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Given a stationary multidimensional spatial process (Zi = (Xi, Yi) ∈ R
d×R, i ∈ Z

N), we investigate
a kernel estimate of the spatial conditional quantile function of the response variable Yi given the
explicative variable Xi. Asymptotic normality of the kernel estimate is obtained when the sample
considered is an α-mixing sequence.

1. Introduction

In this paper, we are interested in nonparametric conditional quantile estimation for spatial
data. Spatial data are modeled as finite realizations of random fields that is stochastic
processes indexed in Z

N , the integer lattice points in the N-dimensional Euclidean space
(N ≥ 1). Such data are collected from different locations on the earth and arise in a
variety of fields, including soil science, geology, oceanography, econometrics, epidemiology,
environmental science, forestry, and many others; see Chilès and Delfiner [1], Guyon [2],
Anselin and Florax [3], Cressie [4], or Ripley [5].
In the context of spatial data, the analysis of the influence of some covariates on a response
variable is particularly difficult, due to the possibly highly complex spatial dependence
among the various sites. This dependence cannot be typically modeled in any adequate way.

Conditional quantile analysis is of wide interest in modeling of spatial dependence
and in the construction of confidence (predictive) intervals. There exist an extensive literature
and various nonparametric approaches in conditional quantile estimation in the nonspatial
case (N = 1) for independent samples and time-dependent observations; see, for example,
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Stute [6], Samanta [7], Portnoy [8], Koul and Mukherjee [9], Honda [10], Cai [11], Gannoun
et al. [12], and Yu et al. [13]. Extending classical nonparametric conditional quantile
estimation for dependent random variables to spatial quantile regression is far from being
trivial. This is due to the absence of any canonical ordering in the space and of obvious
definition of tail sigma-fields.

Although potential applications of conditional spatial quantile regressions are without
number, only the papers of Koenker and Mizera [14], Hallin et al. [15], Abdi et al. [16], and
Dabo-Niang and Thiam [17] have paid attention to study these regression methods. Hallin et
al. [15] gave a Bahadur representation and an asymptotic normality results of a local linear
conditional quantile estimator. Themethod of Koenker andMizera [14] is a spatial smoothing
technique rather than a spatial (auto) regression one and they do not take into account the
spatial dependency structure of the data. The work of Abdi et al. [16] deals with 2r—mean
(r ∈ N

∗) and almost complete consistencies of a kernel estimate of conditional quantiles.
The paper of Dabo-Niang and Thiam [17] gives the L1 norm consistency and asymptotic
normality of a kernel estimate of the spatial conditional quantile, but this estimate is less
general than the one considered here.

However, conditional mean regression estimation for spatial data has been considered
in several papers; some key references are Carbon et al. ([18, 19]), Biau and Cadre [20], Lu
and Chen ([21, 22]), Hallin et al. ([23, 24]), Lahiri and Zhu [25], Carbon et al. [26], and Dabo-
Niang and Yao [27].

The rest of the paper is organized as follows. In Section 2, we provided the notations
and the kernel quantile estimate. Section 3 is devoted to assumptions. The asymptotic
normality of the kernel estimate is stated in Section 4. Section 5 contains a prediction
application based on quantile regression and applied to simulated data. Proofs and
preliminary lemmas are given in the last section.

2. Kernel Conditional Quantile Estimator

Let (Zi = (Xi, Yi), i ∈ Z
N) (N ≥ 1) be an R

d × R-valued measurable strictly stationary spatial
process (d ≥ 1), with same distribution as the vector of variables (X,Y ) and defined on a
probability space (Ω, A,P). A point i = (i1, . . . , iN) in Z

N will be referred to as a site and may
also include a time component.

We assume that the process under study (Zi) is observed over a rectangular domain
In = {i = (i1, . . . , iN) ∈ Z

N, 1 ≤ ik ≤ nk, k = 1, . . . ,N}, n = (n1, . . . , nN) ∈ Z
N . We will

write n → ∞ if min{nk} → ∞ and |nj/nk| < C for a constant C such that 0 < C < ∞ for
all j, k such that 1 ≤ j, k ≤ N. In the sequel, all the limits are considered when n → ∞. For
n = (n1, . . . , nN) ∈ Z

N , we set n̂ = n1, . . . , nN .
Let S be a set of sites. B(S) will denote in what follows, the Borel σ-field generated

by Zi, i ∈ S. We assume that the regular version of the conditional probability of Y given
X exists and has a bounded density with respect to Lebesgue’s measure over R. For all x ∈
R
d, we denote by Fx (resp., fx) the conditional distribution function (resp., the conditional

density) of Y given X = x. In the following, x is a fixed point in R
d and we denote by Vx

a neighborhood of this point. For x ∈ R
d, we denote by ‖x‖ the Euclidian norm of x. We

suppose that the marginal and joint densities fX and fX, Y of, respectively, X and (X,Y ) exist
with respect to Lebesgue measures on R

d and R
d+1.

For α ∈ ]0, 1[, the conditional quantile of order α of Fx, denoted by qα(x), can bewritten
as a solution of the equation Fx(qα(x)) = α.
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To insure that qα(x) exists and is unique, we assume that Fx is strictly increasing. Let
Ki = K1((x − Xi)/h1) and Hi(y) = K2((y − Yi)/h2). The conditional distribution Fx and the
corresponding density fx can be estimated by the following respective estimators:

̂Fx
(

y
)

=

⎧

⎪

⎨

⎪

⎩

∑

i∈In
KiHi

(

y
)

∑

i∈In
Ki

if
∑

i∈In

Ki /= 0,

0 else,

̂fx
(

y
)

=

⎧

⎪

⎨

⎪

⎩

(1/h2)
∑

i∈In
KiK
((

y − Yi
)

/h2
)

