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One of the key questions in credit dependence modelling is the specfication of the copula function
linking the marginals of default variables. Copulae functions are important because they allow
to decouple statistical inference into two parts: inference of the marginals and inference of
the dependence. This is particularly important in the area of credit risk where information on
dependence is scant. Whereas the techniques to estimate the parameters of the copula function
seem to be fairly well established, the choice of the copula function is still an open problem. We find
out by simulation that the t-copula naturally arises from a structural model of credit risk, proposed
by Cossin and Schellhorn (2007). If revenues are linked by a Gaussian copula, we demonstrate
that the t-copula provides a better fit to simulations than does a Gaussian copula. This is done
under various specfications of the marginals and various configurations of the network. Beyond
its quantitative importance, this result is qualitatively intriguing. Student’s t-copulae induce fatter
(joint) tails than Gaussian copulae ceteris paribus. On the other hand observed credit spreads have
generally fatter joint tails than the ones implied by the Gaussian distribution. We thus provide a
new statistical explanation why (i) credit spreads have fat joint tails, and (ii) financial crises are
amplified by network effects.

1. Introduction

One of the key questions in credit dependence modelling is currently the specification of
the copula function linking the marginals of default variables. Several books have been
written on copulae as well as their application to finance, for example, Cherubini et al. [1],
Embrechts et al. [2], Joe [3], and Nelsen [4]. We refer to these books for an exposition of
copula theory. The main application of copulae seems to be the following. In several domains,
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and in particular in credit risk, there is often a lack of information to model the dependence
between random variables. However, there is sufficient information to model the marginals
of each random variable. It is in this particular context that-copulae functions are important
for dependence modelling. The estimation of the joint distribution can thus be decoupled
into estimation of the marginals, which is more robust, and estimation of the copula function.
This estimation method, coupled with maximum likelihood (MLE) estimation, is often called
inference for the margins, or IFM (see, e.g., Cherubini et al. [1, Section 5.3]).

Whereas the techniques to estimate the parameters of the copula function seem to be
fairly well established, the choice of the copula function is still an open problem. Among
several copulae, researchers in finance seem to have employed mostly the Gaussian, t, and
Archimedean (family of) copulae. One of the advantages of the Gaussian copula is ease of
simulation, while the Archimedean copula offers some advantages for inference. There has
been wide-spread use of Gaussian copulas by rating agencies lately.

The initial goal of this research was to help practitioners in the selection of a particular
copula function. More specifically, our main goal was to compare t-copulae with the Gaussian
copula as a way to model counterparty risk. We found out by simulation that the t-copula
naturally arises from a structural model of credit risk, proposed by Cossin and Schellhorn
[5], and henceforth abbreviated CS model. The CS model links operating revenue to the
credit spreads of firms in a network economy. If revenues are linked by a Gaussian copula,
we demonstrate that the t-copula provides a better fit to simulations than does a Gaussian
copula. This is done under various specifications of the marginals and various configurations
of the network. Beyond its quantitative importance, this result is qualitatively intriguing. It
has been recognized by various researchers (see, e.g., Bluhm [6]), that t-copulae induce fatter
(joint)1 tails than Gaussian copulae ceteris paribus. On the other hand, the finance literature
has abundantly documented in the last twenty years that credit spreads have generally
fatter joint tails than implied by the Gaussian distribution. We thus provide a new statistical
explanation why credit spreads have fat joint tails: even if the driver of credit spreads (namely
revenue) has normal tails, because of counterparty relationships, credit spreads have fatter
joint tails. Thus, financial crises are amplified by network effects.

This work also confirms the plausibility of the CS model. Indeed, under the hypothesis
that (i) the (CS) model is valid and (ii) revenue has normal tails, we conclude that credit
spreads have fat (joint) tails. Since fat joint tails are empirically observed, this seems to
indicate that the (CS) model does a good job at explaining contagion. In this article, we do
not dwell on this positive feature of our model. Indeed most credit risk models attempt to
explain nonnormal risk of contagion, and a model which does not exhibit this feature would
not be very interesting.

The curious reader may wonder what is the point of doing a statistical inference on
a deterministic model. It is tempting to allude to Einstein’s criticism of quantum mechanics
“God does not play with dice”. While there may be a purely deterministic description of
microphysical phenomena beyond quantum mechanics, the latter theory proved to be fruitful
for many years. We could argue that the same applies in credit risk. While a better description
of credit risk if probably is given by models like the (CS) model, the lack of identifiability of
model parameters (due to lack of disclosure of exposure parameters λ) forces practitioners to
resort to statistical models. The point is that the statistical model must be indistinguishable
from benchmark deterministic models.

Our article is composed of three parts. We first expose the models of network
economies that we test. We then describe the statistical methodology. The statistical
methodology is split into two parts: parameter estimation and hypothesis testing. In the
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Figure 1: An example of a network economy with 3 firms.

hypothesis testing section, we compare the two null-hypotheses: Gaussian copula, and t-
copula. Finally, we present the results.

2. Models of Network Economies

We first describe briefly the (CS) model in general and then introduce the types of network
economies that we will study. We then discuss the distributional assumptions.

