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We consider some simple Markov and Erlang queues with limited storage space. Although
the departure processes from some such systems are known to be Poisson, they actually
consist of the superposition of two complex correlated processes, the overflow process
and the output process. We measure the cross-correlation between the counting pro-
cesses for these two processes. It turns out that this can be positive, negative, or even zero
(without implying independence). The models suggest some general principles on how
big these correlations are, and when they are important. This may suggest when renewal
or moment approximations to similar processes will be successful, and when they will
not.
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1. Introduction

We consider a finite capacity queueing system, usually of the M/G/C/L class. Customers
who arrive when there are already L + C customers in the system overflow. We can identify
three traffic processes in the customers leaving the system: the overflow process formed by
customers who find the system full, the output process formed by customers who com-
plete service, and these two processes, superposed together, from the departure process.
It is well known that in a number of cases in this class of queues, the departure process,
when considered as an isolated process, is Poisson. For example:
(i) in the limit, the departure process from an M/M/C/L queue is Poisson (Boes [1]);
(ii) interdeparture times from an M/G/C/0 queue are exponentially distributed and
are independent in the limit (Shanbag and Tambouratzis [2]).
Yet the complex behaviour present in these processes cannot be determined by examining
the departure process in isolation. If we take the simplest case, of outputs and overflows
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from an M/M/1/0 queue, then although both the output and the overflow process are re-
newal, neither is Poisson. The overflow process has a hyperexponential distribution and
the output process is of phase type with two phases. Yet when superposed, they produce a
Poisson process. Now the superposition of two independent renewal processes is Poisson
if and only if both are Poisson processes. So the conclusion must be that the overflow and
output processes cannot be independent. In this paper, we investigate the degree of this
dependence by considering the cross-correlation functions of the two processes. We show
that these cross-correlations can be positive, negative, or even uniformly zero, depending
on the parameters of the process. Only in the simplest case do they have a clear form.
However the models do suggest some general principles for the signs and sizes of these
correlations, and when they are important. There have been a number of methods sug-
gested for moment- or renewal-type approximations to these processes or similar ones,
for example, the equivalent random method from classical telephone theory (Cooper
[3]). (See also Whitt [4], Albin [5], Albin and Kai [6], and Johnson [7]). Having some
qualitative knowledge about correlations should enhance the reliability and the appro-
priate use of these methods. There are a large number of papers on queues with similar
correlated arrivals; see, for example, Adan and Kulkarni [8], and Heindl [9] (and other
papers in the special issue of Performance Evaluation).

Individually, the characteristics of the overflow and output traffic processes are usually
quite easy to determine. The output process is of Markov renewal type, (see Disney and
Kiessler [10, Theorem 3.3, page 172]). This collapses to a renewal output process if and
only if either (i) the service times are all zero with probability 1, (ii) L = 0, (iii) L = 1 with
the service times being constant, or (iv) L = oo with the service times being exponential
(see Disney and Kiessler [10, Theorem 3.5] for the proof of this).

Where the departure process has a Markov renewal representation, the overflow pro-
cess is renewal, since it consists of the times between entries to a particular state in the
Markov renewal process. Hence the distribution of times between overflows can be estab-
lished by the usual filtering arguments.

2. Methodology

2.1. Cross-correlations between the overflow and the output processes. The measures
that we will use for the dependence between the overflow and output processes are the
crosscovariance and cross-correlation of the processes that count the number of outputs,
N°(t), and overflows, N°"(t), in (0,t]. Thus we define

ccov (N(N"(1)) = E[N°()N® ()] - E[N*()]E[N*"(1)],

ccor (N°(£)N°"(t)) = ccov (N*(ON(1)) ) (2.1)
\/Var (No(t)) Var (Nov(t))

Since we need the joint distribution of N°(¢) and N°¥(t), we consider systems where the
entire departure process can be represented by an n-state Markov renewal process (X, T)
with semi-Markov kernel Q%(t). Usually the state will be the number of customers left
behind by a departure. Entries to one subclass of states (often the nth state) represent
overflows, while entries to the remaining states are outputs.
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The Laplace-Stieltjes transform of the Markov renewal kernel is
Ro=(I-Q)7, (2.2)

where Q7 is the Laplace-Stieltjes transform of Q9(t). Cinlar [11, page 165] gives a general
expression for the expectation of the product of the numbers of visits by time ¢, N;(¢)
and N(t), to states j and k, for a general finite-state Markov renewal process. That is,
conditional on the process starting in state i:

