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Markov chain theory plays an important role in statistical inference both in the for-
mulation of models for data and in the construction of efficient algorithms for infer-
ence. The use of Markov chains in modeling data has a long history, however the use
of Markov chain theory in developing algorithms for statistical inference has only be-
come popular recently. Using mark-recapture models as an illustration, we show how
Markov chains can be used for developing demographic models and also in developing
efficient algorithms for inference. We anticipate that a major area of future research in-
volving mark-recapture data will be the development of hierarchical models that lead to
better demographic models that account for all uncertainties in the analysis. A key issue
is determining when the chains produced by Markov chain Monte Carlo sampling have
converged.

Copyright © 2007 R. J. Barker and M. R. Schofield. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Markov chains, and related stochastic models, have long played an important role in help-
ing ecologists understand population dynamics. In the main, this has been through the
application of probability models to the problem of predicting the realized dynamics of
plant and animal populations over time. In this context, the challenge is to construct
models that are relatively simple, in terms of the numbers of parameters and the re-
lationships between (and among) parameters and state variables, and yet that are able
to provide a reasonable approximation to the sorts of dynamics typically observed in
nature.
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The development of these models has been driven by ecologists motivated by an in-
terest in underlying theory, and ecologists with applications in mind. These applications
are generally based on inference about the long-term dynamics of the study population.
Examples include predicting the time to possible extinction for threatened populations
or establishing safe levels of harvest for exploited populations.

Complementary to the problem of developing theoretical models that predict the tem-
poral dynamics of populations has been the development of a body of theory for estimat-
ing population parameters. This estimation theory is the main emphasis in the remainder
of this contribution. Almost universally, these models treat quantities such as population
size at time t, Nt, or the numbers of individuals born between t and t+Δt, as fixed quan-
tities to be predicted (here we use prediction in the sense of predicting the value of an
unobserved realization of a random variable as well as future realizations). In contrast,
the population models discussed above treat these same quantities as random variables
whose behavior we are interested in describing.

A particularly important class of estimation models for population dynamics is the
mark-recapture model [1]. Mark-recapture data comprises repeated measures on indi-
vidual animals in the population obtained through samples of animals drawn from the
population (usually) at discrete sample times t1, . . . , tk. Because the capture process is im-
perfect, not all animals in the population at time t j are captured, and a model is required
to describe this process of repeated imperfect captures.

In the simplest case, the population is regarded as closed to births and deaths and so
the population size at time t j is the same for all k sample occasions. Studies of the dynam-
ics of the population can then be based on repeated experiments generating a sequence
of abundance estimates.

A more interesting class of models is the open population models in which individuals
may enter (through birth or immigration) or leave (through death or emigration) during
the interval (t1, tk). Here the challenge is to model the sequence of captures of animals in
terms of parameters of demographic interest. These are usually survival probabilities Sj ,
and parameters that describe the birth process. Quantities such as Nj , the abundance of
animals at the time of sample j, and Bj , the number of animals born between samples j
and j + 1, are then predicted from the model.

Traditionally, inference for mark-recapture models has been based on maximum like-
lihood. Importantly, demographic models for {Nt} have played no role in these estima-
tion models. Inference about the {Nt} process has instead been based on ad hoc methods
for summarizing sequences of estimates such as { ̂Nt}. Recently there have been many de-
velopments that apply Bayesian inference methods to mark recapture models based on
Markov chain Monte Carlo (MCMC). Here the utility of Markov chain theory appears
in a fundamentally different context to that described above for population modeling; it
arises as a tool for inference. An exciting feature of Bayesian inference methods based on
MCMC is that fitting complicated hierarchical models has become feasible. Hierarchi-
cal models provide a link between the demographic models and estimation models in a
way that should lead to better and more relevant inference. It is recent developments in
Markov chain theory, in particular Gibbs sampling [2] and reversible jump Markov chain
Monte Carlo [3], that allow this link to take place.
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Figure 2.1. Directed acyclic graph for the hidden Markov model for mark-recapture data.