2.1. The CS Model

In the CS model, each firm is (potentially) at the same time a borrower from another (or
several) firm(s) in the network and a lender to another (or several) firm(s). Our main
assumption is not only that the quantity of debt is fixed, but also the network of lending and
borrowing is fixed. In other terms, firms have preferred lenders, and the amount borrowed
from them does not change with time. In addition to their borrowing and lending function,
each firm produces goods and distributes dividends to its shareholders, in a manner similar
to Leland’s [7] model. We show an example of such a network economy in Figure 1.

We call νi the long run operational revenue rate of firm i. In the CS model, this rate
is not directly observable. At each time t the market calculates an estimator ν̂i(t) of νi. For
the sake of brevity in this document, we will call ν̂i simply the production revenue. The total
revenue α̂i of firm i consists of its operational revenue plus debt payments from its borrowers.
The main assumption of our model is that network relationships are fixed: debt payments
from firm k to firm i are, at all times, proportional to the total revenue of firm k. In other
terms, there are constants λki so that

α̂i(t) = ν̂i(t) +
∑

k

α̂k(t)λki. (2.1)

The payout ratio δi expresses what percentage of total expenses of firm i is distributed to
bondholders and equityholders. It is modelled as a geometric Brownian motion with relative
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drift μi and volatility σi. A payout ratio superior to one corresponds to a recapitalization of
the firm. We assume that the payout ratio is independent of the level of expenses. Payout
ratios across firms can be correlated. Upon default, firm i incurs a loss rate of wi. Theorem 2.1
was proved in Cossin and Schellhorn [5]:

Theorem 2.1. In steady state, the values of equity S and debt B are, for finite N, and t not a
bankruptcy time:

Si(t, ω) = α̂i(t, ω)s
(

δi(t, ω); δi(0), μi, σi,wi, r
)

+O
(

1√
N

)

,

Bi(t, ω) = α̂i(t, ω)b
(

δi(t, ω); δi(0), μi, σi,wi, r
)

+O
(

1√
N

)

.

(2.2)

The parameter N scales the production revenue intensity, as is common in diffusion
approximations. We refer to Cossin and Schellhorn [5] for a full definition of N. Roughly
speaking, a large N corresponds to a large cash account, which acts as a (partial) buffer
against cash flow risk. In this paper, we make the assumption that N is very large, for
simplicity. The functions s and b are fully analytical and equal (mutatis mutandis) to the
formulae for the price of debt and equity in Leland’s [7] model.

We want to show that the copula function of the counterparty risk premium (which
we define in (2.8)) is equal to the copula function of total revenue. This occurs in the case
of a stationary debt structure a la Leland and Toft [8], where the distribution of principal is
uniform between [t, t + T]. In such an environment, a constant bankruptcy level is optimal. It
can also be seen that liquidity risk is also decoupled from counterparty risk. More formally,
let Bi(t, T, ω) be the total value of debt. There is now a new function bLT so that

Bi(t, T, ω) = α̂i(t, ω)bLT
i

(

δi(t, ω), T ; δi(0), μi, σi,wi, r
)

+O
(

1√
N

)

. (2.3)

Differentiating (2.3) with respect to T , we see that the value of debt with maturity [T, T + dT]
is equal to

∂

∂T
Bi(t, T, ω)dT = α̂i(t, ω)

∂

∂T
bLT
i

(

δi(t, ω), T ; δi(0), μi, σi,wi, r
)

dT +O
(

1√
N

)

. (2.4)

On the other hand, we can rewrite the left-hand-side as

∂

∂T
Bi(t, T, ω)dT ≡

Li
T

exp(−(r + csi(t, T))T)dT, (2.5)

where Li is the total principal and csi(T) the credit spread of firm i for maturity T . For
simplicity we write

ϕi(t, T, ω) =
∂bLT

i

∂T

∣

∣

∣

∣

∣

δi(t,ω),T

. (2.6)
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Thus, equating (2.4) with (2.5), and taking N → ∞, we have

r + csi(t, T, ω) =
1
T

[

ln
(

Li
α̂i(t, ω)T

)

− lnϕi(t, T, ω)
]

. (2.7)

Our main goal in this article is to assess the impact of counterparty risk. We are thus more
interested in the credit risk coming from α̂i than the credit risk coming from ϕi in the last
expression. We thus define the counterparty risk premium crpi and a bankruptcy risk premium
brpi:

crpi =
1
T

ln
(

Li
α̂i(t, ω)T

)

, (2.8)

brpi = −
1
T

lnϕi(t, T, ω) − r. (2.9)

The counterparty risk premium stems from the network term α̂i and the bankruptcy
risk premium comes from the idiosyncratic variable δi, which represents the payout ratio.
While the bankruptcy risk premium is different for debt and for equity, the counterparty risk
premium is the same for both securities. Assembling (2.8), (2.9), and (2.7), we see that we can
decompose the credit spread into counterparty risk premium and bankruptcy risk premium:

crpi + brpi = csi. (2.10)

It is well known that the copula function is unchanged under monotone transfor-
mations, such as the transformation (2.8) between total revenue α̂i and counterparty risk
premium crpi. We thus showed the following fact.