Ei[Nj()Nk()] = 8jkRi;(£) + Rij Ry (t) + Ry Ry (1) (2.3)

The expected product of the numbers of visits to states j and k in steady state is

n

> aiE[Nj(t)Ni(t)]. (2.4)

i=1

Here * stands for the convolution operation, R:‘j (t) = R;j(t) — J;j, to ensure that the state
occupied at time zero is not counted in the expected number of entries; # is the number
of states, and & = [« - - - &, ] is the steady state vector for the Markov chain imbedded in
the Markov renewal process.

2.2. The calculation method and verification steps. The calculations were carried out
using the symbolic algebra package Maple to do the matrix operations and invert the
resulting Laplace-Stieltjes transforms. Since these programmes are reasonably complex
(up to 100 lines of Maple), a number of checks to verify the calculation were carried out.
For example, in each of the cases where the marginal departure process is Poisson with
rate ], it was verified that & and Q¢ satisfy (e is a column vector of ones)

A
d, _
(sze—/\ S (2.5)

The matrix of expected products of the numbers of visits to states j and k in steady state
was verified to be symmetric in j and k (this is a particularly good check since it is pro-
duced at the end of a long sequence of distinctly asymmetric calculations), and finally
the simulation study (see Section 4) was also run on a number of the cases that could be
solved analytically. It produced entirely consistent results.

3. Results

3.1. M/M/1/0. We start with the simplest case of no storage with all distributions being
exponential. While this is a very simple model, it is also the simplest case of the Erlang-B
formula from classical telephone theory. We let the state of the system be the number of
customers left behind by a departure. Thus each entry to state 0 is an output and entries to
state 1 are overflows. With A being the rate of the arrival Poisson process, and y being the
service rate, the Laplace-Stieltjes transform of the semi-Markov kernel of the departure
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FIGURE 3.1. M/M/1/0 output and overflow cross-correlations.

process (see also Disney and Kiessler [10, page 84]) is

Ay A2
ol - (/\+s)();+,u+5) (/\+5)()/l\+#+5) . (3.1)
Atuts) (A+p+s)

The Laplace-Stieltjes transform of the Markov renewal kernel is

A+s)(u+s) A2
o Ady-l s(A+p+s) s(A+p+s)
Ro=(I-Q) " = u(A+s) A +2As+ s+ s?
s(A+p+s) s(A+p+s)

(3.2)

Applying (2.3) and (2.4) to appropriate terms from (3.2) leads (with the assistance of
Maple) to the following expression for the cross-covariance of the number of outputs
and the number of overflows by time ¢ (starting from steady state):

A= (V- )t = (A —pe M)

ccov (N°(t)N°" (1)) O+ p)

(3.3)

Thus we immediately see that when A = g, the cross-covariance is zero for all times. Of
course by Disney and Kiessler [10, Theorem 3.5], this cannot imply that the overflow and
output processes are independent. So this is one of those peculiar situations where zero
correlations do not imply independence. The variances of the numbers of outputs and of
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overflows are

_ pt/\((,l3 +[43 +A”2)‘+.“/12)t+2/1#(1 _e—(A+;4)t))

Var (N°(t)) G ’ »
ov _ Az((A3+H3+5‘U2/\+5‘M/\2)t—thu(l_e—()H‘u)t)) .
Var (N°"(t)) = e .

The cross-correlation of the number of outputs and the number of overflows by time ¢ can
then be calculated from (3.3) and (3.4). The cross-correlation can be seen to be identical,
except for a change of sign, when the values of A and y are interchanged. Thus if A < y, the
number of outputs and the number of overflows are positively correlated over any time
interval, while if A > u they are negatively correlated. To demonstrate this symmetry, the
cross-correlations are plotted in Figure 3.1 for values of (A, u) = {(1,4),(1,2),(1,1),(2,1),
(4,1)} (traffic intensities of Rho = 0.25,0.5,1,2,4).