2. Open population capture-recapture models

Define ν as the total number of animals alive on at least one of the sampling occasions
t j ( j = 1, . . . ,k). Let Yij be the indicator that animal i (i = 1, . . . ,ν) is caught in sample j,
which takes place at time t j . Any animal that is caught for the first time in a particular
sample is marked with some form of unique tag and then released, with any recaptures
noted. The data are of the form y = {yi j} for i= 1, . . . ,u. and j = 1, . . . ,k, where uj is the
number of unmarked animals caught in sample j and u. =∑ j u j is the total number of
animals caught at least once.

For animal i, the set of values yi = {yi1, . . . , yik} is called the capture history and these
provide censored information on the time of birth and death. We know that the time
of birth occurred before the sample time corresponding to the first nonzero value of yi
and the time of death occurred sometime after the sample time corresponding to the last
nonzero value of yi.

2.1. Hidden Markov model. The problem with capture-recapture methods is that not
all animals in the population are caught; this causes the censoring of the birth and death
intervals. Define Xij as the indicator of the event that animal i is alive and in the study
population at time t j . If X = {xi j}, i = 1, . . . ,ν, j = 1, . . . ,k, were observed for an animal
population in which ν animals were ever alive and available for capture on at least one
of the k sample occasions, then inference about the parameters {Sj} and {βj} would be
straight-forward. It would also be straight-forward to calculate observed values of the
random variables Nj =

∑

i xi j .
Instead of observing xi j , we observe yi j with the joint distribution of the sequence of

pairs {Xij ,Yij} described by a hidden Markov model (Figure 2.1). Importantly, y does
not include the history given by the vector of k zeros associated with animals that were
available for capture at sometime during the experiment but never caught.

Conditional on the event that animal i is alive (and available for capture) on at least
one of the capture occasions t j , the sequence (Xi1, . . . ,Xik) can then be modeled as a three-
state Markov chain. Xij = 0 corresponds to the event that animal i has not yet entered the
population. Xij = 1 corresponds to the event that animal i is in the population and alive,
and Xij = 2 corresponds to animal i being dead. The possible transitions are 0→ 0, 0→ 1,
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1→ 1, 1→ 2, and 2→ 2. Define:
β0 as the probability that an animal is born before the start of the experiment,
given that it is alive at some time during the experiment,

βj as the probability that an animal is born between the times of sample j and
j + 1, given that it was available for capture at sometime during the experiment,

Sj as the probability that an animal alive at the time of sample j is still alive at the
start of sample j + 1.

Conditioning on the ν individuals that are alive and available for capture at sometime
during the experiment means that β0 +β1 + . . .+βk−1 = 1. If � is used to denote the event
that animal i is alive and available for capture at sometime during the experiment, then

Pr
(

Xi1 = xi1 |�
)=

⎧

⎨

⎩

β0, xi1 = 1,

1−β0, xi1 = 0,
(2.1)

and for j = 2, . . . ,k− 1,
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1, xi j = 2,xi j−1 = 2,

0, xi j = 1,xi j−1 = 2,

0, xi j = 0,xi j−1 = 2,

1− Sj , xi j = 2,xi j−1 = 1,

Sj , xi j = 1,xi j−1 = 1,

0, xi j = 0,xi j−1 = 1,

0, xi j = 2,xi j−1 = 1,

β′j−1, xi j = 1,xi j−1 = 0,

1−β′j−1, xi j = 0,xi j−1 = 0,

(2.2)

where β′j = βj/
∑k−1

h= j βh. Note that we exclude from the study population individuals that
are born and then die during (t j , t j+1). Clearly these individuals are invisible to the mark-
recapture experiment.