Fact. The copula function of the counterparty risk premium is the same as the copula function
of total revenue.

Finally, we perform only a static analysis; that is, we analyze only the counterparty risk
premium viewed as a random variable. What remains to be specified are then the network
configurations and the distributional assumptions.

2.2. Networks

We analyze 3 different network configurations, that is possible relationships (networks)
between the production revenue ν̂i and the total revenue α̂i:

(i) a “triangular”, or “full” network,

(ii) a “star” network,

(iii) a “series” network.
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Table 1

(a)

Full (Triangular) Network P -value
No. of firms No. of revenue scenarios First K-S Test Second K-S Test
2 50 .9958 1.0000
2 100 .9921 1.0000
2 150 .8820 1.0000
2 200 .6107 1.0000
2 300 .7762 1.0000
2 500 .8110 1.0000
2 700 .7562 1.0000
2 900 .5342 1.0000
3 50 .6779 1.0000
3 100 .8000 1.0000
3 150 .8738 1.0000
3 200 .7318 1.0000
3 300 .6107 1.0000
3 500 .6019 1.0000
3 700 .5765 1.0000
3 900 .1400 1.0000
5 50 .9541 1.0000
5 100 .4431 1.0000
5 150 .0718 1.0000
5 200 .5272 1.0000
5 300 .1386 1.0000
5 500 .2184 1.0000
5 700 .1753 1.0000
5 900 .0305 1.0000
10 50 .0021 1.0000
10 100 .0082 1.0000
10 150 1.8654e − 009 1.0000
10 200 1.4725e − 005 1.0000
10 300 9.6681e − 009 1.0000
10 500 5.6889e − 010 1.0000
10 700 2.3889e − 020 1.0000
10 900 7.6473e − 024 1.0000
50 50 2.1647e − 023 1.0000
50 100 6.6643e − 019 1.0000
50 150 3.3610e − 037 1.0000
50 200 2.1543e − 027 1.0000
50 300 7.2496e − 067 1.0000
50 500 1.2755e − 069 1.0000
50 700 1.1159e − 107 1.0000
50 900 6.2242e − 131 1.0000
100 50 2.0685e − 017 1.0000
100 100 1.5506e − 045 1.0000
100 150 6.3211e − 059 1.0000
100 200 2.3167e − 055 1.0000
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(a) Continued.

Star Network P -value
No. of firms No. of revenue scenarios First K-S Test Second K-S Test
100 300 6.1185e − 074 1.0000
100 500 3.0720e − 090 1.0000
100 700 9.3211e − 128 1.0000
100 900 2.6643e − 183 1.0000
200 50 4.0089e − 015 1.0000
200 100 1.5506e − 045 1.0000
200 150 1.6517e − 028 1.0000
200 200 1.4175e − 089 1.0000
200 300 8.0437e − 119 1.0000
200 500 1.0424e − 097 1.0000
200 700 1.6714e − 125 1.0000
200 900 6.3297e − 203 1.0000

(b)

Series Network P -value
No. of firms No. of revenue scenarios First K-S Test Second K-S Test
2 50 .8409 1.0000
2 100 .9610 1.0000
2 150 .2737 1.0000
2 200 .9596 1.0000
2 300 .9957 1.0000
2 500 .9572 1.0000
2 700 .9342 1.0000
2 900 .8418 1.0000
3 50 .9958 1.0000
3 100 .0994 1.0000
3 150 .7055 1.0000
3 200 .5272 1.0000
3 300 .0934 1.0000
3 500 .6019 1.0000
3 700 .8384 1.0000
3 900 .7702 1.0000
5 50 .8409 1.0000
5 100 .8938 1.0000
5 150 .8000 1.0000
5 200 .3767 1.0000
5 300 .6397 1.0000
5 500 .8567 1.0000
5 700 .8748 1.0000
5 900 .0173 1.0000
10 50 .6779 1.0000
10 100 .7942 1.0000
10 150 .5272 1.0000
10 200 .6397 1.0000
10 300 .3762 1.0000
10 500 .2208 1.0000
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(b) Continued.

Star Network P -value
No. of firms No. of revenue scenarios First K-S Test Second K-S Test
10 700 .1672 1.0000
10 900 .0349 1.0000
50 50 2.1647e − 023 1.0000
50 100 9.1220e − 009 1.0000
50 150 2.6562e − 007 1.0000
50 200 7.6668e − 010 1.0000
50 300 4.7542e − 005 1.0000
50 500 .0555 1.0000
50 700 8.9159e − 004 1.0000
50 900 .0025 1.0000
100 50 2.9719e − 009 1.0000
100 100 1.5506e − 045 1.0000
100 150 5.8193e − 007 1.0000
100 200 5.4170e − 009 1.0000
100 300 9.6737e − 009 1.0000
100 500 1.3138e − 009 1.0000
100 700 8.7499e − 010 1.0000
100 900 9.0278e − 007 1.0000
200 50 1.0799e − 008 1.0000
200 100 3.6964e − 012 1.0000
200 150 1.3332e − 024 1.0000
200 200 1.4175e − 089 1.0000
200 300 1.4008e − 034 1.0000
200 500 1.2495e − 021 1.0000
200 700 3.3716e − 014 1.0000
200 900 3.6571e − 022 1.0000