So the cross-correlations reduce monotonically with increasing traffic intensity, and
increase monotonically in absolute value with time. Taking the limit of the cross-
correlation expression gives

Au(p— 1)
O+ 4hp+42) B+ Apd)

This limiting expression was also found by a simple direct method in Disney and Kiessler.

(3.5)

lim ¢ cor (N°(t)N°(t)) =

3.2. Systems with storage, M/M/1/1, M/M/1/2. We now add one or two units of storage
to the system. Again an appropriate state for the departure Markov renewal process is the
number of customers left behind by a departure. We give only the results for M/M/1/2.
Those for M/M/1/1 are similar, but less pronounced. Labelling the states as {0,1,2,3},
each entry to state 0, 1, or 2 is an output and entries to state 3 are overflows. The Laplace-
Stieltjes transform of the semi-Markov kernel of the departure process is

A My Mu A4
A+s)A+p+s) A+s)A+p+s)? A+s)A+pu+s)®  A+s)(A+pu+s)?
u A My 5
©- 0 L e e
Au+s A+u+s)? A+u+s)?
U A
0 0 A+u+s) A+u+s)

(3.6)

The Markov renewal matrix does not now have an informative form, but the method is as
before. Since the results are no longer symmetric in A and g, we take, as we will from now
on, the mean service time to be 1. Plots of the cross-correlations, for traffic intensities of
0.5, 0.8, 1, and 2 are given in Figure 3.2. The smallest cross-correlations occur at a traffic
intensity of about 0.8. So the symmetry and monotone nature of the M/M/1/0 results
have gone (possibly due to the fact that the output process is no longer renewal), but



6 Journal of Applied Mathematics and Decision Sciences

0.2

Correlation

Time

FIGURE 3.2. M/M/1/2 output and overflow cross-correlations.

the general principles of positive cross-correlations at low traffic intensities and negative
cross-correlations at high traffic intensities, which will be discussed further in Section 3.5,
are starting to emerge.

3.3. M/M/2/0. With two servers and no storage we assume that when both servers are
idle, an arrival selects a server by tossing a coin (the results when the servers are tested in
a fixed order are very similar). We take the state of the process to be {1, j,k}, where i = 1
or 2 is the server from which the last output occurred, and {j,k} € {0,1}x{0,1} is the
number of customers left behind at servers 1 and 2. Since all the service and interarrival
distributions are negative exponential, this process is Markov renewal. The five possible
states are {1,0,0}, {2,0,0}, {2,1,0}, {1,0,1}, and the overflow state, which does not re-
quire the index of the last output, {*,1,1}. With the states in that order, and using the
notation A +s=a, A +py+s=0b, A +2u+s = c, the semi-Markov kernel is then

A N M N
2ab  2ab abc abc abc
M A Mp Mo X

2ab 2ab abc abc abc
i_| ¥ M A X 3.7
C=L s 0 e abe bl | (3.7)
0o K A Ao X
b abc  abc  bc

[
Oobbc



Don McNickle 7

0.2
0.15
0.1p
0.05

—-0.05

—0.1r

Correlation

~0.15 |
-02}
~025}
o3l

Time

FIGURE 3.3. M/M/2/0 total output and overflow correlations.

Now that we have two departure streams, there are a number of cross-correlations that
could be considered. We give only those between the total output process (i.e., the su-
perposition of the outputs from the two servers) and the overflow process, in Figure 3.3.
Thus the results are qualitatively similar to the first system, M/M/1/0.

3.4. A remark on the equivalent random method. Since this is a simple case of the clas-
sic Erlang-B situation, it is also interesting to look at the cross-correlation between the
two output streams. Even in the case where the servers are tested in fixed order, these
turn out to be very small (<0.05 in absolute value.) This may suggest another reason why
mean-variance methods like the equivalent random method (see Cooper [3, page 165])
have been found to work so well in telephone networks. If all the output streams, in-
cluding those from a single set of lines, are nearly uncorrelated, characterising the carried
traffic at a subsequent link by only its first two moments is more likely to work.

