI(t) +
a(t)x(t)
σ(t)

dt. (2.2)

Once the speed of mean reversion a(t) is specified, PT becomes fully specified. We
define the Radon-Nikodym derivative process:

g(t)≡ EI

[
dPT

dPI

∣∣∣∣�t

]
. (2.3)

By Girsanov theorem,

dg(t)= a(t)x(t)
σ(t)

dWI(t). (2.4)

The optimization problem is to minimize the variance of g under a constraint on the
average variance of the state variable in the terminal measure:

minEI
[
g2(t)

]
, (2.5)

VarT
[∫∞

0
x2(t)dt

]
≤A. (2.6)

Theorem 2.1. The speed of mean reversion that solves (2.5) and (2.6) is of the form

a(t)= σ2(t)y(t), (2.7)

where y solves the Riccati equation

dy(t)
dt

=−σ2(t)y2(t)− λ,

y(T)= 0,

(2.8)

and λ≥ 0 is the Lagrange multiplier of relation (2.6).

We now look at the solution of the Riccati equation for particular volatility functions.
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Case 1 (σ is constant). The solution to the Riccati equation is

a(t)= σ
√
λ tan

(
σ
√
λ(T − t)

)
. (2.9)

As required by the transversality conditions, a(T)= 0. As expected the speed of mean
reversion is increasing in λ and decreasing in t. We notice that when λ is small the speed
of mean reversion is a linear decreasing function.

Case 2 (σ2(t) = αexp(−kt) for α > 0). We write J1 for the Bessel functions of the first
kind. Let

C ≡
−(1/2)J1

(
(2/k)

√
λαexp(−kT)

)
− (2/k)

√
λαexp(−kT)J

′
1

(
(2/k)

√
λαexp(−kT)

)
J−1

(
(2/k)

√
λαexp(−kT)

)
+ (2/k)

√
λαexp(−kT)J

′
−1

(
(2/k)

√
λαexp(−kT)

) .

(2.10)

Then

y(t)=−σ2(t)
k exp(kT)

α

u
′(
ek(T−t))

u
(
ek(T−t)) ,

u(s)= s1/2J1

(
2
k

√
λαexp(−kT)s

)
+CJ−1

(
2
k

√
λαexp(−kT)s

)
.

(2.11)

Lemma 2.2. Let v(t)= ET[x2(t)]. Then

EI
[
g2(T)

]= exp

(∫ T

t=0

a2(t)
σ2(t)

v(t)dt

)
. (2.12)

Proof. Let μ= ax/σ . Then

EI
[
g2(T)

]= ET
[
g(T)

]

= ET

[
exp

(
−
∫ T

0
μ(t)dWI(t)− 1

2

∫ T

0
μ2(t)dt

)]

= ET

[
exp

(
−
∫ T

0
μ(t)

(
dWT(t)−μ(t)dt

)− 1
2

∫ T

0
μ2(t)dt

)]

= ET

[
exp

(∫ T

0
μ2(t)dt

)]
.

(2.13)
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We obtain then

EI[g2(T)]= ET

[
exp

[∫ T

0

a2(t)
σ2(t)

[
WT

(
v(t)

)]2
dt

]]

= ET

[
exp

[∫ v(T)

0

dt

dv

∣∣∣∣
u

a2
(
v−1(u)

)
σ2
(
v−1(u)

)W2(u)du

]]

= ET

[
exp

[∫ v(T)

0
h(u)W2(u)du

]]
,

(2.14)

where we have defined

h(u)= dt

dv

∣∣∣∣
u

a2
(
v−1(u)

)
σ2
(
v−1(u)

) . (2.15)

To calculate the Carleman-Fredholm determinant (see, e.g., Grasselli and Hurd [4] or
Levendorskii [5]), we resort to a discrete approximation. We first define V as the smallest
value larger than or equal to v(T) so that V/Δu is integer. We also define

H(u)=
∫ v(T)

u
h(s)ds,

z =
[
z(1) ··· z

(
V

Δu

)]
,

Σ−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− 2H(Δu)Δu −4H(2Δu)Δu
... −4H(V)Δu

0 1− 2H(2Δu)Δu
... ···

...
...

... −4H(V)Δu

0
... 0 1− 2H(V)Δu

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.16)

We calculate

EI
[
g2(T)

]= ET

[
exp

[∫ v(T)

u=0
h(u)W2(u)

]]

= lim
Δu→0

ET

[
exp

[V/Δu∑
u=1

h(uΔu)
u∑
s=1

u∑
t=1

z(s)z(t)(Δu)2

]]

= lim
Δu→0

1√
(2π)V/2Δu

∫
···

∫
exp

(
− 1

2
zΣ−1z

)
dz
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= lim
Δu→0

1√(
1− 2H(Δu)Δ

)···(1− 2H(V)Δu
)

= lim
Δu→0

exp

(∫ v(t)

0
H(u)du

)

= exp

(∫ v(T)

u=0

∫ v(t)

s=u
dt

dv

∣∣∣∣
s

a2
(
v−1(s)

)
σ2
(
v−1(s)

)dsdu
)

= exp

(∫ v(T)

s=0

dt

dv
|s a

2
(
v−1(s)

)
σ2
(
v−1(s)

)v(v−1(s)
)
ds

)

= exp

(∫ T

t=0

a2(t)
σ2(t)

v(t)dt

)
.

