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The generalised Bell and Laguerre polynomials of fractional-order in complex z-plane are defined.
Some properties are studied. Moreover, we proved that these polynomials are univalent solutions
for second order differential equations. Also, the Laguerre-type of some special functions are
introduced.

1. Introduction and Preliminaries

Special functions play important roles in applied mathematics. It has been seen that these
functions have appeared in different frameworks, such as the mathematical physics [1],
the combinatorial analysis [2], and the statistics [3]. Indeed, the explicit relationships
between special functions and generalised hypergeometric functions have been obtained and
mentioned in [4, 5]. Some extension of these polynomials already appeared in literature (see
[6, 7]), and generalisation by using different type of calculus such as g-deform calculus [8, 9]
and fractional calculus [10] has been studied.

Definition 1.1. The Bell polynomials take the form [11]

n
Bu(y) =e D"’ = > B4, neN, (1.1)
d=1
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where

I\ 1!
|k|=d,||k|\=nk' I

Baa= 3 H(E) (y_)" 12)

such that |k|=ky+---+ky, k1 >0,...,k;, >0, k! =ki!---k,!,and By = 1.

Definition 1.2. The Laguerre polynomials take the form
L,(x)=e*D"e™x", Ly=1, neNy. (1.3)

Recall that Bell polynomials and Laguerre polynomials are classical mathematical tools
for representing the nth derivative of a composite functions. Moreover, the multidimensional
polynomials of higher order are already defined, which are suitable to represent the
derivative of a composite function of several variables (see [6]).

In this paper, we introduce definitions for these polynomials of arbitrary order
(fractional order) in complex plane.

In [12] the definitions for fractional operators (derivative and integral) in the complex
z-plane C are given as follows.

Definition 1.3. The fractional derivative of order a is defined, for a function f(z), by

« _ 1 4 f©
DZf(Z)'_F(l—a)EIO (Z_g)adg, 0<a<l, (1.4)

where the function f(z) is analytic in simply-connected region of the complex z-plane C
containing the origin and the multiplicity of (z - ¢)™ is removed by requiring log(z — ¢) to be
real when (z—-¢) >0.Fora e [n-1,n)andn=1,2,...,

R N 05
DLE) = iz J, )

Definition 1.4. The fractional integral of order a is defined, for a function f(z), by

19 () = fof(é)(z—é)“‘ldé, >0, (1.6)

1
T(a)

where the function f(z) is analytic in simply-connected region of the complex z-plane (C)
containing the origin and the multiplicity of (z — £)*" is removed by requiring log(z — ¢) to
be real when (z — §) > 0. Further details in fractional calculus can be found in [13].



Advances in Decision Sciences 3

Remark 1.5. From Definition 1.3, we have DYf(z) = f(0), limy—olZf(z) = f(z), and
lim,_, 0Dl f(z) = f'(z). Moreover,

r 1
Dg{zﬂ}:ﬂ{zﬂ_“}/ I’l>_1l 05a<1/
F(p-a+1)
(1.7)
T(p+1)
IZ{zV) = ———{z"""}, u>-1, a>0, z#0.
F(p+a+1)
Lemma 1.6 (see [14]). For a € [0,1) and f is a continuous function, then
(Z)a—l d
a — a . = —, 18
DILf() = T fO) + IEDf(2); D= (18)

By using the operators (1.5) and (1.6), we define generalised polynomials in complex z-plane.
Definition 1.7. Leta € [n—1,n) and n = 1,2,.... The generalised Bell polynomials of order «
and —a are

B,(z) = e *DZe*, (1.9)

B_,(z) = e *I%e7, (1.10)

respectively.

Definition 1.8. Let « € [n—1,n) and n = 1,2,.... The generalised Laguerre polynomials of
order & and —a are

Ly(z) = e*D%e ?z™ , (1.11)

L_,(z) =e*IZe?2", meN, (1.12)

respectively.

Our plan is as follows. In Section 2, we study the recurrence relations of the
polynomials (1.9)—(1.12), the other three sections, we introduce the Laguerre-type of some
special functions.

