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The key point of the tolerance relation or similarity relation presented in the literature
is to assign a “null” value to all missing attribute values. In other words, a “null” value
may be equal to any value in the domain of the attribute values. This may cause a serious
effect in data analysis and decision analysis because the missing values are just “missed”
but they do exist and have an influence on the decision. In this paper, we will introduce
the modified similarity relation denoted by MSIM that is dependent on the number of
missing values with respect to the number of the whole defined attributes for each object.
According to the definition of MSIM, many problems concerning the generalized deci-
sions are solved. This point may be used in scaling in statistics in a wide range. Also, a
new definition of the discernibility matrix, deduction of the decision rules, and reducts
in the present of the missing values are obtained.

Copyright © 2007 E. A. Rady et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Sooner or later, anyone who does statistical analysis runs into problems with missing data
in which information for some variables is missing for some objects.

Missing data are questions without answers or variables without observation. Even a
small percentage of missing data can cause serious problems with the analysis leading to
draw wrong conclusions and imperfect knowledge. There are many techniques to ma-
nipulate the imperfect knowledge and manage data with missing items, but no one is
absolutely better than the others. Different situations require different solutions as Alli-
son [1] says: “The only really good solution to the missing data problem is not to have

»

any.
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Rough set theory proposed by Pawlak [2] is an effective approach to imprecision,
vagueness, and uncertainty. Rough set theory overlaps with many other theories such
that fuzzy sets, evidence theory, and statistics. From a practical point of view, it is a good
tool for data analysis. The main goal of the rough set analysis is to synthesize approxima-
tion of concepts from acquired data.

The starting point of Rough set theory is an observation that the objects having the
same description are indiscernible (similar) with respect to the available information.
Determination of the similar objects with respect to the defined attributes values is very
hard and sensible when some attribute values are missing. This problem must be handled
very carefully. In this work, we tried to deal with this problem to restrict the conditions
of similarity in the presence of missing values.

The indiscernibility relation is a fundamental concept of the rough set theory which
used in the complete information systems. In order to process incomplete information
systems, the indiscernibility relation needs to be extended to some equivalent relations.

In the literature there are several extensions such as tolerance relation, nonsymmetric
relation, and valued tolerance relation. The problem of missing values handling within
the rough set framework has been already discussed in the literature, for example, [3,
4]. These approaches consider alternative definitions of the discernibility which reflect
various semantics of missing attribute values.

In [5, 6], the authors performed computational studies on the medical data, where
unknown values of the attributes were replaced using probabilistic techniques. Recently,
Greco et al. used a specific definition of the discernibility relation to analyze unknown
attribute values for multicretria decision problems [7, 8]. In [9] two different semantics
for incomplete information “missing values” and “absent values” were discussed also;
they introduced two generalizations of the rough set theory to handle these situations.
In [10] the author examined methods of valued tolerance relations. They proposed a
correctness criterion to the extension of the conventional methods which is based on
rough sets for handling missing values.

A new tolerance relation to handle incomplete information tables was introduced in
[11]. A “null” value may be any observed value in the domain of the attribute values
without any restriction. Hence, as well as any object has a lot of missing values, it can be
similar to a lot of other objects in despite of their decisions. So the obtaining generalized
decisions may be a combination of some decisions far from each other. Accordingly, the
concluding results concerning the reducts, the set approximations, and the decision rules
will be unreasonable and unacceptable.

This work enhances and develops Krysckiewiczs’ work by introducing some essential
restrictions and conditions on the similarity between objects and introducing the modi-
fied similarity relation (MSIM).

2. Complete information systems and decision tables

The concept of rough set has to be an effective tool for analyzing vague information and
knowledge discovery. The starting point of rough set theory which is based on data anal-
ysis is a data set called an information system (IS). IS is a data table, whose columns are
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labeled by attributes, rows are labeled by objects or cases, and the entire of the table are
the attribute values.

Formally, IS is a pair IS = (U,AT), where U and AT are nonempty finite sets called
“the universe” and “the set of attributes,” respectively. For example, in Table 4.1, U =
{1,2,3,4,5,6}, AT = {price, mileage, size, max speed} and with every attribute a € AT,
a set V, of its values called the “domain of a” is associated. If V,, contains missing values
for at least one attribute, then S is called an incomplete information system, otherwise it
is complete.