2.2. Observed data likelihood. A common assumption in mark recapture models is that
yi j|xi j is the outcome of a Bernoulli trial with probability pj if xi j = 1 or 0 otherwise.
That is, only those animals alive and in the population at the time of sample j are at risk
of being caught, which happens with probability pj . The standard approach to fitting this
model is to derive an observed data likelihood from the marginal distribution with pdf
[y | ν,S,β, p] which is described by summing up across all possible sample paths for X
that are compatible with the data (here we use the notation [y|x] to denote the pdf of the
distribution for the random variable Y , evaluated at y, conditional on X , evaluated at x).

Using the notation y = {yi j} (i= 1, . . . ,u.; j = 1, . . . ,k) and u= (u1, . . . ,uk)′ the likeli-
hood can be expressed as

[y | ν,S,β, p]= [u. | ν][u | u.,β,S][y | u,S, p], (2.3)
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where [u.|ν] describes a binomial distribution with index ν and parameter π0 and [u|u.]
a multinomial distribution with index u. and parameter vector ξ.

Both π0 and ξ are complicated functions of the parameters S and β that account for
the censoring of the birth times in y. If we let ψj denote the probability that an animal is
available for capture in sample j but has not yet been caught, then

ψj+1 = ψj
(

1− pj
)

Sj +βj (2.4)

for j = 2, . . . ,k− 1, with ψ1 = β0. Such an animal is first caught in sample j with proba-
bility ψj pj hence

π0 = 1−
t
∑

j=1

ψj pj ,

ξj =
ψj pj

1−π0
.

(2.5)

The term [y | u,S, p] describes the celebrated Cormack-Jolly-Seber model (see [4–6]).
If we index the first sample in which an animal i was caught by ri and the last sample in
which animal i was seen by li, then we can write

[y | u,S, p]=
u.
∏

i=1

li
∏

j=ri
p
yi j
j

(

1− pj
)1−yi j χli , (2.6)

where the term χj , which accounts for the censoring of time of death, can be defined
recursively as

χj =
⎧

⎨

⎩

1, j = k,

1− Sj + Sj
(

1− pj+1
)

χj+1, j = 1, . . . ,k− 1.
(2.7)

A nice feature of the observed data likelihood (2.3) is that it is straightforward to find
maximum likelihood estimators. [7] showed that the parameter ν is not identifiable, how-
ever the partial likelihood [u | u.,β,S][y | u,S, p] obtained by conditioning on u. contains
all practically useful information on the identifiable parameters in the model. Closed-
form solutions to the ML equations exist for all identifiable parameters in this partial-
likelihood.

The model can also be easily generalized to allow parameters to be individual-specific,
by introducing covariates, or to allow captures to depend on the earlier capture history
of the animal. The model (2.3) has also been extended by reparameterizing the model in
terms of per capita birth rate f j [7, 8] and an index to population growth rate [8]

λj = Sj + f j

= E
[

Nj+1 |Nj ,ν
]

E
[

Nj | ν
] .

(2.8)
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The complete model (2.3), which we refer to as the Crosbie-Manly-Arnason-Schwarz
model, was first described in [9] building on earlier work of [10]. It differs from the well-
known Jolly-Seber (JS) model ([5, 6]) in the way that captures of unmarked animals are
modeled. In the JS model, the terms

[u. | ν][u | u.] (2.9)

are replaced by

[u |U] (2.10)

and the elements of U = (U1, . . . ,Uk)′, where Uj is the number of unmarked animals in
the population at the time of sample j, are treated as unknown parameters to be es-
timated. While historically important, this approach does not allow the reparameteriza-
tions in terms of f j and λj described above as f j and λj cannot be written as deterministic
functions of the parameters Sj and βj . Also, the Uj parameters are of little demographic
interest although predictors of Nj and Bj exist.

2.3. Complete data likelihood. An alternative to using the observed data likelihood is to
describe the model in terms of the complete data likelihood (CDL) [11]. The CDL is the
likelihood of all data, both missing and observed. The observed data are

(i) the values yi j for all u. individuals that we observed at least once,
(ii) the censored information about X that we obtain from y.