∑

i∈In
Ki

if
∑

i∈In

Ki /= 0,

0 else,

(2.1)

where K1 is a kernel density, K2 is a distribution function, K is the first derivative of K2, and
h1 = h1,n (resp., h2 = h2,n) are sequences of positive real numbers tending to 0 when n → ∞.
Remark that we can write ̂Fx(y) = gn(x, y)/ ̂f(x), where gn(x, y) = (1/n̂hd1 )

∑

i∈In
KiHi(y)

and ̂f(x) = (1/n̂hd1 )
∑

i∈In
Ki are, respectively, the estimates of g(x, y) = Fx(y)fX(x) and

fX(x). The kernel estimate of the conditional quantile is related to the conditional distribution
estimator. A natural estimator q̂α(x) of qα(x) is defined such that

̂Fx
(

q̂α(x)
)

= α. (2.2)

Remark 2.1. Another alternative characterization of the αth conditional quantile (see, e.g.,
Gannoun et al. [12]) is

qα(x) = argmin
θ ∈R

E[(2α − 1)(Y − θ) + |Y − θ| | X = x]. (2.3)

Then, one can consider the alternative local constant estimator (see Hallin et al. [15]) defined
by

q̃α(x) = argmin
θ ∈R

∑

i∈In

(|Yi − θ| + (2α − 1)(Yi − θ))K1

(

x −Xi

h1

)

. (2.4)

Let us mention that it can be shown that (2.4) is equivalent to

q̃α(x) = inf
{

t ∈ R, ˜Fx(t) ≥ α
}

, (2.5)

where ˜Fx(·) is the same estimator of Fx(·) as ̂Fx(·) except thatHi(y) = 1{Yi ≤y}.
In this paper, we will focus on the study of the asymptotic behavior of q̂α(x), since in

practice some simulations permit to remark that the differences between this estimator and
the local linear one are too small to affect any interpretations; see also Dabo-Niang and Thiam
[17] and Gannoun et al. [12].
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3. Assumptions

We denote by g(j) the derivative of order j of a function g. In what follows, C and C′ will
denote any positive constant.

3.1. General Assumptions

We will use the following four regularity conditions (see, e.g., Gannoun et al. [12] or Ferraty
et al. [28]).

(H1) The joint fX, Y and marginal fX densities are, respectively, continuous on R
d+1 and

R
d. Moreover fX(x) > 0 and fx(qα(x)) > 0.

If fx(qα(x)) = 0, then one can use a condition like Fx(·) is of class Cj , Fx(k) (qα(x)) = 0
for 1 ≤ k < j, and 0 < C < |Fx(j) (y)| < C′ <∞ as in Ferraty et al. [28].

(H2) For all (x1, x2) ∈ Vx × Vx, ∀(y1, y2) ∈ R
2

∣

∣Fx1
(

y1
) − Fx2(y2

)∣

∣ ≤ C
(

‖x1 − x2‖b1 +
∣

∣y1 − y2
∣

∣

b2
)

, b1 > 0, b2 > 0. (3.1)

(H3) We assume that the conditional density f (Xi,Xj) of (Yi, Yj) given (Xi, Xj) exists and is
uniformly bounded in i, j.

For simplicity, we assume the following condition on the kernelK1 (see, e.g., Devroye
[29]).

(H4) There exist C1 and C2, 0 < C1 < C2 <∞ such that

C1I[0,1](‖t‖) < K1(t) < C2I[0,1](‖t‖). (3.2)

(H5) K2 is of class C1 with a symmetric, Lipschitz, bounded, and compact support
density K. In addition, we assume that the restriction of K2 on {t ∈ R, K2(t) ∈
(0, 1)} is a strictly increasing function.

Assumption H5 is classical in nonparametric estimation and is satisfied by usual
kernels such as Epanechnikov and Biweight, whereas the Gaussian densityK is also possible;
it suffices to replace the compact support assumption by

∫

Rd |t|b2K(t)dt < ∞. AssumptionH5

ensures the existence and the uniqueness of the quantile estimate q̂α(x).

(H6) n̂hθ11 h
θ2
2 log n̂θ3 → +∞ with θ > 2N.

(H7) n̂h
θ′1
1 h

θ′2
2 log n̂θ

′
3 → +∞ with θ > N(1 + 2˜β),
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where θ and ˜β are defined in Section 3.2.1, and

θ1 =
dθ

θ − 2N
, θ2 =

θ

θ − 2N
, θ3 = −1,

θ′1 =
d(N + θ)

θ −N
(

1 + 2˜β
) , θ′2 =

N + θ

θ −N
(

1 + 2˜β
) , θ′3 =

N − θ
θ −N

(

1 + 2˜β
) .

(3.3)

Hypotheses H6 or H7 on the bandwidths are similar to that of Carbon et al. [19] and imply
the classical condition in nonparametric estimation, that is, n̂hd1h2/ log n̂ → +∞.

(H8) n̂h
d+2b1
1 → 0 and n̂hd1h

2b2
2 → 0.

(H9) Let r > 2 be a given nonnegative real number. One assume that there exits a
sequence of integers q = qn tending to infinity and such that

(i) [n̂(hd1 )
1+(1−2/r)2N

]
1/(2N)

→ ∞,

(ii) q = o([n̂(hd1 )
1+(1−2/r)2N

]
1/(2N)

),

(iii) n̂q−θ → 0,

(iv) (hd1 )
−(1−2/r)

q−θ(1−2/r)+N → 0,

with θ > N/(1 − 2/r).

3.2. Dependency Conditions

In spatial dependent data analysis, the dependence of the observations has to be measured.
Here we will consider the following two dependence measures.