2. Recurrence Relations

In this section, we introduce some recurrence relations for the generalised Bell polynomials
and Laguerre polynomials.
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Theorem 2.1. Let a € [0,1). Then the generalised Bell polynomials of order a and —a satisfy

(1) DBy (z) = Bay1(2) — Ba(2),

Za—l ez (21)

(2) DB_a(z) = B1-a(2) = B-a(2) = T@)

where D :=d/dz.
Proof. Let a € [0,1), then we have
(1) DBu(z) = D[e *DZe?]
=e*D[DZe*] — e *Die*
— e—zDa+1ez — e 2D%e*
z z
= Ba+1 (Z) - Ba(z)r
(2.2)
(2) DB_4(z) = D[e”*Ife7]
=e *D|[Ife*] - e *IZe”
=eF[Fe* - e7FI%e”

= Bl—a(z) -B., (Z)

On the other hand and in virtue of Lemma 1.6, we have

DB_,(z) = D[e ?IZ€7]

=e *D[I{e*] —e*IZe*

— ,Z (z)u—l az| _ —zya,z (23)
=e [m+lze:| e“IZe

B Za—lefz
[(a)

O
Theorem 2.2. Let a € [0,1). Then the generalised Laguerre polynomials of order a and —a satisfy
(1) DLa(z) = Lav1(2) + La(2),
(2) DLa(2) = Li-a(2) + La(2), 24

(3) DL_u(2) = %z”““‘l, 240,

where D :=d/dz.
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Proof. Let a € [0,1), then we have

(1) DLy(z) = D[e*DZe *z"]
=e*D[Die"z"] + e*DZe 2"
=¢* [D;"“e’zzm] + La(z)
= Lyi1(2) + La(2),
(2) DL_4(z) = D[e*Ife 2" (2.5)
=e*D[Ife 2] + e Ife " 2"
= ¢? [I;xflefzzm] +Lo(2)

= L1-a(2) + La(2).
For z #0 and in view of Lemma 1.6, we have

(3) DL_4(z) = D[e*Ife 2"

=e*D[Ife*z"] + e*IZe 2"

= e [IfDe™?2"] + eIfe 2" (26)
_m
()

m+a—1

In addition, we have the following results.

Theorem 2.3. Let a € [0,1). Then the generalised Bell polynomials B,(z) are univalent solutions for
the ordinary differential equation

D?B,(z) +2DB,(z) + Ba(2) = pa(z), z#0, (2.7)

where py(z) = (ae 2z [(a+ 1)z = 1] +e 2z + z7%) /T(1 — a).

Proof. Differentiating DB, (z) in Theorem 2.1 (part 1), using the fact that By,1(z) = DB4(z) +
B,(z) and using the properties in Lemma 1.6, into it, we obtain the result. Now for
z1#0,zp #0 such that z; # z; and by applying Remark 1.5 on (1.9), we can verify that B,(z)
are univalent functions. O

Theorem 2.4. Let « € [0,1). Then the generalised Laguerre polynomials L,(z) are univalent
solutions for the ordinary differential equation

D?La(z) +2DLy(2) + La(2z) = 04(2), z#0, (2.8)

where 0,(z) := e*[(z*/T(1 - a))(me~2z™! — e=2zm)]".
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Proof. Differentiating DL, (z) in Theorem 2.2 (part 1), using the fact that Ly+1(z) = DL4(z) —
L,(z) and again using Lemma 1.6, into it, we obtain the result. Now for z; #0, z, # 0 such that

z1 #z» and by applying Remark 1.5 on (1.11), we obtain that L,(z) are univalent functions.
O

3. Laguerre-Type Mittag-Leffler Function

In this section, the fractional Laguerre-type derivatives 9, introduced and in connection with

a fractional differential isomorphism denoted by the symbol %;ﬂ , acting onto the space < of
analytic functions of the z variable given as follows:

D := i — 9D, z— %;1, (3.1)
dz
where
27 = [ f@aL 32)
In general,
2. f(z f f@)=-¢fag, p>o, (3.3)
0}
so that
F p-1g4 2z
Fo() =2(1) = (z O = oy
(3.4)
ﬁ o n ,[5 1 F(n + 1) n+p
F - - = . 2\ .
() =2 = r(ﬂ)fg IR CTY T
According to this isomorphism, the Mittag-Leffler operator E, (z) (see [15])
o) Zn
E)L(Z) = nzzom, A> 0, (35)
is transformed into the first Laguerre-type E} (z)
_~x_Fo(z")
Fo(Ea(z)) = nZ:OI’()Ln+1) Zr n+1)F(An+1) =Ej(2). (3.6)
This result can be generalised by considering the k Laguerre-type Mittag-Leffler
- Fo(z" = z"
FX(Ev(2) =) 0(z") -3 == EX(2). (3.7)