The missing data are
(i) the unknown number of individuals that were available for capture but not

caught (we include this by specifying ν as a parameter),
(ii) the realized but unknown values of Xij , xi j .

Including both the observed and missing data gives the CDL that we can express as

[x, y | S,β, p,ν]= [y | p,x,ν][x | S,β,ν]. (2.11)

The CDL has been naturally factored into a term that describes how the data were cor-
rupted, [y | p,x,ν], and a term that models the underlying birth and death processes of
interest, [x | S,β,ν]. As for the observed data likelihood section, we model the corruption
by assuming that an individual that was alive in sample j (xi j = 1) was observed in sample
j (yi j = 1) with probability pj . We model the birth and death process as in the Markov
chain model for X described in Section 2.1.

Even though the CDL provides a natural approach to looking at the problem, we must
still integrate over the missing data in order to obtain valid inference. Computational
techniques such as Markov chain Monte Carlo (MCMC, discussed below) can be used
that iteratively integrate out all missing data, allowing models to be specified in terms
of the CDL. This means that in each iteration of the MCMC chain we need values for
the missing quantities x and ν (and all other parameters) that were obtained from the



R. J. Barker and M. R. Schofield 7

posterior distribution of all unknowns. One such MCMC algorithm we can use is Gibbs
sampling, described in the following section.

2.4. Markov chain Monte Carlo. The Gibbs sampler, also known as alternating condi-
tional sampling, is a remarkable algorithm for efficiently constructing a Markov chain
for complex joint probability distributions [Z1, . . . ,Zk | θ] by sampling from the full con-
ditional distributions [Zi | {Zj} j �=i,θ] of each component. The stationary distribution of
this Markov chain has the target density [Z1, . . . ,Zk | θ]. A particularly useful feature of
the Gibbs sampler is that the Markov chain can be constructed even though the target
joint probability density may only be known up to the normalizing constant. This has led
to a resurgence of interest in Bayesian inference which, historically, has been held back
by the need for high-dimension integration needed to normalize posterior probability
densities.

Here, we outline the construction of a Gibbs sampler whose target density is the CDL
described in the previous section. Once we have collected our mark-recapture data we
have data y, that is known; and the unknown are any parameters and any unknown re-
alized values of random variables of interest. For the Crosbie-Manly-Arnason-Schwarz
model (2.3), the parameters are p1, p2, . . . , pk; S1, . . . ,Sk−1, β0,β1, . . . ,βk−1, and ν. In addi-
tion unknown realized random variables of interest (might) include N1, . . . ,Nk, B0,B1, . . . ,
Bk−1.

Starting with (2.3) and specifying independent beta Be(αp,γp) prior distributions for
the parameters pj , we can show that the full conditional distribution for pj is a beta
Be(nj +αp,Nj − nj + γp) for j = 1, . . . ,k, and where nj is the total number of individuals
caught at time of sample j.

If we specify independent beta Be(αS,γS) prior distributions for the parameters Sj , we
obtain beta Be(Nj −Dj +αS,Dj + γS) full conditional distributions for j = 1, . . . ,k− 1.

If we specify independent beta Be(αβ′ ,γβ′) prior distributions for the parameters β′j , we

obtain beta Be(Bj +αβ′ ,N −
∑ j

h=0Bh + γβ′) full conditional distributions for j = 1, . . . ,k−
2 (note that β′k−1 = 1). If desired, we can transform the generated values of β′j to any other
birth parameter, such as βj or ηj . For example, βj , j = 0, . . . ,k− 1, is obtained by taking

βj =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

β′j , j = 0,

β′j

j−1
∏

h=0

(

1−β′h
)

, j = 1, . . . ,k− 2.
(2.12)