(c)

Star Network P -value
No. of firms No. of revenue scenarios First K-S Test Second K-S Test
12 50 2.9719e − 009 1.0000
12 100 9.1220e − 009 1.0000
12 150 1.9937e − 013 1.0000
12 200 2.4000e − 011 1.0000
12 300 8.6264e − 023 1.0000
12 500 1.1180e − 034 1.0000
12 700 1.3228e − 046 1.0000
12 900 1.2521e − 042 1.0000

2.2.1. Triangular or “Full” Network

In this type of network, firm m makes loans to firms 1, 2, . . . , m − 1. Firm m − 1 loans to firms
1, 2, . . . , m − 2, and so on. The network equations are then (see also Figure 2)
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Figure 2: A Triangular or “Full” network.

α1(ω) = ν1(ω),

α2(ω) = λ12 ∗ ν1(ω) + ν2(ω),

α3(ω) = λ13 ∗ ν1(ω) + λ23 ∗ ν2(ω) + ν3(ω),

...

αm(ω) = λ1m ∗ ν1(ω) + λ2m ∗ ν2(ω) + · · · + λm−1,m ∗ νm−1(ω) + νm(ω).

(2.11)

We analyze the specific case λi,j = 0.5 for i < j. Also, all the firms have the same size,
that is, E[νi] = 1.

2.2.2. Series Network

In a series network, each firm m − 1 borrows from the “next” firm m. It is illustrated in
Figure 3:

α1(ω) = ν1(ω),

α2(ω) = 0.5α1(ω) + ν2(ω),

α3(ω) = 0.5α2(ω) + ν3(ω),

α4(ω) = 0.5α3(ω) + ν4(ω),

...

αm(ω) = 0.5αm−1,m(ω) + νm(ω),

(2.12)

where λm−1,m = 0.5.
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2.2.3. Star Network

A star network is an idealization of an economy with a small group of large “middle firms”
who both lend to a set of “start firms” and borrow from a set of “end firms.” Start and end
firms all have the same revenue size, that is, E[νi] = 1. All large firms also have the same
revenue size, E[νi] = 5.

We choose a particular network with 7 start firms, 2 middle firms, and 3 end firms.
A typical example is the US car industry, with Ford and GM as “middle firms”, dealers as
end firms, and suppliers as start firms. Figure 4 illustrates this type of network. Since only
the production revenue of a (say) start firm times lambda matters in determining the impact
of a start firm on a middle firm, it is needless to vary lambda in this network to account for
different relative impact of start firms on middle firms. A different relative revenue suffices.

2.3. Distributional Assumptions

Our main assumption is that the dependence between production revenues is described
by the Gaussian copula. Since copulae are invariant under monotone transformations of
variables, the copula of the logarithm of revenue is also Gaussian under this hypothesis. We
chose the following variance-covariance matrix for ν:

Var
[

ννt
]

=

⎡

⎢

⎢

⎢

⎢

⎣

1 ρ · · · ρ
ρ 1 ·
· ρ

ρ · ρ 1

⎤

⎥

⎥

⎥

⎥

⎦

(2.13)
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with ρ = 0.5. This choice was fairly arbitrary, but we found out in other tests (not
reported here) that other values of ρ give us similar results. We test different types of marginal
distributions F for production revenue ν̂i:

(i) exponential with various rates, namely, 1, 5, and 20

(ii) uniform with various support,

(iii) gamma with various shapes and scales,

(iv) quadratic F(x) = x2 where x ∈ [0, 1],

(v) cubic F(x) = x3 where x ∈ [0, 1].

Exponential, gamma, and uniform random variables are standard choices for
modelling positive random variables (see, e.g., Lando [9]).

3. Statistical Methodology

As stated earlier, the main goal in this paper was to compare t-copula with a Gaussian copula
as a way to model counterparty risk. Since the Gaussian copula is a special case of a t-copula,
namely a t-copula with an infinite number of degrees of freedom, we try to fit a t-copula to
our simulated data. The calibrated number of degrees of freedom will be a good indicator
whether a nonGaussian t-copula is a better choice than the Gaussian copula. We then expose
our methodology for hypothesis testing.

3.1. Parameter Estimation

Assuming that the dependence of the firms’ counterparty risk premia is the Student’s t-
copula, we conduct our estimation analyses based on the IFM method discussed in Chapter
5.3 of the book Copula Methods in Finance by Cherubini et al. [1]. Cherubini et al’s method
is composed of two following steps:

(1) infer the parameter(s) θ1 of the marginals,

(2) infer the parameter(s) θ2 of the Student’s t-copula.