Any information table defines a function p that maps the direct product U X AT into
the set of all values in Table 4.1 p(1, price) = high.

The concept of the indiscernibility relation is an essential concept in rough set theory
which is used to distinguish objects described by a set of attributes in complete informa-
tion systems. Each subset A of AT defines an indiscernibility relation as follows:

IND(A) = {(x,y) € UX U:p(x,a) =p(y,a) Vac A, AC AT}. (2.1)

Obviously, IND(A) is an equivalence relation. The family of all equivalence classes of
IND(A), for example, a partition determined by A which is denoted by U/IND(A) or
U/A.

If we distinguish in an information system between two disjoint classes of attributes
called conditions and decision attributes, the first one is an independent variable and the
other one is dependent, respectively, then the system will be called a decision table (DT).

3. Incomplete information systems and the similarity relation

It may happen that some of the attribute values for some objects are missing (denoted
by “*” in Table 4.1). In order to process incomplete information systems (IIS), the indis-
cernibility relation has been extended to some equivalent relations, for example, tolerance
relation, similarity relation, valued tolerance relation, and so forth.

Following [11], similarity relation SIM(A) denotes a binary relation between objects
that are possibly indiscernible in terms of values of attributes, for example, we cannot say
that these objects are different and their similarity relation was defined by

SIM(A) = {(x,y) € UX U, a € A, p(x,a) = p(y,a) or p(x,a) = * or p(y,a) = *}
(3.1)

and S4(x) denotes that the set {y € U: (x,y) € SIM(A), A C AT} is the maximal set of
objects which are possibly indiscernible by A with x.

The minimal reducts for IIS are as follows.

Aset A C AT is a reduct of IIS if and only if

SIM(A) = SIM(AT), VBCA,  SIM(B)# SIM(AT). (3.2)

The (incomplete) decision table (DT) is an (incomplete) information system DT =
(U,AT u {d}), where d is a distinguished attribute called decision, and AT are called
conditions where d ¢ AT and * & V.
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Let us define function d4 : U — P(Vy), A € AT, as follows:

dalx) ={i:i=d(y), y € Sa(x)}, (3.3)

where d, is the generalized decision in DT.
Accordingly, the minimal reduct for DT was defined as follows: a set A C AT is reduct
of DT if and only if

0a(x) = dar(x), VB CAdp(x) # dar(x). (3.4)
Any decision table may be regarded as a set of generalized decision rules of the form
A, v) — v(d,w), whereceA,veV,weVy d¢A. (3.5)

4. Motivations

Any missing value in the classical definition introduced in [11] can be similar to any other
value in the domain of the attribute values. No restriction on the decision or on the values
of other attributes for such case. Also when the number of missing values exceeds, a lot
of vagueness and uncertainty appear in the information system; hence, the concluding
results will not be reasonable. Let us show all these problems by the following example.

Example 4.1. Given the following descriptions of several cars according to price, mileage,
size, and max speed, the decision attribute D is the acceleration as shown in Table 4.1:
(1) the set of objects or the universe setis U = {1,2,3,4,5,6};
(2) the set of the attributes is AT = {price, mileage, size, max speed}.
According to [6], the set Sar(x), for all x € U, can be calculated as follows:

Sar(1) = {1},
Sar(2) = {2,6},
SAT(3) = SA(S) = {3,4,5,6}, (41)

SAT(4) = {3)4>5})
SAT(6) = {2)3)5)6}

Hence, the generalized decisions will be as in Table 4.2.

As shown in Table 4.2, the generalized decisions over the set of all attributes AT for the
objects 3, 4, 5, 6 are a combination of completely far or extreme decisions “poor,” “good,”
“excellent,” and this is not an acceptable result. Accordingly, the calculated reducts for the
objects 3, 4, 5, 6 and the reduced decision rules could not be determined.

In our point of view, object “3” is one of the important reasons to this disturbance
which happens in the generalized decisions because it has a lot of missing attribute values,
only the max speed attribute is known. This makes this object similar to a lot of other
attributes, so we conclude that the number of missing values for each object must be
taken into account during the analysis.
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Table 4.1
Car Price Mileage Size Max speed D
1 High High Full Low Good
2 Low * Full Low Good
3 * * * High Poor
4 High * Full High Good
5 * * Full High Excellent
6 Low High Full * Good

To introduce the new definition of similarity relation, we will use the following defini-
tions of p2 or p(x,a), where p? = v means that the object x has a value v for the attribute
awherexe U,a € AT.