We also need to calculate the full conditional probability of the missing values of x.
This can be done a number of ways, but we choose to represent the information in x
by matrices that give the interval censored times of birth and death, denoted by b and
d, respectively. The value bi j = 1 means individual i was born between sample j and j +
1 with bi j = 0 otherwise. The value bi0 = 1 means the individual was born before the
study began. The value di j = 1 means that individual i died between sample j and j + 1
with di j = 0 otherwise. The value dik = 1 means the individual was still alive at the end
of the study. The assumptions about the underlying birth and death processes impose
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restrictions on the values of b and d,

k−1
∑

j=0

bi j = 1,
k
∑

j=1

di j = 1, di j − bi j ≥ 0∀i, j. (2.13)

The matrices b and d are censored. For the u. individuals that were ever observed we
know that they were not born after first capture, bi j = 0, j = ri, . . . ,k, where ri indexes the
sample in which animal i first appeared. Likewise we know that they did not die before
the last capture, di j = 0, j = 1, . . . , li, where li indexes the sample in which animal i last
appeared. For the ν− u. individuals that were never observed we have no information
about either b or d.

The full conditional distribution of the unknown values of b for individual i is a multi-
nomial distribution with probability vector γb, where

γbj =
ζbj

∑λbi −1
h=0 ζ

b
h

,

ζbj =βj
λbi −1
∏

h= j
Sh
(

1− ph
)

,

(2.14)

and λbi is the time of first capture ri for all individuals observed, and it is the last period in
which the individual was alive (obtained from d) for individuals i= u.+ 1, . . . ,ν that were
not observed.

The full conditional distribution of the unknown values of d for individual i is a multi-
nomial distribution with probability vector γd, where

γdj =
ζdj

∑t
h=λdi ζ

d
h

,

ζdj =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

j−1
∏

h=λdi
Sh

j
∏

h=λdi +1

(

1− ph
)(

1− Sj
)

, j < k,

j−1
∏

h=λdi
Sh

j
∏

h=λdi +1

(

1− ph
)

, j = k,

(2.15)

and λdi is the time of last capture li for all individuals observed, and it is the first period in
which the individual was alive (obtained from b) for individuals i= u.+ 1, . . . ,ν that were
not observed.

For the parameter ν we specify a discrete uniform prior distribution DU(0,κν). Ob-
taining a sample from the full conditional distribution for ν has two problems:

(1) the full conditional distribution is only known to a proportionality constant,
(2) the value of the parameter changes the dimension of other unknowns in the

model.
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Table 2.1. Summary statistics for fitting the Crosbie-Manly-Arnason-Schwarz model to the meadow
vole data. The statistic uj is the number of individuals caught in sample j, Rj is the number of indi-
viduals released following sample j, qj is the number of the Rj that were ever recaptured, and mj is
the number of marked animals caught in sample j.

Month uj = Rj qj mj

1 96 81 —

2 42 74 76

3 27 65 71

4 30 61 70

5 38 82 59

6 61 — 87

Table 2.2. Maximum likelihood estimates of identifiable parameters in the Crosbie-Manly-Arnason-
Schwarz model fitted to the meadow vole data.

95% C. I.

Parameter Estimate SE lower upper

S1 0.875 0.041 0.770 0.936

S2 0.659 0.049 0.559 0.747

S3 0.681 0.050 0.576 0.770

S4 0.619 0.050 0.518 0.710

p2 0.905 0.040 0.792 0.960

p3 0.855 0.047 0.737 0.925

p4 0.934 0.036 0.816 0.979

p5 0.909 0.039 0.800 0.961

f2 0.220 0.056 0.130 0.347

f3 0.253 0.062 0.152 0.391

f4 0.378 0.078 0.242 0.538

To overcome the first problem we can use a sampling scheme, such as the Metropolis-
Hastings algorithm, that allows us to sample from a distribution that we only know
up to the proportionality constant. The second problem requires an extension of the
Metropolis-Hastings algorithm called reversible jump Markov chain Monte Carlo [3]
where there is dimension matching to ensure reversibility of the Markov chain. Details
of the reversible-jump sampler are given in [11].