Our analyses focus on the second step: estimating the parameter(s) of the copula θ2.
We bypass the first step because we take the empirical distribution of the marginals as given.
The Student’s t-copula has two parameters, namely, the correlation matrix R and the degrees
of freedom ν. For simplicity, we use the method of moments to first infer the correlation
matrix, and use maximum likelihood to estimate the degrees of freedom ν:

ν̂ = arg max
ν

Ω
∑

ω=1

ln cR,ν(F1(αω,1), F2(αω,2), . . . , Fn(αω,m)), (3.1)

where

cR,ν(u1, u2, . . . , um) = |R|−1/2 Γ((ν + 2)/2)
Γ(ν/2)

(

Γ(ν/2)
Γ((ν + 1)/2)

)2 (1 + (1/ν)ςtR−1ς
)−(ν+2)/2

∏m
j=1

(

1 + ς2
j /ν
)−(ν+1)/2

,

ςj = t−1
ν

(

uj
)

.

(3.2)
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Let m be the total number of firms in the network and Ω the total number of
revenue scenarios. The following algorithm constructs the network economy and estimates
the parameter vector ν.

(1) Generate a table of total revenues α based on the relationship specified in each
network discussed in the previous section:

α11, α21, . . . , αΩ1,

α12, α22, . . . , αΩ2,

...

α1m, α2m, . . . , αΩm.

(3.3)

(2) Calculate, for each scenario ω,

̂Uω1 = ̂F1(αω,1) =
1
Ω

Ω
∑

i,k=1

1{αi,1 < αk,1},

̂Uω2 = ̂F2(αω,2) =
1
Ω

Ω
∑

i,k=1

1{αi,2 < αk,2},

...

̂Uωm = ̂F2(αω,m) =
1
Ω

Ω
∑

i,k=1

1{αi,m < αk,m}.

(3.4)

(3) Transform the variable ̂U into the variable ζ for each scenario ω:

ζω1 = t−1
ν

(

̂Uω1

)

,

ζω2 = t−1
ν

(

̂Uω2

)

,

...

ζωm = t−1
ν

(

̂Uωm

)

.

(3.5)

(4) Calculate the covariance matrix of ζ:

Remp = Cov(ζω1, ζω2, . . . , ζωm). (3.6)
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(5) Maximize over the degrees of freedom ν the log likelihood of the Student’s t-copula
density:

max
ν

Ω
∑

ω=1

ln c(F1(αω,1), F2(αω,2), . . . , F2(αω,n))

= max ln

⎛

⎜

⎝

∣

∣Remp
∣

∣

−1/2 Γ((ν + 2)/2)
Γ(ν/2)

(

Γ(ν/2)
Γ((ν + 1)/2)

)2
(

1 + (1/ν)ςtiR
−1
empςi

)−(ν+2)/2

∏n
j=1

(

1 + ς2
i,j/ν

)−(ν+1)/2

⎞

⎟

⎠,

(3.7)

where

ςω,1 = t−1
ν

(

̂Uω1

)

,

ςω,2 = t−1
ν

(

̂Uω2

)

,

...

ςω,n = t−1
ν

(

̂Uωn

)

.

(3.8)

3.2. Hypothesis Testing

In the section, we describe our methodology to determine whether or not we made the right
assumption, that the Student’s copula fits our counterparty risk premium (simulated) data
better than the Gaussian copula. The goodness-of-fit test we use to compare the empirical
distribution with the hypothesized cumulative distribution is called the Kolmogorov-
Smirnov test. We perform two K-S tests: (1) empirical versus normal and (2) empirical versus
Student’s t.

3.2.1. First K-S Test: Empirical versus Normal

The first K-S test rests on the fact that if the copula of the counterparty risk premiumCα1,α2,...,αm

is normal then the distribution of the variable z2
emp (defined below) should be chi-square χ2

with degrees of freedom equal to the number of the firms in the network m. For a given
network, we conduct the first K-S test as follows.

The hypotheses are

H0 : the copula Cα1,α2,...,αm is Gaussian,

H1 : the copula Cα1,α2,...,αm is not Gaussian.
(3.9)

We follow the methodology discussed in Malevergne and Sornette [10].
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(1) Find the empirical distribution ̂Fαm of αm and calculate ̂Um as in the parameter
estimation step:

̂U1 =
(

̂Fα1(α1)
)

,

...

̂Un =
(

̂Fαn(αm)
)

,

(3.10)

where

̂F1(αω,1) =
1
Ω

Ω
∑

i,k=1

1{αi,1 < αk,1},

...

̂Fn(αω,m) =
1
Ω

Ω
∑

i,k=1

1{αi,m < αk,m}.

(3.11)

(2) Calculate the Gaussian variables yω1, yω2, . . . , yωm via the following transforma-
tion:

yω1 = Φ−1
(

̂Uω1

)

= Φ−1
(

̂Fα1(αω1)
)

,

...

yωm = Φ−1
(

̂Uωn

)

= Φ−1
(

̂Fαn(αωm)
)

.