3.2.1. Mixing Condition

The spatial dependence of the process will be measured by means of α-mixing. Then, we
consider the α-mixing coefficients of the field (Zi, i ∈ Z

N), defined by the following: there
exists a function ϕ(t) ↓ 0 as t → ∞, such that E and E′ subsets of Z

N with finite cardinals are

α
(B(E), B(E′)) = sup

B ∈B(E), C ∈B(E′)
|P(B ∩ C) − P(B)P(C)|

≤ ψ(Card(E),Card(E′))ϕ
(

dist
(

E, E′)),
(3.4)

where Card(E) (resp., Card(E′)) is the cardinality of E (resp., E′), dist(E, E′) the Euclidean
distance between E and E′, and ψ : N

2 → R
+ is a symmetric positive function nondecreasing

in each variable. Throughout the paper, it will be assumed that ψ satisfies either

ψ(n,m) ≤ Cmin(n,m), ∀n,m ∈ N (3.5)

or

ψ(n,m) ≤ C(n +m + 1)
˜β, ∀n,m ∈ N (3.6)
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for some ˜β ≥ 1 and some C > 0. We assume also that the process satisfies a polynomial mixing
condition:

ϕ(t) ≤ Ct−θ, θ > 0, t ∈ R
∗
+. (3.7)

If ψ ≡ 1, then Zi is called strongly mixing. Many stochastic processes, among them
various useful time series models, satisfy strong mixing properties, which are relatively easy
to check. Conditions (3.5)-(3.6) are used in Tran [30] and Carbon et al. [18, 19]. See Doukhan
[31] for discussion on mixing and examples.

3.2.2. Local Dependence Condition

Since we aim to get the same rate of convergence as in the i.i.d. case, we need some local
dependency assumptions. Then, we assume the following local dependency condition used
in Tran [30].

The joint probability density f(Xi,Xj) of (Xi, Xj) exists and satisfies

∣

∣

∣f(Xi,Xj)(u, v) − fXi(u)fXj(v)
∣

∣

∣ ≤ C (3.8)

for some constant C and for all u, v, i, j.
In addition, let the density f(Zi, Zj) of (Zi, Zj) exist and

∣

∣

∣f(Zi,Zj)(z, t) − fZi(z)fZj(t)
∣

∣

∣ ≤ C; ∀z, t ∈ R
d+1, i, j, (3.9)

where C is a positive constant.

In the following, the notations D→ and P→ mean, respectively, convergences in dis-
tribution and in probability.

4. Consistency Results

This section contains results on asymptotic normality of the conditional quantile estimate.
The main result of this paper is given by the following theorem.

Theorem 4.1. Under assumptionsH1–H5 and H8-H9, (3.4), (3.7), (3.8), (3.9), and (3.5) combined
withH6 or (3.6) combined withH7, one has

((

fX,Y
(

x, qα(x)
))2n̂hd1

V (x)

)1/2
(

q̂α(x) − qα(x) − Cn(x)
) D−→ N(0, 1), (4.1)

where V (x) = α(1 − α)fX(x)
∫

Rd (K1(t))
2dt and Cn(x) = (1/fX,Y (x, qα(x)))E[α ̂f(x) −

gn(x, qα(x))], with gn and ̂f being the estimates defined in Section 2.

The proof of this theorem is based on the following three lemmas.
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Lemma 4.2. Under assumptions H2–H5 and H9, (3.4), (3.7), (3.8), (3.9), and (3.5) or (3.6), one
has

[

n̂hd1
V (x)

]1/2
([

α ̂f(x) − gn
(

x, qα(x)
)

]

− E
[

α ̂f(x) − gn
(

x, qα(x)
)

]) D−→ N(0, 1). (4.2)

Lemma 4.3. Under assumptionsH2,H4, andH5, one has:

E
[

α ̂f(x) − gn
(

x, qα(x)
)

]

= O
(

hb11 + hb22
)

. (4.3)

Lemma 4.4. Under assumptions of Theorem 4.1, one has:

g
(1)
n
(

x, q∗α(x)
) −→ fX,Y

(

x, qα(x)
)

in probability, (4.4)

where q∗α(x) is an element of the interval of extremities qα(x) and q̂α(x).

Proof of Theorem 4.1. By assumption H5, gn(x, ·) is of class C1. Then a Taylor expansion on a
neighborhood of qα(x) gives

gn
(

x, q̂α(x)
)

= gn
(

x, qα(x)
)

+ g(1)
n
(

x, q∗α(x)
)(

q̂α(x) − qα(x)
)

, (4.5)

where q∗α(x) is an element of the interval of extremities qα(x) and q̂α(x).
It follows that

q̂α(x) − qα(x) = 1

g
(1)
n
(

x, q∗α(x)
)

(

gn
(

x, q̂α(x)
) − gn

(

x, qα(x)
))

=
1

g
(1)
n
(

x, q∗α(x)
)

(

α ̂f(x) − gn
(

x, qα(x)
)

)

.

(4.6)

Then, we have

((

fX, Y
(

x, qα(x)
))2n̂hd1

V (x)

)1/2
(

q̂α(x) − qα(x) − Cn(x)
)

=

((

fX,Y
(

x, qα(x)
))2n̂hd1

V (x)

)1/2

×
(

1

g
(1)
n
(

x, q∗α(x)
)

(

α ̂f(x) − gn
(

x, qα(x)
)

)

− 1
fX, Y
(

x, qα(x)
)E
[

α ̂f(x) − gn
(

x, qα(x)
)

]

)
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=

[

n̂hd1
V (x)

]1/2

× fX,Y
(

x, qα(x)
)

g
(1)
n
(

x, q∗α(x)
)

×
(

(

α ̂f(x) − gn
(

x, qα(x)
)

)

− g
(1)
n
(

x, q∗α(x)
)

fX, Y
(

x, qα(x)
)E
(

α ̂f(x) − gn
(

x, qα(x)
)

)

)

=
fX,Y
(

x, qα(x)
)

g
(1)
n
(

x, q∗α(x)
)

[

n̂hd1
V (x)

]1/2

×
((

α ̂f(x) − gn
(

x, qα(x)
)

)

− E
(

α ̂f(x) − gn
(

x, qα(x)
)

))

+
fX, Y
(

x, qα(x)
)

g
(1)
n
(

x, q∗α(x)
)

[

n̂hd1
V (x)

]1/2

×
(

1 − g
(1)
n
(

x, q∗α(x)
)

fX, Y
(

x, qα(x)
)

)

E
(

α ̂f(x) − gn
(

x, qα(x)
)

)

.