2.5. Example. We illustrate the use of the MCMC algorithm described in the previous
section by fitting the model (2.3) to meadow vole (Microtus pensylvannicus) data col-
lected at the Patuxent Wildlife Research Center, Laurel, Md, USA [12]. The meadow vole
population was trapped at one-month intervals; untagged animals were tagged and re-
leased, tagged animals had their identity recorded and were then released. The model
(2.3) can be fitted using sufficient statistics (Table 2.1) and closed-form solutions to the
ML equations [7]. The ML estimates (Table 2.2) and the posterior summaries from fit-
ting the model using the Gibbs sample algorithm (Table 2.3) of the previous section are
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Table 2.3. Posterior distribution summary statistics for the Gibbs sampler posterior simulations and
for the identifiable parameters in the Crosbie-Manly-Arnason-Schwarz model fitted to the meadow
vole data. Included are predictions of the abundances Nj at the time of each sample and Bj , the
number of individuals born in (t j , t j+1).

Quantile

Parameters Mean Median 0.025 0.5 0.975

S1 0.874 0.042 0.788 0.876 0.953

S2 0.659 0.049 0.563 0.659 0.755

S3 0.681 0.051 0.580 0.682 0.779

S4 0.616 0.050 0.517 0.616 0.711

f2 0.222 0.058 0.123 0.218 0.348

f3 0.257 0.064 0.147 0.252 0.397

f4 0.377 0.079 0.241 0.370 0.549

p2 0.886 0.043 0.791 0.891 0.956

p3 0.839 0.048 0.733 0.843 0.921

p4 0.913 0.041 0.819 0.919 0.975

p5 0.891 0.041 0.799 0.896 0.958

Realized random variables

N2 132.4 5.1 125 132 145

N3 116.3 5.1 108 116 128

N4 108.8 3.9 103 108 118

N5 108.1 3.7 103 107 117

B2 28.7 4.1 21 29 37

B3 29.3 3.4 22 29 36

B4 41.0 3.6 35 41 49

in close agreement. For the Gibbs sampler we used beta Be(1,1) priors for Si, pi, and β′i
with the fi parameters found deterministically as a function of the βi and Si parameters
[7]. We used a discrete uniform DU(200000) prior for ν.

A nice feature of the MCMC approach is that it is relatively simple to obtain a posterior
distribution for unobserved random variables of interest such as Ni and Bi, also reported
in Table 2.3. Predictions for these in a likelihood analysis must be based on method of
moment-type estimators as the Ni and Bi parameters do not explicitly appear in the like-
lihood function. Obtaining predictions using MCMC is straightforward with values sam-
pled from the posterior predictive distribution. In practice, we simply use the set of b and
d values obtained in the Markov chain and for each iteration compute the current value
of the variable of interest. For example, [11] show that

Nj =
ν
∑

i=1

( j−1
∑

h=0

bih−
j−1
∑

h=1

dih

)

. (2.16)

Progress of the Markov chains is instructive (Figure 2.2). Convergence of the Markov
chains for the identifiable parameters S1, . . . ,Sk−2; p2, . . . , pk−1; f2, . . . , fk−2 is rapid and the
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Figure 2.2. Gibbs sampler Markov chains for the first 1000 iterations (column of plots on left-hand
side), for 50 000 iterations following a discarded burn-in of 10 000 iterations (middle column of
plots) and posterior density plots (right-hand column of plots) for the identifiable parameters S1 and
p1 and the nonidentifiable parameter ν, for the Gibbs sampler posterior simulations from fitting the
Crosbie-Manly-Arnason-Schwarz model fitted to the meadow vole data.

chains appear well-mixed after a few thousand iterations. Even chains for nonidentifiable
parameters such as ν appear well mixed after a few thousand iterations.