Definition 4.2. p% is called “a defined value” if and only if p? # * where * is the symbol
of any missing value in Table 4.1.

Definition 4.3. x is called “a completely defined object” if and only if p2 # * for alla €
AT.
Let (pg,p§) denote a pair of values of the attribute “a” for the objects “x” and “y,”

respectively. For example, in Table 4.1, (pfrice,pgrice) = (high,low).
Definition 4.4. The number “EP”. EP = |(p4, pj‘,)l foralla e A, A < AT is the number of

equal pairs for the attribute “a” for all a € A for the objects “x,” “y,” respectively, where
pi> py are defined values.

For example, in Table 4.1, if A = AT, then for the objects 1, 2, EP = 2.

Definition 4.5. The number |m,|. |m,| denotes the number of missing values for the
object x.

Definition 4.6. An object x € U is called

well defined object of A C AT iff

N+1
2

|mx|s%ifNevenor|mx|s if N odd,

(4.2)
poorly defined object of A C AT, iff
N+1
2

|mx|>%ifNevenor|mx|> if N odd,

where N is the number of the attributes in the set A, for example, |[A| = N.

Definition 4.7. The number |nmy|. |nm,| denotes the number of not missing values for
the object x.
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Table 4.2

Car Oar
{Good}
{Good}

{Poor, good, excellent}

{Poor, good, excellent}

{Poor, good, excellent}

AN U s W N~

{Poor, good, excellent}

The above definitions can be formulated also by using |nm,| as follows.
An object x where x € U is called

N+1

a well defined object of A C AT iff |nm, | > % if N evenor |nm,| > 5 if N odd
. . N . N+1.

a poorly defined object of A C AT iff |nm, | < > if N even or |nm,| < if N odd,

(4.3)

where N is the number of the attributes in the set A, for example, |[A| = N = |[my| + |[nmy].
Now we are in a position to give the notion of modified similarity relation (MSIM) as
follows.

5. The modified similarity relation

The modified similarity relation (MSIM) can be defined as follows:
(i) (x,x) € MSIM(A) where A C AT, for all x € U;
(ii) (x,y) € MSIM(A) where A C AT, N = |A| = 2 if and only if

(a)
px=py Va€ Awherepy, p} are defined values, (5.1)
(b)
% if N even,
EP > N+l (5.2)
— ifNodd,

To make use of the MSIM, we need to add more definitions as follows.

Definition 5.1. MS4(x) denotes that the set {y € U: (x,y) € MSIM(A), A C AT} is the
maximal set of objects which are possibly indiscernible by A with x.
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Table 5.1

Car oar
{Good}
{Good}
{Poor}

{Good, excellent}

{Good, excellent}
{Good}

AN U R W N =

Definition 5.2. The generalized decision in DT is defined by
da(x) ={i:i=d(y), y € MSa(x), A C AT}. (5.3)

Definition 5.3. The modified discernibility matrix. The elements in the discernibilty ma-
trix can be defined as follows:

ac€A’” whereA'=A—-{acAs.t pl=p]
“A(ny):{ ) { P PY}}. (5.4)
¢ if (x,y) € MSIM(A), A C AT
Remarks.
Remark 5.4. If N = 1, then
(x,) € MSIM(A) <= pi =p), p§, py are defined values, (5.5)
5.5

if p¢ = *, then the object x will be similar to itself only.

Remark 5.5. If all condition attribute values for any object are missing, then, according
to definition of MSIM, it will be similar to itself only. This is sensible because we cannot
determine which object in the universe is similar to the object which has all its attributes
missing except the object itself.

Remark 5.6. From the second condition of MSIM, we can conclude that the number of
defined values must be greater than or equal to the number of missing values for each
object in any ordered pair belongs to MSIM(A), A C AT.

Formally [nm,| > |m,| and [nm,| = |m,| for all (x,y) € MSIM(A), A C AT.

Remark 5.7. Any pair of objects which does not satisfy conditions 1 or 2 in the definition
of MSIM will not be similar to each other. For example, in Table 4.1
(5,6) € MSIM(AT) where EP = 1;

i i 5.6
(1,2) ¢ MSIM(AT) where p}" # pb". (5.6)
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To achieve the new results, one applies the above definitions on Table 4.1 and the re-
sults are as follows:

MSIM(AT) = {(1,1),(2,2),(2,6),(3,3),(4,5),(5,4),(4,4),(5,5),(6,2),(6,6)},

Sar(1) = {1},
SAT(Z) = {2)6}> (5 7)
Sar(3) = {3}, ’

SAT(4) = SAT(S) = {4)5})
Sar(6) = {2,6}.