(4.7)

Lemmas 4.2 and 4.4 and Slutsky’s theorem imply that the first term of the right-hand
side of the last equality above tends in distribution toN(0, 1). In addition, Lemma 4.3 permits
to write

[

n̂hd1
V (x)

]1/2

E
(

α ̂f(x) − gn
(

x, qα(x)
)

)

≤ C
√

n̂hd1
(

hb11 + hb22
)

. (4.8)

This last tends to 0 by H8. Thus, the second term goes to zero in probability. This yields the
proof.

Before going further, it should be interesting to give examples where all our conditions
on the bandwidths are satisfied. That is done through the two following remarks.

Remark 4.5. Let us, for example, choose b2 = b1 = 1 and h2 = h1 = h = n̂−ν, where ν > 0 is a real
number such that H8 is verified. That is, n̂hd+2 = n̂−ν(d+2)+1 → 0. Thus, it suffices to choose
ν = (1/(d + 2)) + η, where η > 0 is a real number arbitrarily small.

The hypothesis H6 holds if n̂hθ1+θ2 lognθ3 = n̂hd+((θ+2Nd)/(θ−2N)) lognθ3 → ∞. Then,
it suffices to have (θ + 2Nd)/(θ − 2N) < 2. That is, θ > 2N(d + 2). Similarly H7 holds if
n̂hθ

′
1+θ

′
2 lognθ

′
3 = n̂hd+(2Nd(1+˜β)+N+θ)/(θ−N(1+2˜β)) lognθ

′
3 → ∞. That is, θ > 2Nd(1+ ˜β)+N(3+4˜β).

Remark 4.6. Let γr = d(1 − 2/r)2N and h1 = h2 = h = n̂−(1/(d+2))−η be defined in the previous
remark. Condition (i) ofH9 is equivalent to n̂((2−γr)/(2N(d+2)))−η(d+γr)/2N → ∞. Then, it suffices
to have ((2−γr)/(2N(d+2)))−η(d+γr)/2N > 0. As η is arbitrarily small, it is enough to have
γr < 2. That is, 2 < r < 2Nd/(Nd − 1). In this case, for any positive real number τ such that
((2 − γr)/2N(d + 2)) − η((d + γr + τ)/2N) > 0, the choice q = �n̂((2−γr)/(2N(d+2)))−η((d+γr+τ)/2N)� +
1 (where �·� denotes the integer part) gives an example whereH9(ii) is satisfied.

Let q∗ = n̂((2−γr)/(2N(d+2)))−η(d+γr+τ)/2N . We have n̂q−θ ≤ n̂q−θ∗ . Thus, to ensure that
condition H9(iii) holds, it suffices to have n̂q−θ∗ → 0. That is, θ > 2N(d + 2)/((2 − γr) −
η(d + 2)(d + γr + τ)).

Lastly, the conditionH9(iv) is h−d(1−2/r)q−θ(1−2/r)+N → 0. It can be written equivalently
as h−γr/2Nq−θ(γr/2Nd)+N → 0 or h−γrdq−θγr+2N

2d → 0. Under the condition θ > 2N2d/γr , we

have h−γrdq−θγr+2N
2d ≤ h−γrdq−θγr+2N

2d
∗ . Then, to satisfy the condition H9(iv), it is enough to
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have h−γrdq−θγr+2N
2d

∗ → 0. That is, θ > (2N2d/γr) + ((2N(d + ηd(d + 2))(d + 2))/((2 − γr) −
η(d + 2)(d + γr + τ))).

Thus,H6,H8, andH9 (resp., H7–H9) are satisfied when 2 < r < 2Nd/(Nd − 1) and

θ > max

(

N

1 − 2/r
, 2N(d + 2),

2N(d + 2)
(

2 − γr
) − η(d + 2)

(

d + γr + τ
) ,

2N2d

γr
+

2N
(

d + ηd(d + 2)
)

(

2 − γr
) − η(d + 2)

(

d + γr + τ
)

)

,

(

resp. θ > max

(

N

1 − 2/r
, 2Nd

(

1 + ˜β
)

+N
(

3 + 4˜β
)

,
2N(d + 2)

(

2 − γr
) − η(d + 2)

(

d + γr + τ
) ,

2N2d

γr
+

2N
(

d + ηd(d + 2)
)

(

2 − γr
) − η(d + 2)

(

d + γr + τ
)

))

.

(4.9)

5. Application

In this section, we present a quantile prediction procedure and then apply it to simulated
data.

5.1. Prediction Procedure

An application where a multidimensional stationary spatial process may be observed is the
case of prediction of a strictly stationary R-valued random field (ξi, i ∈ Z

N) at a given fixed
point i0 when observations are taken from a subset of In, not containing i0, see Biau and
Cadre [20] or Dabo-Niang and Yao [27].

Assume that the value of the field at a given location depends on the values taken by
the field in a vicinityUi0 of i0 (i0 /∈ Ui0); then the random variables whose components are the
{ξi, i ∈ Ui0} are an R

d-valued spatial process, where d is the cardinal of Ui0 . In other words,
we expect that the process (ξi) satisfies a Markov property; see, for example, Biau and Cadre
[20] or Dabo-Niang and Yao [27]. Moreover, we assume that Ui0 = U + i0, where U is a fixed
bounded set of sites that does not contain 0.

Suppose that (ξi) is bounded and observed over a subset On of In. The aim of this
section is to predict ξi0 , at a given fixed point i0 not in On ⊂ N

N . It is well known that the best
predictor of ξi0 given the data in Ui0 in the sense of mean-square error is

E
(

̂ξi0 | ξi, i ∈ Ui0

)

. (5.1)

Let Ui = U + i = {u + i, u ∈ U} for each i ∈ N
N . To define a predictor of ξi0 , let us consider the

R
d-valued random variables ˜ξi = {ξu, u ∈ Ui ⊂ On}. The notation of the previous sections is

used by setting Xi = ˜ξi, Yi = ξi, i ∈ N
N .