Hran+D]* Srn+)[IAn+1)]
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Thus
QfE’;(az) = aE’;(az), aeC. (3.8)

Note that when A = 1 this reduces to exponential function (see [4]).

4. Laguerre-Type Hypergeometric Function

We use the same method of the previous section to obtain the Laguerre-type hypergeometric
function

(1), -~ (&
aFp(a, ... ag Py, ... ppiz) = Z(ﬁi) ((‘5:7)) !’ (4.1)
where (a),, is the Pochhammer symbol defined by
I'(a+n) L n=0,
= = 4.2
@ =T {a(a+1)---(a+n—l), n=1{1,2,..}. 42

According to the previous definition of Laguerre fractional derivative, the hyperge-
ometric function ;Fy(ai,..., a4 p1,...,Pp;z) is transformed into the first Laguerre-type

gFp(ar,... ag Py, ..., By 2)
o (aq)n FO(Zn)
'(ﬂp)n F(Tl+1)

_ & (@), (ag), =" (4.3)
2B, (Bp), T(n+ )]

:qF;(cxl,...,aq;ﬁl,...,ﬂp; z).

Fo(gFp (a1, ag;Pr ..., Bp;2)) = Z(ﬂ1

For k order we have

k a o P "(“q)n]k Fo(z")
Fo(qFp(@r, oo ag: o fpi2)) = Z[([ﬁ B, | [Tm+1)

i

[[(n+1)]*"

=qF,’f(al,...,txq;ﬂh---rﬁp}z)

the Laguerre-type hypergeometric function.
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5. Laguerre-Type Fox-Wright Function

Lastly, we introduce the Laguerre-type Fox-Wright function by using the similar approach in
Section 3. For complex parameters

.
a,..., 0 <X]~¢O’ -1,-2,...; j=1,...,q>,
]

(5.1)
B Py <%7é0, -1,-2,...; j:1,...,p>,
]

We have the Fox-Wright generalisation ;¥,[z] of the hypergeometric ,F, function by (see
[16-18])

([X1,A1),...,(aq,Aq),' ]
p z| =, 9,|(a;,4)), ;(Bj,Bj), 2z
atp q Tp|\ X A5)1,45 \PirBi)y,
I:(ﬂerl)r“-r(ﬁper); [ ! ! ]
_ &T(ar +nAr) - T(ay +nAy) z"
" AT (B +nBy)---T(f, +nB,) n!
e H?:lr(“i +nA;) z"
n=0 H¢:1F(ﬁ]+nB]) nl’

(5.2)

where A; >0 forallj=1,...,q,B; >0forallj=1,...,p,and 1 + 2?21 B; - Z?:l Aj > 0 for
suitable values |z|. The Laguerre-type ¥y [(aj, Aj)1 5; (Bj, Bj)1,p; 2] is

AN a RN . ~ & (a1 +nAp)---T(ag+nAy) Fo(z")
Fo (qlpp[(aJ'A])W’ By Bi)s Z]) - nZ:O T(pr +nBy) .-.r(ﬂ:, + nB:) 1”((1)1 +1)

_&T(a +ndy) - T(ag+ndy) 2 (5.3)
S T(pr+nBy)---T(B, +nBy) [T(n+1)]

= Wb (@A), (BB,

For k order we have

| T A)---T A k "
B (3%, [ (@, A7), 5 (B, B)), 2] ) = [ (a1 +nA) - T(ag +n q)] [Fo(Z)

L T(p1+nB1)---T(By+nBy) | [[(n+1)]
& [r(a1 +nAy) - T(ay +nA,,)]k o (5.4)
S| T+ nBy) - T(By+nBy) | [T(n+ 1))

= WE (@, A7), (BB, 2]

the Laguerre-type Fox-Wright function.
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