(3.12)

(3) Determine the covariance matrix Remp of the Gaussian variables y1, y2, . . . , ym
(4) Calculate the variable z2

emp.

z2
emp.(ω) = y

tR−1
empy. (3.13)

(5) Find the empirical distribution of z2
emp., namely, ̂Fz2

emp

(6) Calculate the Kolmogorov distance:

D = max
z2

emp

∣

∣

∣

̂Fz2
emp

(

z2
emp

)

− Fχ2

(

z2
emp

)∣

∣

∣. (3.14)

(7) Verify the result by using the kstest2 (Kolmogorov test to compare the distribution
of two samples) command in Matlab.
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3.2.2. Second K-S Test: Empirical versus t

As previously mentioned, the second K-S test will allow us to compare the empirical
distribution of the copula to the theoretical Student’s t distribution. We will then compare
the results of the second K-S test to those of the first K-S test. We proceed with the second K-S
test as follows:

H0 : the copula Cα1,α2,...,αm is Student′s copula,

H1 : the copula Cα1,α2,...,αm is not Student′s copula.
(3.15)

Unlike in the Gaussian copula case, there is no analytical expression for the density
of the theoretical Kolmogorov-Smirnov statistic z2

th. in the t-copula case. Thus we generate
by simulation (over a very large number of scenarios Ω) the distribution ̂Fz2

th.
. The overall

algorithm is as follows.
(1) Generate the “theoretical” data (xω1, xω2, . . . , xωm) by Conditional Monte Carlo

(CMC) simulation following the method adapted from that of Aas et al. [11] and find
the empirical distribution ̂Fxm of the theoretical data. Please refer to the appendix for the
Conditional Monte Carlo (CMC) simulation algorithm.

(2) Calculate ̂Um:

̂Uth
1 =
(

̂Fx1(x1)
)

,

...

̂Uth
m =
(

̂Fxm(xm)
)

.

(3.16)

(3) Calculate the variables yth
ω1, y

th
ω2, . . . , y

th
ωn

yth(ω, 1) = Φ−1
(

̂Uth
1 (ω)

)

,

...

yth(ω,m) = Φ−1
(

̂Uth
m(ω)

)

.

(3.17)

(4) Determine the covariance matrix Rth of the variables yth
1 , y

th
2 , . . . , y

th
m .

(5) Calculate the variable z2
th:

z2
th.(ω) =

(

yth
)t
R−1

th y
th. (3.18)

(6) Find the theoretical distribution of z2
th., namely, ̂Fz2

th
:
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Figure 5: Inference on the triangular network with 2 firms. Marginal distribution is exponential with
E[νi] = 1.

(7) Calculate the Kolmogorov distance

D = max
z2

emp

∣

∣

∣

̂Fz2
emp

(

z2
emp

)

− Fz2
th

(

z2
emp

)∣

∣

∣. (3.19)

(8) Verify the result by using the kstest2 command in Matlab.

4. Results

4.1. Parameter Estimation

The principal result that we obtain is that, for counterparty risk premia, any Student’s t-
copula results in a better fit than the Gaussian copula.

We show the log-likelihood defined on the right-hand-side of (3.1) as a function of
the number of degrees of freedom of the Student’s t distribution. In our simulation, we
use various numbers of scenarios: 50, 100, 150, 200, 300, 500, 700 to 900 scenarios. For the
triangular and series networks, the number of firms varies from 2, 3, 5, 10, 20, 50, 100 to 200.
In all these cases, the log-likelihood function is uniformly decreasing. In other words, the
degrees of freedom that maximize the log-likelihood are finite numbers in all the cases.

We show hereafter a subset of our simulation results. In Figures 5 to 16 are shown
the results for the triangular, or “full” network. In Figure 17, are shown the results for the
series network, while in Figure 18 we show results for the star network. The benchmark
marginal distribution is exponential. For the triangular network, we tried also all the marginal
distributions specified earlier in order to verify that the marginal distributions of the firms’
production revenues have no effect on the dependence structure of the their counterparty
risk premia.
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Figure 6: Inference on the triangular network with 2 firms. Marginal distribution is exponential with
E[νi] = 5.
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Figure 7: Inference on the triangular network with 2 firms. Marginal distribution is exponential with
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It is worth mentioning again that the log-likelihood function is uniformly decreasing
across all samples. As mentioned above, the Gaussian distribution is a Student’s t-distribution
with an infinite number of degrees of freedom. Thus, from our parameter estimation step, we
conclude that any Student’s t-distribution results in a better fit than the Gaussian distribution.
This fact will be confirmed when we perform hypothesis testing for goodness-of-fit check.
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4.1.1. “Full” or Triangular Networks

See Figures 5–16.

4.1.2. Other Networks

See Figures 17 and 18.

4.2. Hypothesis Testing

4.2.1. First K-S Test: Empirical versus Normal

We analyze the Kolmogorov statistic D which represents the maximum distance between the
empirical distribution ̂Fz2

emp
and the χ2-distribution.