As a predictor of ξi0 , one can take the conditional median estimate ̂ξi0 = q̂0.5(˜ξi0).
We deduce from the previous consistency results the following corollary that gives the

convergence of the predictor ̂ξi0 .
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Corollary 5.1. Under the conditions of Theorem 4.1

⎛

⎜

⎝

(

̂f
˜ξi0

(

q0.5
(

˜ξi0

)))2
̂f
(

˜ξi0

)

n̂hd1

̂V
(

˜ξi0

)

⎞

⎟

⎠

1/2
(

̂ξi0 − q0.5
(

˜ξi0

)) D−→ N(0, 1), (5.2)

where

̂V (x) = α(1 − α) ̂f(x)
∫

Rd

(K1(t))
2dt (α = 0.5). (5.3)

This consistency result permits to have an approximation of a confidence interval and
predictive intervals that consists of the (α2−α1)100% confidence intervals with bounds q̂α1(˜ξi0)
and q̂α2(˜ξi0), (α1 < α2).

5.2. Numerical Properties

In this section, we study the performance of the conditional quantile predictor introduced in
the previous section towards some simulations. Let us denote by GRF(m, σ2, s) a Gaussian
random field with meanm and covariance function defined by

ϑ(h) = σ2 exp

{

−
(‖h‖

s

)2
}

, h ∈ R
2. (5.4)

We consider a random field (ξi)i∈N2 from the three following models.

Model 1. One has

ξi = Ui ∗
(

sin(2Xi) + 2 exp
{

−16X2
i

})

+ Zi, i ∈ N
2. (5.5)

Model 2. One has

ξi = Ui ∗
(

2 + 2 cos(2Xi) + exp
{

−4X2
i

})

+ Zi, i ∈ N
2. (5.6)

Model 3. One has

ξi = Ui ∗
(

1 +
(

2
3

)

exp{Xi}
)

+ Zi, i ∈ N
2, (5.7)

where X = (Xi, i ∈ N
2) is a GRF(0, 5, 3), Z = (Zi, i ∈ N

2) is a GRF(0, 0.1, 5) independent
of X, andUi = (1/n̂)

∑

j∈In
exp(−‖i − j‖/2). The choice ofUi in the models is motivated by a

reinforcement of the spatial local dependency. Set

In =
{

i =
(

i, j
) ∈ (N∗)2, 1 ≤ i ≤ 61, 1 ≤ j ≤ 61

}

. (5.8)
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Figure 1: The observation sites and the random fields (ξi) of Models 1, 2, and 3 in, respectively, Panels (a),
(b), (c), and (d).

We supposed that the field (ξi, i ∈ N
2) is observable over the rectangular region In, observed

over a subsetOn and nonobserved in a subset Vn. A sample of size n̂ = 61∗61 = 3721 obtained
from each model is plotted in Figure 1.

For the prediction purpose, subsets On of sizeM = 441 and Vn (different with respect
to the model) and the quantiles of order 0.5, 0.025, 0.975 have been considered.

Wewant to predict the values ξi1 , . . . , ξim at given fixed sites i1, . . . , im in Vn, withm = 10.
We provide the plots of the kernel densities estimators of the field of each model in Figure 2.
The distributions of the models look asymmetric and highly heteroskedastic in Model 3.
These graphics exhibit a strongly bimodal profile of Model 3. That means that a simple study
of conditional mean or conditional median can miss some of the essential features of the
dataset.

As explained above, for any k ∈ {1, . . . , m}, we take the conditional median estimate
̂ξik , as a predictor of ξik . We compute these predictors with the vicinity U = {−1, 0, 1} ×
{−1, 0, 1}\{(0, 0)} and select the standard normal density as kernelK1 and the Epanechnikov
kernel as K. For the bandwidth selection, we use two bandwidth choices.
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Figure 2: The densities of the random fields (ξi) of Models 1–3 in, respectively, Panels (a), (b), and (c).

(1) We consider first the rule developed in Yu and Jones [32] and take h1 = h2 = hn:

hn = hmean

(

α(1 − α)
φ
(

Φ−1(α)
)2

)1/(4+d)

, (5.9)

where hmean is the bandwidth for kernel smoothing estimation of the regression
mean obtained by cross-validation, and φ and Φ are, respectively, the standard
normal density and distribution function.

(2) The second rule is to choose first h1 = hn, and once h1 is computed, use it and
compute h2 by cross-validation using the conditional distribution function estimate
̂Fx(·).

Remark 5.2. The selection of the appropriate bandwidths in double-kernel smoothing
conditional quantile is an important task as in classical smoothing techniques.

As we see above, one can choose either h1 = h2 or different bandwidths. The first
choice can be motivated by the paper of Gannoun et al. [12] who dealt with a double kernel
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estimator of the conditional quantile function with a single bandwidth. They compute the
common value of the bandwidth by the use of the rule developed in Yu and Jones [32] for
local linear quantile regression. One can also consider the rule where (see Gannoun et al.,
2003) h1 = h2 = hn where hmean, instead of being the bandwidth obtained by cross-validation
of the regression mean estimate, is

hmean =

(

C
R1(K1)σ(x)

n̂R2(K1)2(m′′(x))2g(x)

)1/(4+d)

, (5.10)

where

R1(K1) =
∫∞

−∞
K2

1(u)du, R2(K1) =
∫∞

−∞
u2K1(u)du, (5.11)

m(x) and σ(x) are, respectively, the conditional mean and conditional variance, and C is a
constant. One can also choose the bandwidths using the following mean square error result
of the conditional quantile estimate:

MSE
(

q̂α(x)
) ≈ R1(K1)α(1 − α)

n̂hd1g(x)f
x
(

qα(x)
)2

+ o
(

h2b11 + h2b22 + hb11 h
b2
2

)

. (5.12)

In the case of different bandwidths h1 and h2, we may still use the same rule as above
for h1 (h1 = hn). Therefore, only the choice of h2 seems to deserve more future theoretical
investigation since the simulations (see Tables 4 and 5) suggest that different choices of these
two bandwidths are appreciable. This theoretical choice of h2 (by, e.g., cross-validation) is
beyond the scope of this paper and deserves future investigations.