The generalized decisions will be as in Table 5.1.

We can then list all decision rules for DT before reduction as follows:
(r1) (p,high) A (M, high) A (S, full) A (X,low) — (d,good),

(r2) (p,Jow) A (M, %) A (S, full) A (X,low) — (d,good),

(r3) (p,*) A (M, %) A (S, %) A (X, high) — (d,poor),

(r4) (p,high) A (M *) A (S, full) A (X, high) — (d,good) v (d, excellent),
(rs) (p,*) A (M, %) A (S, full) A (X, high) — (d,good) Vv (d,excellent),
(r6) (p,low) A (M high) A (S, full) A (X, *) — (d,good).

6. Reduction

The minimal reducts for the incomplete information system IIS are as follows: a set A C
AT is reduct of IIS if and only if

MSIM(A) = MSIM(AT), VBCA,  MSIM(B) + MSIM(AT). (6.1)

The minimal reduct for DT (the decision table) was defined as follows: a set A C AT
is reduct of DT if and only if

da(x) =dar(x), VBCA, dp(x) # dar(x). (6.2)

Also, the idea of the so-called discernibility functions can be used. The discernibility func-
tion is a Boolean function representation of discernibility matrix (5.4). The reducts can
be determined uniquely as follows:

A is a discernibility function for IIS if and only if

A= A{Vaar(x,y), (x,y) € UX U, aar(x,y) # ¢}; (6.3)
A(x) is a discernibility function for the object x in IIS if and only if
Alx) = AV aar(x,y), y € U, aar(x,y) # ¢}; (6.4)
A* is a discernibility function for DT if and only if

A* = A{Vaar(x,y): (x,y) e Ux{ze U, d(z) & dar(x)}, aar(x,y) # ¢}; (6.5)
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Table 6.1
1 2 3 4 5 6
1 ¢ {P,M} {P,M,S,X} {M, X} {P,M,X} {P,X}
2 {P,M} ¢ {P,M,S, X} {P,M, X} {P,M, X} ¢
3 {P,M,S,X} {P,M,S,X} ¢ {P,M,S} {P,M,S} {P,M,S, X}
4 {M,X} {P,M,X} {P,M,S} ¢ ¢ {P,M,X}
5 {P,M,X} {P,M,X} {P,M,S} ¢ ¢ {P,M,X}
6 {P,X} ¢ {P,M,S,X} {P,M,X} {P,M,X} ¢
Table 6.2
1 2 3 4 5 6
1 — — {P,M,S,X} — {P,M,X} —
2 — — {P,M,S,X} — {P,M,X} —
3 {P,M,S,X} {P,M,S,X} — {P,M,S} {P,M,S} {P,M,S,X}
4 — — {P,M,S} — — —
5 — — {P,M,S} — — —
6 — — {P,M,S,X} — {P,M,X} —

A*(x) is a discernibility function for the object x in DT if and only if

A*(x) = A{Vaar(x,y):ye{ze U, d(z) & dar(x)}, aar(x,y) # ¢} (6.6)

To construct a discernibility function for the mentioned example, we will use Table 6.1,
in which the elements of discernibility matrix aar(x, y) for any pair (x, ) of objects from
U are placed.

From Table 6.1, the reducts for IIS are

A=MAh(PvX),
A =MA(PVX),
Ay=PVM,
As;=PVMVS, (6.7)
AN=(MVX)ANPVMVS),
As=(PVvM)V(XAS),
A¢ =PV X

The reducts for DT can be calculated from Table 6.2 in which values of as7(x, y) for any
pair (x, y) of objects such that

xeU, yelzeU, d(z)¢dar(x)} (6.8)

are shown.
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Table 6.3
SIM

Objects 1 2 3 4 5 6
The generalized
p 8 {e¢  {g} {p.ge} {p.ge} {p.ge} {p.ge}

ecisions
Reducts for
DT by dis- X X Cannot be Cannot be Cannot be Cannot be
cernibility determined  determined  determined  determined
function
{:eductsﬁ? DdT ; . prvmv prvmv pevmv prvmv