As in the parameter estimation step, we varied our revenue scenarios from 50, 100,
150, 200, 300, 500, 700 to 900 scenarios and the number of firms from 2, 3, 5, 10, 20, 50, 100
to 200 in each of our networks. As the number of firms in the triangular network increases,
the Kolmogorov statistic D increases, thus allowing us to reject the null hypothesis that the
copula of the counterparty risk premium is Gaussian if the number of firms is sufficiently
large. We also use Matlab’s kstest2 function to verify the reliability of our Kolmogorov
statistic D. Note that our Kolmogorov statistic D takes into account only the maximum
difference value while the Matlab’s kstest2 function takes into account the difference values
at all data points between the empirical distribution and the theoretical distribution (χ2, in
this case). The Matlab’s kstest2 results are consistent with our conclusion. Specifically, when
the number of firms in the network exceeds 10, we reject the null hypothesis in favor of the
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alternative hypothesis at a 5% significance level. In plain words, when the number of firms
exceeds 10 in the network, the copula that captures the dependence of the counterparty risk
premium is not Gaussian.

Similar results hold for the series and “star” networks. In the series network, when the
number of firms in the network exceeds 30, we reject the null hypothesis that the copula is
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Gaussian. We also reject the null hypothesis in the “star” network of 12 firms. In sum, when
the number of the firms increases, we are more likely to reject the null hypothesis. This leads
us to conclude that as the number of firms increases, the copula that captures the dependence
of the counterparty risk premium is more likely to be nonGaussian.
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−4

−3

−2

−1

lo
g

lik
el

ih
oo

d
(l

nc
)

0

1

2

3

0

Shape = 1, scale = 2
Shape = 2, scale = 2
Shape = 9, scale = 0.5

50

Degrees of freedom (v)

The “full” network of 4Γ marginals

100 150

Figure 14: Inference on the triangular network with 4 firms. Marginal distribution is gamma.

4.2.2. Second K-S Test: Empirical versus t

Note that the copula is likely to be nonGaussian, is it a Student’s t-copula? Which copula,
Gaussian or Student’s t, is more likely? The second K-S test will allow us to compare the
empirical distribution of the copula to the theoretical Student’s t distribution.
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As before, we did the test on the triangular or “full” network, the series network, and
the “star” network. For each type of network, we varied the number of revenue scenarios
from 50, 100, 150, 200, 300, 500, 700 to 900 scenarios and the number of firms from 2, 3, 5, 10,
20, 50, 100 to 200 firms. The results we obtained indicate that we cannot reject the hypothesis
that the copula is Student’s t in all cases at the 5% significance level. In other words, we
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Figure 17: Inference on the series network. Marginal distribution is exponential with E[νi] = 1.
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do not have sufficient evidence to reject that the copula capturing the dependence of the
counterparty risk premium is Student’s t.

4.2.3. P-Value

For networks of 2–5 firms, the P -values indicate that we cannot reject the null hypothesis in
neither the first nor the second Kolmogorov-Smirnov tests. However, the P -values resulting
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from the first K-S test (which tests whether the empirical distribution comes from the normal
distribution) are lower than the P -values resulting from the second K-S test (which tests
whether the empirical distribution comes from the Student’s t distribution) in all cases. For
networks of more than 10 firms, the P -values indicate that we can reject the null hypothesis
in the first K-S test but not the second K-S test. In other words, in networks of more than 10
firms, we have sufficient evidence to conclude that the empirical distribution does not come
from the normal distribution but we do not have sufficient evidence to conclude that the
empirical distribution does not come from the Student’s t distribution.

4.2.4. Test Power

It is well known that the one-sided Kolmogorov-Smirnov test is superior in many aspects to
the traditional goodness-of-fit test: see, for instance, Massey [12]. The latter paper provides
a figure, from which the power of that test is given. For two-sided Kolmogorov-Smirnov
tests, much less is known (see however Milbrodt and Strasser [13]). Given the complexity
of calculating the power of that test, we doubt that many practioners engage in it, especially
since more powerful tests probably do not exist.

5. Conclusion

In our study, we use the copula method to model the dependence between the counterparty
risk premia of various firms. Specifically, we study the impact of the dependence among
production revenues on the dependence among counterparty risk premia in several different
network economies.

Taking as given that the dependence between the production revenues ν was a
Gaussian copula, we generate the production revenues by simulation. Then we calculate
the total revenues from the simulated production revenues. Two main tests—the parameter
estimation and hypothesis testing—are carried out on each network setup. In the first test, the
parameter of the copula being estimated is the number of degrees of freedom. The estimation
results obtained from each network indicate that the Student’s t-copula is likely to be the
copula capturing the relationship between the firms’ counterparty risk premia, reaffirming
our assumption. The results from our second test—the Kolmogorov-Smirnov hypothesis
testing—confirms our conclusion.