To evaluate the performance of the quantile predictor ̂ξik (with h1 = h2) or ̂ξ2ik (with
h1 /=h2) and compare it to the mean regression predictor (see Biau and Cadre [20]):

ξ̆ik =

∑

i∈On
ξiK
((

˜ξik − ˜ξi
)

/hK
)

∑

i∈On
K
((

˜ξik − ˜ξi
)

/hK
) , (5.13)

we compute the mean absolute errors:

MAE =
1
10

10
∑

k=1

∣

∣

∣ξik − ξnik
∣

∣

∣, where ξnik =
̂ξik ,
̂ξ2ik , or ξ̆ik . (5.14)

Tables 1–6 give the quantile estimates for ξik , k = 1, . . . , m, p ∈ {0.025, 0.5, 0.975},
U = {−1, 0, 1} × {−1, 0, 1} \ {(0, 0)}, and the quantile and mean regression prediction errors of
the predictors ̂ξik and ˜ξik . In each table, Inf (resp., Sup) is the lower (resp., upper) bound of the
confidence interval (see above) of the median estimator. The bandwidth choice considered in
these first three tables is the first choice h1 = h2 = hn. Clearly, the predictors give good results.
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Table 1: Quantile estimates (q̂α(˜ξi0), α ∈ {0.025, 0.5, 0.975}) and mean regression predictor of Model 1 and
confidence interval for U and n̂ = 441.

n̂ = 441 α = 0.025 Inf True ̂ξik Sup α = 0.975 ξ̆ik
−0.341 −0.267 −0.204 −0.170 −0.074 0.056 −0.160
−0.701 −0.556 −0.560 −0.483 −0.410 −0.150 −0.481
−0.558 − 0.317 −0.232 −0.246 −0.175 0.017 −0.278
−0.369 −0.118 −0.107 −0.072 −0.026 0.196 −0.056
−0.649 −0.452 −0.225 −0.319 −0.185 −0.002 −0.481
0.008 0.192 0.292 0.271 0.349 0.513 0.270
−0.402 −0.273 −0.235 −0.185 −0.097 0.068 −0.140
−0.701 −0.603 −0.489 −0.483 −0.363 −0.088 −0.507
−0.613 −0.486 −0.353 −0.382 −0.278 −0.130 −0.457
−0.613 −0.529 −0.463 −0.437 −0.345 −0.193 −0.444

MAE 0.038 0.073

Table 2: Quantile estimates (q̂α(˜ξi0), α ∈ {0.025, 0.5, 0.975}) and mean regression predictor of Model 1 and
confidence interval for U and n̂ = 441.

n̂ = 441 α = 0.025 Inf True ̂ξik Sup α = 0.975 ξ̆ik
−0.486 −0.311 −0.228 −0.248 −0.185 0.033 −0.248
−0.190 −0.165 −0.107 −0.100 −0.036 0.080 −0.095
−0.138 −0.314 −0.077 −0.073 0.168 −0.006 −0.079
−0.508 −0.615 −0.366 −0.367 −0.119 −0.285 −0.368
−0.266 −0.349 −0.162 −0.171 0.008 −0.011 −0.176
0.154 0.196 0.251 0.258 0.320 0.372 0.258
−0.285 −0.267 −0.118 −0.136 −0.004 −0.057 −0.144
−0.432 −0.494 −0.338 −0.336 −0.177 −0.032 −0.316
0.046 −0.351 0.212 0.215 0.781 0.358 0.213
−0.015 0.043 0.162 0.154 0.266 0.372 0.148

MAE 0.008 0.012

Themedian prediction errors are rather smaller than those of mean regression for the first two
models (less than 0.038 (resp., 0.012) for Model 1 (resp., Model 2)). Notice that the quantile
and mean regression prediction results of Model 3 are similar and rather worse than those of
Models 1 and 2. This can be explained by the fact that multimodality of the field of Model 3
cannot be captured by conditional median and the conditional mean.

We derive from the results of the tables 95% confidence and predictive intervals where
the extremities are the 2.5% and 97.5% quantiles estimates, for each of the 10 prediction sites.
Note that the confidence interval is generally more precise than the predictive one.

Tables 4–6 give the same estimates (for Models 1–3) as the first three tables but using
both the same and the different choices of h1 and h2 described the aftermentioned rules.
As proved by the numerical experiments (all the results are not presented here for seek of
simplicity), the prediction results are improved when the sample size increases but notice
that the improvement depends on the number of sites which are dependent on the prediction
site in interest. Depending on the position of the sites, the conditional mean regression gives
sometimes better prediction than the conditional median and vice versa. A next step would
be to apply the predictor to a spatial real data that deserves future investigations.
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Table 3: Quantile estimates (q̂α(˜ξi0), α ∈ {0.025, 0.5, 0.975}) and mean regression predictor of Model 2 and
confidence interval for U and n̂ = 441.

n̂ = 441 α = 0.025 Inf True ̂ξik Sup α = 0.975 ξ̆ik
−0.508 −0.331 −0.269 −0.276 −0.222 −0.140 −0.303
−0.057 0.069 0.123 0.120 0.172 0.291 0.140
−0.487 −0.428 −0.357 −0.367 −0.306 −0.175 −0.399
−0.550 −0.484 −0.397 −0.402 −0.321 −0.267 −0.373
−0.011 0.136 0.177 0.177 0.218 0.373 0.153
0.011 0.093 0.132 0.132 0.171 0.291 0.125
−0.069 0.111 0.150 0.143 0.175 0.324 0.134
0.154 0.266 0.314 0.316 0.365 0.410 0.309
0.068 0.160 0.227 0.227 0.294 0.366 0.237
−0.402 −0.328 −0.276 −0.278 −0.228 −0.128 −0.296