y generatize sVx SVx sVx sVx
decisions

MSIM

Objects 1 2 3 4 5 6
The generalized
o (s} {g {p} {se} {se} {8}

ecisions
Reducts for DT y Y y y y y
by discernibility Pr Pr Pr Pr Pr Pr

. mvx mVx mvs mvs mvs mvx

function
geductsﬂ;f DdT PR oV PV . PV

) generatze mvVx mVx mvs s mv x
decisions

Hence we have

A*=PVMVX)APVMVS)=(PVM)V(XAS),

E_AFZAY=PVMVX, Af=Af=AF=PVMVS (69)
The results between the classical similarity SIM and the modified similarity relation
MSIM are compared and seen in Table 6.3 for simplicity as follows:
(i) for decisions: “g” for good, p” for poor, “e” for excellent,
(ii) for attributes: pr ’ for price, “m” for mlleage, “s” for size, and “x” for max speed.
Reduction of knowledge that preserves generalized decisions for all objects in DT is
less from decision making standpoint.
Accordingly, the decision rules become
(r1) (p,high) A (M, high) A (X,low) — (d,good),
(1) (p,low) A (M,*) A (X, low) — (d,good),
(r3) (p,") A (M,¥) A (S,*) — (d, poor),
(ry (p,hlgh) A (M *) A (S, full) — (d,good) Vv (d, excellent),
(r3) (p,*) A (M,*) A (S, full) — (d,good) V (d,excellent),
(rg) (p,low) A (M high) A (X,*) — (d,good).
We can combine the rules which have the same generalized decisions as follows:
(r}) (p,high v low) A (M,high®) A (X,low™) — (d,good),
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Table 7.1
Decision class Lower approximation Upper approximation
Xg00d= {1)2>4)6} {1>2)6} {1>2)4>5)6}
Xpoor = {3} {3} 13}
Xexce]lent = {5} ¢ {4> 5}

Table 7.2
Generalized decision class Lower approximation Upper approximation
X{good} = {1)296} {1:2)6} {192>6}
X{poor} = {3} {3} {3}
X{good,excellem} = {4> 5} {4’5} {4,5}

(ry) (p,high™) A (M,*) A (S,full) — (d,good) V (d,excellent),

(13) (p,") A (M) A (S,*) — (d, poor),
where the symbol “x” above the attribute value means that the attribute value Vv is miss-
ing.

The third rule does not determine the values of the attributes P or M or X, then we can
conclude that the poorly objects could not give a good result with respect to the decision
rule; at least we can exclude the attributes which do not affect the decision.

7. Set approximations

The above procedure using the new approach can be used to deduce the set approxima-
tions as follows.
Let X < Uand A C AT. AX is the lower approximation of X if and only if

AX = {x e U, MSx(x) = X} = {x € X, MSs(x) < X}. (7.1)
AX is the upper approximation of X if and only if
AX = {x € U, MSa(x) N X # ¢} = | J{MSa(x), x € X}. (7.2)

AX is a set of objects that belongs to X, while AX is a set of objects that possibly belongs
to X.

From Table 4.1, we have U/IND(d) = {Xgo0d> Xpoor> Xexcellent }» Where Xgo0d = {1,2,4,6},
Xpoor = 13}, Xexcellent = {5}, and the lower and upper approximations for each decision
class for AT as in Table 7.1.

From Table 4.2, we have U/IND(dar) = {X{good}>Xipoor}>Xigood, excellent} }> Where
Xigood} = 11,2,6}, Xpoor} = 13}, X{good, excellent} = {45}, and the lower and upper approx-
imations for the generalized decision class of AT as in Table 7.2.
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8. Conclusion

In this paper, we remarked that a rough set theory can be an effective tool to deal with
the incomplete information system. It can clarify a very important notation in statistics,
which is the scaling. The big difference between the results can be seen from Tables 4.2
and 5.1. This leads to the importance of rough set theory in case of the incomplete in-
formation systems and solving some problems in scaling in statistics. Also, reducing the
decision rules and the decisions can be introduced in a general form. In the literature,
similarity relation handled the missing values as null value; it can be similar to any value
in the domain of the attribute values. This point of view causes many problems in the
analysis.