3. Discussion

Markov chain theory plays an important role in statistical inference both in the formula-
tion of models for data and in the construction of efficient algorithms for inference. The
ability to compactly represent stochastic processes that evolve over time has meant that
Markov chain theory has played an important role in describing animal and plant pop-
ulation dynamics. The fact that each generation gives rise to the next makes the Markov
property a natural starting point in developing population models.

The role of the Markov chain in statistical inference is a much more recent devel-
opment. Although the Metropolis-Hastings algorithm first appeared in 1953 [13], with
roots back to the Manhattan project, and the Gibbs sampler in 1984 [2] MCMC entered
into widespread use in statistics only in the last 15 years. This followed [14] who illus-
trated the application of Gibbs sampling to a variety of statistical problems.

MCMC is particularly useful for fitting hierarchical models using Bayesian inference
methods. A simple example of a hierarchical model is one where we have two components
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to the model [Y | θ][θ | γ]. Here, conditional on parameters θ, the random variable Y has
density [Y | θ]. The parameters θ are themselves modeled as random variables and have
distribution with pdf [θ | γ]. In order to fit this model by a method such as maximum
likelihood (ML), we must find the marginal likelihood: �(θ | y] = ∫θ[y | θ][θ | γ]dθ. In
practice this integral is very difficult, if not practically impossible, in most cases of inter-
est. The equivalent Bayesian problem is to find the posterior marginal density [γ | y]∝
[Y | θ][θ | γ][γ] which involves essentially the same integral. However, MCMC allows us
to approximate a sample from the required density but we must specify a prior distribu-
tion from γ. Thus, Bayesian inference methods based on MCMC allows inference for the
model [Y | θ][θ | γ] but the same problem may be difficult or impossible using standard
ML theory.

In the context of mark-recapture modeling, the advent of MCMC has meant that it is
now possible to fit complex hierarchical models. Starting with a model such as (2.3), it is
relatively easy to add hierarchical structure. In the context of the hidden Markov model
described in Figure 2.1, we mean that it is relatively straightforward to add in components
that allow us to further model [X | β,S,ν]. These issues have been explored by [7, 11]. [7]
showed how the model (2.3) could be used to explore relationships among parameters
and in particular considered a hierarchical model in which it was assumed that survival
probabilities were related to per capita birth rates (functions of the β parameters). Such
a model would make sense when there were common environmental influences on both
survival probabilities and birth rates. Such an analysis is virtually impossible using ML
methods. Similarly, [11] showed how the CDL discussed above could be used in hier-
archical modeling, and in particular fit models in which there is feedback between the
unknown random variables Nj and survival Sj or per capita birth rates f j . The practical
benefit of hierarchical modeling is that a much richer class of models is available for the
ecologist to explore, and the advent of MCMC means that methods of inference are fully
able to incorporate all different sources of uncertainty in the analysis.

A particularly important technical issue with MCMC is that of convergence. A typical
problem in Markov chain theory is the determination of a stationary distribution given
the transition kernel. In MCMC, the problem is reversed, and is one of constructing a
transition kernel that has, as its stationary distribution, the target distribution of interest.
Under mild conditions, the Metropolis-Hastings algorithm and the Gibbs sampler as a
special case are methods of constructing transition kernels that have the required prop-
erty. An important practical problem is the development of rules for helping determine
when the chain has converged. Experience indicates that for some problems, convergence
can be rapid and in others it can be slow. Rapid convergence appears to be an associated
with likelihood functions that are well behaved. Methods for assessing convergence are ad
hoc, and generally based on informal graphical assessment (Figure 2.2) or computation
of simple statistics, such as the Brooks-Gelman-Rubin diagnostic statistic. There is sur-
prisingly little underlying theory about the rate at which Markov chains constructed in
MCMC should converge to the stationary distribution that can be applied to the practical
problems of MCMC. Clearly, time to stationarity will be a property of the model. Again,
observation indicates that problems for which the likelihood function are well behaved
tend to converge rapidly. The work in [15, 16] is important in this regard.
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