(2.17)

�

Proof of Theorem 2.1. The problem is

min
a

∫ T

0

(
a2(t)
σ2(t)

+ λ
)
v(t)dt,

dv(t)
dt

=−2a(t)v(t) + σ2(t),

v(0)= 0.

(2.18)

�

The Hamiltonian is

H
(
v(t),a(t), t

)=−( a2(t)
σ2(t)

+ λ
)
v(t) + z(t)

(− 2a(t)v(t) + σ2(t)
)
. (2.19)

The Pontryagin optimality conditions are

∂H

∂a
=−2av

σ2
− 2zv = 0, (2.20)

dz(t)
dt

= a2(t)
σ2(t)

+ λ+ 2a(t)z(t), (2.21)

z(T)v(T)= 0. (2.22)

We note that these optimality conditions are sufficient (see Mangasarian [6]). From
(2.20) we obtain

z(t)=− a(t)
σ2(t)

, (2.23)
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which we reinsert in (2.21)

d

dt

(
a(t)
σ2(t)

)
=− a2(t)

σ2(t)
− λ. (2.24)

We let y = a/σ2 and obtain the result. The transversality condition (2.22) imposes
a(T)= 0.

3. Example

In this section, we compare on two examples the optimal control given by the solution
of the theorem, to the approximate optimal control given in Schellhorn [10]. We now
expose briefly the approximation approach. In the latter article, we did not exploit the
lemma, but used the following representation for our objective:

EI
[
g2(T)

]= exp

[∫ T

0
σ2(t) f (t)dt

]
, (3.1)

where

df (t)
dt

=− a2(t)
σ2(t)

+ 4a(t) f (t)− 2σ2(t) f 2(t),

f (T)= 0.

(3.2)

The representation (3.1)-(3.2) when inserted in the optimization problem (2.5), (2.6)
results in optimal control problem involving two state variables: f and v. The optimal-
ity conditions of that problem (which were not even sufficient) turned out to be quite
difficult to solve numerically. Instead, we suggested to reduce the state space to only one
variable, in a line similar to Sannutti [9].

The approximated optimal control follows, then

aapprox(t)=−σ2(t)z(t)v(t)∫ t
0 σ2(u)du

, (3.3)

where the costate variable z follows:

dz

dt
= λ+ 2az, (3.4)

under the terminal constraint z(T)= 0.
We report in Figures 3.1 and 3.2 our results for two different volatilities:

(i) σ(t)= 0.2 in Figure 3.1;
(ii) σ(t)= 0.2(1 + 0.2cos(t/4)) in Figure 3.2.

In both cases, the relative average variance of x is the ratio between the cumulated vari-
ance VarT[

∫ T
0 x2(t)dt] “with mean reversion” and the cumulated variance VarI[

∫ T
0 x2(t)dt]

“without mean reversion.” Since the constraint (2.6) is clearly tight, the numerator of this
ratio is equal to our constraint A. On the y-axis, we report the logarithm of the second
moment of g(T), calculated according to the representation of this article, that is, (2.12).
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Example with constant volatility
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Figure 3.1. Logarithm of E[g2(T)] as a function of the ratio of A over the cumulated variance of x in
the uncontrolled case (a= 0). The volatility is σ(t)= 0.2 and T = 3.

Example with nonconstant volatility
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Figure 3.2. Logarithm of E[g2(T)] as a function of the ratio of A over the cumulated variance of x in
the uncontrolled case (a= 0). The volatility is σ(t)= 0.2(1 + 0.2cos((t/4))) and T = 3.

It turns out that both methods, the exact method of this article, and the approximate one,
yield remarkably similar results in these two examples.

4. Conclusions

This article provides an alternate characterization of the solution of an optimal control
problem first introduced in the literature by us in Schellhorn [10]. The result presented
in this article is stronger, since it is not the result of a reduction of the problem. The
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examples we presented show however a remarkable coincidence in results between both
methods. We emphasize that this needs not be the case.

Our methodology can be applied to Monte Carlo resimulation, that is, simulation in
two different measures. We reported in our earlier article that the “change of measure”
resimulation scheme, where we simulate the cash flows z(ω) only once (to calculate mar-
ket value), and then adjust them by g(ω) to calculate the empirical distribution, was up
to twice faster than a “traditional scheme,” where two independent simulations were per-
formed. The same speed improvement can be attained using the method presented here.
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