MAE 0.004 0.02

Table 4: Quantile estimates (q̂α(˜ξi0), α ∈ {0.025, 0.5, 0.975}) for different bandwidth choices and the
conditional median ̂ξik obtained with the same bandwidths h1 and h2 of Model 1 and confidence interval
for U and n̂ = 441.

n̂ = 441 α = 0.025 Inf True ̂ξ2ik Sup α = 0.975 ̂ξik

−1.13 −1.27 −0.71 −0.73 −0.2 −0.19 −1.13
−0.67 −3.78 0.02 −0.2 3.37 0.18 −0.67
−1.13 −2.73 −0.44 −0.71 1.32 −0.03 −0.92
0.33 0.74 0.93 0.83 0.93 1.22 0.33
−0.44 −0.47 0.09 −0.06 0.36 0.18 −0.16
0.18 0.41 0.28 0.56 1.35 0.97 0.18
0.35 0.68 0.89 0.84 1.01 1.41 0.46
0.11 0.54 0.62 0.69 0.84 1.38 0.33
0.18 0.28 0.24 0.53 0.79 0.79 0.18
0.64 0.82 0.95 0.95 1.09 1.25 0.64

MAE 0.15 0.37

Table 5: Quantile estimates (q̂α(˜ξi0), α ∈ {0.025, 0.5, 0.975}) for different bandwidth choices and the
conditional median ̂ξik obtained with the same bandwidths h1 and h2 of Model 2 and confidence interval
for U and n̂ = 441.

n̂ = 441 α = 0.025 Inf True ̂ξ2ik Sup α = 0.975 ̂ξik

−2.18 −1.97 −1.4 −1.69 −1.4 −1.17 −1.97
−1.02 −0.48 −0.96 −0.39 −0.31 0.38 −1.02
−0.98 −0.88 −0.81 −0.76 −0.63 −0.39 −1.12
−0.88 −0.84 −0.44 −0.59 −0.35 −0.04 −0.88
−0.16 0.3 0.28 0.41 0.51 0.91 −0.25
−0.88 −0.55 −0.52 −0.43 −0.3 0.23 −0.88
0.64 1.21 1.52 1.29 1.37 1.94 0.57
−0.76 −0.41 −0.09 −0.14 0.14 0.54 −0.59
0.03 0.42 0.73 0.54 0.67 1.29 −0.04
−0.76 −0.55 −0.45 −0.39 −0.22 −0.04 −0.76

MAE 0.18 0.48
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Table 6: Quantile estimates (q̂α(˜ξi0), α ∈ {0.025, 0.5, 0.975}) for different bandwidth choices and the
conditional median ̂ξik obtained with the same bandwidths h1 and h2 of Model 3 and confidence interval
for U and n̂ = 441.

n̂ = 441 α = 0.025 Inf True ̂ξ2ik Sup α = 0.975 ̂ξik

0.19 0.7 0.5 0.79 0.88 1.33 0.79
−0.18 0.24 0.07 0.35 0.47 1.19 0.35
−0.48 −1.7 −0.48 −0.14 1.42 0.29 −0.14
−2.35 −3.02 −2.54 −2.17 −1.31 −1.68 −2.17
−2.35 −2.29 −2.1 −2.17 −2.05 −1.41 −2.17
0.28 0.65 0.77 0.75 0.85 1.65 0.77
−2.35 −6.14 −1.44 −1.68 6.11 −0.47 −1.68
−0.66 −0.06 0.23 0.21 0.49 1.12 0.21
−0.04 0.32 0.62 0.42 0.53 1.19 0.42
−0.66 −0.63 −0.3 −0.1 0.43 0.69 −0.1

MAE 0.2 0.2

Appendix

This section is devoted to proofs of lemmas used to establish the main result of Section 4.
To this end, some needed additional lemmas and results will be stated and proved in this
section.

Before giving the proof of Lemma 4.2, we introduce the following notation and
establish the following preliminary lemma.

Let Li be the random variable defined by

Li =
1

hd/21

[

αKi −KiHi
(

qα(x)
) − E(αKi −KiHi

(

qα(x)
))]

. (A.1)

Lemma A.1. Under assumptionsH2,H4, andH5, (3.4), (3.7) (with θ > N + 1), and (3.5) or (3.6),
one has for all i and j

(i) var(Li) → V (x),

(ii)
∑

i, j∈In,i/= j Cov(Li, Lj) = o(n̂),

(iii) (1/n̂) var(
∑

i∈In
Li) → V (x),

where V (x) is defined in Theorem 4.1.

Remark A.2. If one takes 2 < r ≤ 4 inH9, then θ > N + 1.

Proof of Lemma A.1. Note that we can deduce easily from assumptionH4 the existence of two
positive constants C and C′ such that

Chd1 ≤ EKs
i ≤ C′hd1 , (A.2)

for all i and any given integer s.
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Now, let us calculate the variance term. We have

var(Li) =
1

hd1

[

EK2
i

(

α −Hi
(

qα(x)
))2 − (EKi

(

α −Hi
(

qα(x)
)))2
]

= A1 −A2. (A.3)

Let us first consider A2. By taking the conditional expectation with respect to Xi, we
get

∣

∣EKi
(

Hi
(

qα(x)
) − α)∣∣ = ∣∣EKi

[

E
(

Hi
(

qα(x)
) | Xi

) − α]∣∣
≤ EKi

∣

∣E
(

Hi
(

qα(x)
) | Xi

) − α∣∣. (A.4)

From an integration by parts and an usual change of variables, we obtain

∣

∣E
(

Hi
(

qα(x)
) | Xi

) − α∣∣ =
∣

∣

∣

∣

∫

R

K2

(

qα(x) − z
h2

)

fXi(z)dz − Fx(qα(x)
)

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

R

(h2)
−1K
(

qα(x) − z
h2

)

FXi(z)dz − Fx(qα(x)
)

∣

∣

∣

∣

≤
∫

R

K(t)
∣

∣

∣FXi
(

qα(x) − th2
) − Fx(qα(x)

)

∣

∣

∣dt.