3.5. Some comments on the results so far. From the results so far, we can form explana-
tions which give some insight into the processes involved. We note that when the traffic
intensity is low, the cross-correlations are positive; when the traffic intensity is about 1,
the cross-correlations are very small; and that when the traffic intensity is much greater
than 1, the cross-correlations are strongly negative. Our explanation for this goes as fol-
lows. When the traffic intensity is low, the dependence in the departure process is basi-
cally being driven by fluctuations in the arrival process. Hence the output and overflow
processes tend to move together; when there are an abnormally large number of outputs
there are also an abnormally large number of overflows. For high traffic intensity, on the
other hand, the server is almost always busy so the output and overflow processes are
complements of each other—abnormal excess in one is associated with abnormal paucity
in the other, and hence the cross-correlations are negative.



8 Journal of Applied Mathematics and Decision Sciences

0.3

0.25

Rho = 0.5

<N

0.27 Simulation results

0.15

0.1F

Correlation

0.05 -

—-0.05
0

Time

FIGURE 3.4. M/E,/1/0 output and overflow cross-correlations.

3.6. Nonexponential service time distributions. In general, cross-correlations for these
systems are difficult to measure analytically, since the departure process does not have a
compact representation as a Markov renewal process. One tractable case is M/E;/1/0. The
state is the phase of the customer (if any) left behind in service by a departure. Thus state
0 corresponds to an output, while state 1 is an overflow that occurred while the customer
in service was in the first phase of service, and state 2 is an overflow that occurred during
the second phase of service. The semi-Markov kernel is

A‘uz /\2 AZ#
A+s)A+p+s)3? A+s)A+pu+s) A+s)(A+pu+s)?
d_ oW A M
Q= A+u+s)? A+u+s A+u+s)? ' (3.8)
“ 0 _r
Atu+s Atpts

We again make the mean service time 1, so each stage of the service time distribution has
the rate 2, and plot the output and overflow cross-correlations in Figure 3.4, along with
some simulation results for the same system (see Section 4).

So the trend of positive cross-correlations at low traffic intensities continues with Er-
lang service distributions, but the negative cross-correlations at high traffic intensities,
although present, are less pronounced, perhaps due to the lower rate of overflows.

4. Some simulation results

For Erlang service time distributions with L >0 (and for M/M/1/L with L > 2), the
Markov renewal representation of the departure process is either too complex or has too



Don McNickle 9

many states to use the analytic approach detailed in Section 2. Simulating such systems is
quite easy however. A simulation programme in GPSS/H was written to see if the effects
noted previously carry on to systems with more storage. The simulation programme
was first verified against the analytic results for M/E,/1/0 from the previous section. For
each time value 100000 pairs of the number of outputs and the number of overflows
were recorded, along with the sample cross-correlation calculated from these. The half
width of an approximate 95% confidence interval for these cross-correlations would be
1.96/,/100000 = 0.006. All of the simulation results (some are plotted on Figure 3.4 in
the previous section) are within this distance of the analytic values.

M/E,/1/2. We keep the mean service time to be 1 (so each stage of the Erlang distribution
has the rate 2).

Traffic intensity | Time 0 2 4 6 8 10
p=05 0 0.089 0.155 0.190 0.211 0.221
p=1 0 -0.014 0.025 0.050 0.063 0.069
p=2 0 -0.222 —0.257 —0.274 —0.284 —0.288

Now with some storage, the results have returned to a pattern compatible with our
explanation of the effect of traffic intensity, positive correlations at low traffic intensity as
both the overflow and output processes move together, and negative correlations at high
traffic intensity, where they tend to be the complements of each other.

D/M/1/2. The system change we are after here is the reduced variability in the arrival pro-
cess. If our explanation of the qualitative effect of traffic intensity on the cross-correlations
is correct, we might expect that the low traffic intensity effect of positive cross-correlations
would be reduced or eliminated, while the high traffic intensity effect of negative cross-
correlations should be at least preserved or possibly enhanced. That is precisely what
happens:

Traffic intensity | Time 0 2 4 6 8 10
p=05 0 —-0.007 —0.032 —0.061 —0.082 —0.106
p= 0 -0.329 —0.485 —0.591 —0.665 -0.717
p=2 0 —-0.705 —0.833 —0.885 -0.911 —0.928

Two other examples, E,/M/1/0 and E»/E»/1/0, support the hypothesis that it is the
variability of the arrival process that is responsible for the positive cross-correlations at
low traffic intensities.