Our work is introducing a new definition of similarity relation MSIM which depends
on some important conditions concerning the number of missing values. The essential
point of MSIM is making the generalized decisions which have taken over the whole set
of attributes a reasonable combination of decisions, hence, the reducts can be computed
easily and the generalized decision has a valuable meaning. Also, a discernibility matrix
is defined, reducts for IIS and for DT are derived, and the decision rules are introduced.
Finally, the set approximations are defined.

References

[1] P. Allison, Missing Data, Sage, Thousand Oaks, Calif, USA, 2001.

[2] Z. Pawlak, “Rough sets,” International Journal of Computer and Information Sciences, vol. 11,
no. 5, pp. 341-356, 1982.

[3] J. W. Grzymala-Busse, “On the unknown attribute values in learning from examples,” in Pro-
ceedings of the 6th International Symposium on Methodologies for Intelligent Systems (ISMIS *91),
pp- 368-377, Springer, Charlotte, NC, USA, October 1991.

[4] R. Slowinski and J. Stefanowski, “Rough classification in incomplete information systems,’
Mathematical and Computer Modelling, vol. 12, no. 10-11, pp. 1347-1357, 1989.

[5] J. W. Grzymala-Busse and L. K. Goodwin, “A closest fit approach to missing attribute values in
preterm birth data,” in Proceedings of the 7th Workshop on New Directions in Rough Sets, Data
Mining and Granular-Soft Computing (RSEDGrC ’99), A. Skowon and N. Zhong, Eds., vol. 1711
of Lecture Notes in Artificial Intelligence, pp. 405-413, Springer, Yamaguchi, Japan, November
1999.

[6] J. W. Grzymala-Busse and M. Hu, “A comparison of several approaches to missing attribute
values in data mining,” in Proceedings of the 2nd International Conference on Rough Sets and New
Trends in Computing (RSCTC 00), pp. 378385, Springer, Banff, Canada, October 2000.

[7] S. Greco, B. Matarazzo, and R. Slowinski, “Handling missing values in rough set analysis of
multi-attribute and multi-criteria decision problems,” in Proceedings of the 7th International
Workshop on New Directions in Rough Sets, Data Mining, and Granular-Soft Computing (RSFD-
GrC’99), A. Skowron and N. Zhong, Eds., vol. 1711 of Lecture Notes in Artificial Intelligence, pp.
146-157, Springer, Yamaguchi, Japan, November 1999.

[8] S. Greco, B. Matarazzo, and R. Slowinski, “Rough set processing of vague information using

fuzzy similarity relations,” in Finite Versus Infinite: Contributions to an Eternal Dilemma, C. S.

Calude and G. Paun, Eds., Discrete Mathematics and Theoretical Computer Science (London),

pp. 149-173, Springer, London, UK, 2000.

J. Stefanowski and A. Tsoukias, “Incomplete information tables and rough classification,” Com-

putational Intelligence, vol. 17, no. 3, pp. 545-566, 2001.

©



E. A.Radyetal. 13

[10] M. Nakata and H. Sakai, “Rough sets handling missing values probabilistically interpreted,” in
Proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and
Granular Computing (RSFDGrC ’05), D. S’lezak, G. Wang, M. S. Szczuka, I. Diintsch, and Y. Yao,
Eds., vol. 3641 of Lecture Notes in Artificial Intelligence, pp. 325-334, Springer, Regina, Canada,
August-September 2005.

[11] M. Kryszkiewicz, “Rough set approach to incomplete information systems,” Information Sci-
ences, vol. 112, no. 1-4, pp. 39-49, 1998.

E. A. Rady: Institute of Statistical Studies and Research, Cairo University, Cairo 12613, Egypt
Email address: narady@asu-pharmacy.edu.eg

M. M. E. Abd El-Monsef: Department of Mathematics, Faculty of Science, Tanta University,
Tanta 31527, Egypt
Email address: mme@dr.com

W. A. Abd El-Latif: Department of Mathematics, Faculty of Science, Tanta University,
Tanta 31527, Egypt
Email address: wfanwar@yahoo.com


mailto:narady@asu-pharmacy.edu.eg
mailto:mme@dr.com
mailto:wfanwar@yahoo.com

	1. Introduction
	2. Complete information systems and decision tables
	3. Incomplete information systems and the similarity relation
	4. Motivations
	5. The modified similarity relation
	6. Reduction
	7. Set approximations
	8. Conclusion
	References