Appendices

Conditional Monte Carlo (CMC) simulation follows the method adapted from that of Aas
et al. [11]

A. Generation of the Theoretical Data

To generate the “theoretical” sample data (xω1, xω2, xω3, . . . , xΩm) from the Student’s copula,
we use conditional Monte Carlo (CMC) simulation. Provided that multivariate data can be
modelled using a set of pair-copulae which act on two variables at a time, we generate
samples (xω1, xω2, xω3, . . . , xΩm) from the Student’s copula by way of conditional Monte Carlo
simulation.
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Aas et al. [11] provide a way to simplify the copula function in order to derive an
efficient simulation algorithm as follows. We define

C12(u1, u2) =
∫ t−1

v12
(u1)

−∞

∫ t−1
v12

(u2)

−∞

Γ((v12 + 2)/2)

Γ(v12/2)
√

(πv12)2(1 − ρ2
12

)

×
{

1 +
x2 − 2ρ12xy + y2

v12
(

1 − ρ2
12

)

}−(v12+2)/2

dx dy,

g
(

x, y
)

=
Γ((v12 + 2)/2)

Γ(v12/2)
√

(πv12)2(1 − ρ2
12

)

{

1 +
x2 − 2ρ12xy + y2

v12(1 − ρ2
12)

}−(v12+2)/2

,

fv(x) =
Γ((v + 1)/2)

Γ(v/2)
√

(πv)

(

1 + x2/v
)−(v+1)/2

,

b1 = t−1
v12
(u1),

b2 = t−1
v12
(u2).

(A.1)

We can then calculate

h12(u1, u2) = F1|2(u1, u2)

=
∂

∂u2
C12(u1, u2)

=
∂

∂u2

∫b1

−∞

∫b2

−∞
g
(

x, y
)

dx dy

=
∂b2

∂u2

∂

∂b2

∫b1

−∞

∫b2

−∞
g
(

x, y
)

dx dy

=
1

fv12(b2)

∫b1

−∞

[

∂

∂b2

∫b2

−∞
g
(

x, y
)

dx

]

dy

=
1

fv12(b2)

∫b1

−∞

Γ((v12 + 2)/2)

Γ(v12/2)
√

(πv12)2(1 − ρ2
12

)

×
{

1 +
x2 − 2ρ12xb2 + b2

2

v12(1 − ρ2
12)

}−(v12+2)/2

dx

=
1

fv12(b2)
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−∞
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√

(πv12)2(1 − ρ2
12

)

×
{
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(
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)2

(v12 + b2)
2(1 − ρ2

12)

}−(v12+2)/2[

1 +
b2

2

v12

]−(v12+2)/2

dx



26 Advances in Decision Sciences

=
1

fv12(b2)
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π
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(A.2)

Now, set

v = v12 + 1,

μ = ρ12b2,

σ2 =
v12 + b2

2

v12 + 1

(

1 − ρ2
12

)

.

(A.3)

Then

h12(u1, u2) =
∫b1
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(A.4)
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Since

tv(x) =
∫x

−∞
fv
(

y
)

dy, (A.5)

the final expression for h12(u1, u2) is

h12(u1, u2) = tv12+1

⎛

⎜

⎜

⎝
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. (A.6)

The inverse function h−1
12 is given by

h−1
12 (u1, u2) = tv12
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. (A.7)

Using the simplified pair-copulae functions h12(u1, u2) and h−1
12 (u1, u2) shown previously, the

general algorithm for sampling (x1, x2, x3, . . . , xN) from the “theoretical” Student’s copula
becomes.

(1) Sample wi where i = 1, 2, . . . , m independent standard uniform.

(2) Given that F1|2(u2 | u1) = h12(u1, u2) and F−1
1|2(u2 | u1) = h−1

12 (u1, u2), we can calculate
x1, x2, x3, . . . , xm as follows:

x1 = w1,

x2 = F−1
2|1(w2 | x1) = h−1

12 (w2, x1),

x3 = F−1
3|1,2(w3 | x1, x2) = h−1

(

h−1(w3, h(x2, x1)), x1

)

,

...

xm = F−1
N|1,2,...,N−1(wN | x1, x2, . . . , xN−1),

= h−1
((

· · ·h−1
(

h−1
(

wN−1,
(

h−1(wN, h(xN−1, x1))
)

, x1

))

· · ·
)

, x1

)

,

(A.8)
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For ω = 1 to Ω
xx(1, ω) = ww(1, ω)
vv(1, ω) = ww(1, ω)
For i = 2 to m

vv(i, ω) = ww(i, ω)
For k = i − 1 to 1

vv(i, ω) = h−1(vv(i, ω), vv(k, k), ρ(i − k, i), v)
Next k
xx(i, ω) = vv(i, ω)
For j = 1 to i − 1

vv(i, j + 1) = h(vv(i, j), vv(j, j), ρ(i − j, i), v)
Next j

Next i
Next ω

Algorithm 1

where

F(x2 | x1) = h(x2, x1),

F(x3 | x1, x2) = h(F(x3 | x1), F(x2 | x1)),

= h(h(x3, x1), h(x2, x1)),

F(x4 | x1, x2, x3) = h(F(x4 | x1, x2), F(x3 | x1, x2)),

= h(h(h(x4, x1), h(x2, x1)), h(h(x3, x1), h(x2, x1))),

....

(A.9)

B. Monte Carlo Simulation Algorithm for the “Full” Network

As before, let m be the total number of firms in the network and let Ω be the total number of
revenue scenarios for each firm in the network. h and h−1 are the functions derived previously.
The detailed algorithm of our simulation is as in Algorithm 1.
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Endnotes

1. By this, we mean that the dependence between tail events is stronger for the t-copula
than for the Gaussian copula.
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