E,/M/1/0.
Traffic intensity | Time 0 2 4 6 8 10
p=05 0 —-0.018 —0.054 —0.071 —0.080 —0.089
p=1 0 —-0.019 —-0.249 —0.268 -0.279 —0.283
p=2 0 —0.349 —-0.391 —0.405 —0.411 —0.415
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E»/E»/1/0.
Traffic intensity | Time 0 2 4 6 8 10
p=05 0 0.071 0.064 0.051 0.045 0.043
p=1 0 —0.071 —0.091 -0.107 -0.109 -0.114
p=2 0 -0.215 —0.238 —0.245 -0.250 —0.254

5. The effects of these correlations

5.1. How big are the effects of these correlations? Can we ever get away with treating the
overflow and output streams as being independent? For the simplest model, M/M/1/0, it
is possible to answer this exactly by considering, as an alternative, a model consisting
of two independent M/M/1/0 systems and combining the outputs from the first system
and the overflows from the second system. So this alternative combined process is what
would result if we were to treat the overflow and output streams as being independent.
As a reference model to measure the effects of this assumption, we compare the blocking
probability at a subsequent server with no storage, called server 3, both for the alternative
model and the correct (Poisson input) model.

We first need to determine the departure process from the two-independent-systems
model. We take the state of the process to be {1, j,k}, where i = 1 or 2 is the system from
which the last output occurred, and {j,k} € {0,1} X {0.1} is the number of customers left
behind at servers 1 and 2. Since all the service and interarrival distributions are negatively
exponential, this process is Markov renewal. The eight possible states are outputs from
node 1: {1,0,0}, {1,0,1}, overflows from node 1: {1,1,0}, {1,1,1}, outputs from node 2:
{2,0,0}, {2,0,1}, and overflows from node 2: {2,1,0}, {2,1,1}. The semi-Markov kernel
is then

2 2
A;gl /\1/\2‘1116 % /1%/126 % % AlAz‘Mle /\1/\%6
o Am M b A Ah
bd cd c c cd cd
L P .
b bd b bd d d
o 0 %1 0 % 0 0 %2 %2 o)
= . 5.1
A /1% 2 A )‘% 2
W /\1/\2[116 % /11/126 ? z AlAz‘Mle /11/\26
o A M wm b A A
bd cd c c cd cd
L R
b bd b bd d d
0 L S - B
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FIGURE 5.1. The effect of treating output and overflow streams as being independent.

Herea=A+A+s,b=A+ A +ui+s,c=M+A+pp+s,d=A + A, +uy +up +5, and
e = 1/abd + 1/acd. The input process that we require constitutes entries to states 1, 2, 7,
and 8 so this is obtained from Q by the usual filtering arguments. That is, if S = {1,2,7,8}
and T = {3,4,5,6}, the Laplace-Stieltjes transform of the semi-Markov kernel of the input
process is found from: Q; = Qss + Qs (I — Qrr) ™' Qrs, where Qss, Qst, Qrr, and Qrs are
the corresponding submatrices of Q.

Finally when used as input to a subsequent node (server 3) with no storage and service
rate y3, the state distribution as seen by an arriving customer has a semi-Markov kernel
given by

Qi(s) — Qi(s+p3) Qi(s+#3>). (5.2)

() (Qi(S) —Qi(s+ps) Qi(s+us)
Since states 5, 6, 7, 8 of this process are the states in which an overflow at server 3 occurs,
the probability of overflow at node 3 is 715 + 76 + 717 + 75, taken from the steady state
distribution of the imbedded Markov chain Q5(0).

If we take A; = A,, and all of the service rates to be one, the fraction of customers who
overflow from server 3 is simplified to

A(4A° +250% + 671 + 8812 + 491 + 60)
(A4 + 13034+ 16A2+91+ 1) (A2 + 41 +6)°

75 + g + 717 + 713 = (53)

We can compare this with the overflow fraction which would occur using the correctly
correlated overflow and output processes. This is easy to calculate as server 3 is actually
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FIGURE 5.2. Percentage error due to assuming independence.

an M/M/1/0 system. Plotting the error against traffic intensity (see Figure 5.1) shows that
while for high traffic intensities the error is small, for intensities less than 1, treating the
overflow and output processes as being independent leads to an underestimation of the
blocking probability by up to 50% (see Figure 5.2).

5.2. How much extra information can we get from the correlations? In the same case,
M/M/1/0, we can show that there is enough information in the cross-correlations to per-
fectly reconstruct the departure process. We assume that we know the marginal distri-
butions of the time between outputs and of the time between overflows. However, in
addition, we assume we know, or have measured, the cross-covariances (like equation
(3.3), but conditioned on the starting state). It is easy to show that we now have enough
information in the four equations to solve for, for example, the Markov renewal kernel
(3.2). So at least in the class of two-state Markov renewal processes, we would have exactly
determined the departure process. Thus at least in this simple case, the addition of this
information on cross-correlations is enough to reduce the error to zero.

6. Conclusions

We have shown that considerable dependencies, as measured by cross-correlations, can
arise in the output and overflow processes from simple queueing models. These can be
large, and either positive or negative. Positive cross-correlations are associated with lower
traffic intensities, which is also the situation in which ignoring these correlations may
produce the largest percentage errors. The variability of the arrival process is an impor-
tant factor in this. The smallest correlations usually occur at a traffic intensity close to 1.
The qualitative insight these models provide may prove useful in determining a circum-
stance under which moment or renewal approximations will work well.



Don McNickle 13

References

(1]

(9]

(10]

(11]

D. C. Boes, “Note on the output of a queuing system,” Journal of Applied Probability, vol. 6, no. 2,
pp- 459-461, 1969.

D. N. Shanbhag and D. G. Tambouratzis, “Erlang’s formula and some results on the departure
process for a loss system,” Journal of Applied Probability, vol. 10, no. 1, pp. 233-240, 1973.

R. B. Cooper, Introduction to Queueing Theory, Edward Arnold, London, UK, 2nd edition, 1981.
W. Whitt, “Approximating a point process by a renewal process—I: two basic methods,” Opera-
tions Research, vol. 30, no. 1, pp. 125-147, 1982.

S. L. Albin, “Approximating a point process by a renewal process—II: superposition arrival pro-
cesses to queues,” Operations Research, vol. 32, no. 5, pp. 1133-1162, 1984.

S. L. Albin and S.-R. Kai, “Approximation for the departure process of a queue in a network,”
Naval Research Logistics Quarterly, vol. 33, no. 1, pp. 129-143, 1986.

M. A. Johnson, “Markov MECO: a simple Markovian model for approximating nonrenewal
arrival processes,” Communications in Statistics. Stochastic Models, vol. 14, no. 1-2, pp. 419442,
1998.

L. J. B. E. Adan and V. G. Kulkarni, “Single-server queue with Markov-dependent inter-arrival
and service times,” Queueing Systems, vol. 45, no. 2, pp. 113-134, 2003.

A. Heindl, “Decomposition of general queueing networks with MMPP inputs and customer
losses,” Performance Evaluation, vol. 51, no. 2—4, pp. 117-136, 2003, special issue on queueing
networks with blocking, Kouvatsos and Balsamo, eds.

R. L. Disney and P. C. Kiessler, Traffic Processes in Queueing Networks: A Markov Renewal Ap-
proach, vol. 4 of Johns Hopkins Series in the Mathematical Sciences, Johns Hopkins University
Press, Baltimore, Md, USA, 1987.

E. Cinlar, “Markov renewal theory,” Advances in Applied Probability, vol. 1, pp. 123187, 1969.

Don McNickle: Department of Management, University of Canterbury, Christchurch 8140,
New Zealand
Email address: don.mcnickle@canterbury.ac.nz


mailto:don.mcnickle@canterbury.ac.nz

	1. Introduction
	2. Methodology
	2.1. Cross-correlations between the overflow and the output processes
	2.2. The calculation method and verification steps

	3. Results
	3.1. M/M/1/0
	3.2. Systems with storage, M/M/1/1, M/M/1/2
	3.3. M/M/2/0
	3.4. A remark on the equivalent random method
	3.5. Some comments on the results so far
	3.6. Nonexponential service time distributions

	4. Some simulation results
	5. The effects of these correlations
	5.1. How big are the effects of these correlations?
	5.2. How much extra information can we get from the correlations?

	6. Conclusions
	References