(A.5)

Then, using, respectively,H4,H2, andH5, we have

1‖Xi−x‖ ≤h1
∣

∣E
(

Hi
(

qα(x)
) | Xi

) − α∣∣ ≤ C
(

hb11 + hb22

∫

R

|t|b2K(t)dt
)

≤ C
(

hb11 + hb22
)

.

(A.6)

Thus, we can write

A2 =
1

hd1

∣

∣EKi
(

α −Hi
(

qα(x)
))∣

∣

2 ≤ 1

hd1

(

EKi
∣

∣α − E(Hi
(

qα(x)
) | Xi

)∣

∣

)2

≤ C
(

hb11 + hb22
)2 1

hd1
(EKi)2.

(A.7)

Using (A.2) and the fact that the bandwidths tend to 0, we get A2 = O(hb11 + hb22 ).
Concerning A1, we have

(

α −Hi
(

qα(x)
))2 =

(

H2
i

(

qα(x)
) − α
)

− 2α · (Hi
(

qα(x)
) − α) + α − α2. (A.8)

Then, we can write

A1 =
1

hd1

[

EK2
i

(

H2
i

(

qα(x)
) − α
)

− 2αEK2
i

(

Hi
(

qα(x)
) − α)

]

+ α(1 − α)EK
2
i

hd1
. (A.9)
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The conditional expectation with respect to Xi permits to write

A1 =
1

hd1
EK2

i

[

E
(

H2
i

(

qα(x)
) | Xi

)

− α
]

− 2α

hd1
EK2

i

[

E
(

Hi
(

qα(x)
) | Xi

) − α]

+ α(1 − α)EK
2
i

hd1
.

(A.10)

For the second term of the right-hand side of (A.10), the same argument as that used above
and (A.2) permit to obtain

2α

hd1
EK2

i

∣

∣

[

E
(

Hi
(

qα(x)
) | Xi

) − α]∣∣ = O
(

hb11 + hb22
)

. (A.11)

For the first term, an integration by parts, assumptionsH2,H4, andH5 lead to

1‖Xi−x‖ ≤h1
∣

∣

∣E
(

H2
i

(

qα(x)
) | Xi

)

− α
∣

∣

∣

= 1‖Xi−x‖ ≤h1

∣

∣

∣

∣

∫

R

K2
2

(

qα(x) − z
h2

)

fXi(z)dz − Fx(qα(x)
)

∣

∣

∣

∣

= 1‖Xi−x‖ ≤h1

∣

∣

∣

∣

∫

R

2K2(t)K(t)
(

FXi
(

qα(x) − h2t
) − Fx(qα(x)

)

)

dt

∣

∣

∣

∣

≤ Chb11
∫

R

2K2(t)K(t)dt + Chb22

∫

R

2K2(t)|t|b2K(t)dt

≤ Chb11 + Chb22

∫

R

2|t|b2K(t)dt ≤ C
(

hb11 + hb22
)

.

(A.12)

Thus, we have

1

hd1

∣

∣

∣EK2
i

[

E
(

H2
i

(

qα(x)
) | Xi

)

− α
]∣

∣

∣ ≤ C
(

hb11 + hb22
) 1

hd1
EK2

i . (A.13)

From (A.2), we have (1/hd1 )EK
2
i ≤ C. It is then clear that

1

hd1

∣

∣

∣EK2
i

[

E
(

H2
i

(

qα(x)
) | Xi

)

− α
]∣

∣

∣ ≤ C
(

hb11 + hb22
)

. (A.14)

Therefore, the term A1 has the same limit as the last term of the right-hand side of (A.10)
which goes directly (by Bochner’s lemma) to V (x) = α(1 − α)fX(x)

∫

Rd (K1(t))
2dt.

Consequently, we have var(Li) → V (x). This gives the part (i) of the lemma.
Let us now focus on the covariance term. Let

S1 = {i, j ∈ In : 0 < ‖i − j‖ ≤ cn}, S2 = {i, j ∈ In : ‖i − j‖ > cn}, (A.15)
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where cn is a sequence of integers that converges to infinity and will be given later. We have

∣

∣Cov
(

Li, Lj
)∣

∣ =
∣

∣ELiLj
∣

∣

=

∣

∣

∣

∣

∣

1

hd1

[

EKiKj
(

α −Hi
(

qα(x)
))(

α −Hj
(

qα(x)
)) − (EKi

(

α −Hi
(

qα(x)
)))2
]

∣

∣

∣

∣

∣

≤ 1

hd1
EKiKj

∣

∣

(

α −Hi
(

qα(x)
))(

α −Hj
(

qα(x)
))∣

∣ +
1

hd1

[

EKi
(

α −Hi
(

qα(x)
))]2

.

(A.16)

Taking the conditional expectation with respect to Xi and using the convexity of the function
x �→ |x|, we have

1

hd1

[

EKi
(

α −Hi
(

qα(x)
))]2 =

1

hd1

∣

∣EKi
(

α − E(Hi
(

qα(x)
) | Xi

))∣

∣

2

≤ 1

hd1

[

EKi
∣

∣E
(

Hi
(

qα(x)
) | Xi

) − α∣∣]2.
(A.17)

SinceK2 is a distribution function, we have clearly |E(Hi(qα(x)) | X) − α| ≤ C. Thus, by (A.2)
we get (1/hd1 )[EKi(α −Hi(qα(x)))]

2 ≤ Chd1 . As |(α −Hi(qα(x)))(α −Hj(qα(x)))| ≤ C, we have

1

hd1

[

EKiKj
∣

∣

(

α −Hi
(

qα(x)
))(

α −Hj
(

qα(x)
))∣

∣

]

≤ C 1

hd1

[

EKiKj
]

= C
1

hd1

∫

R2d
K1

(

x − t
h1

)

K1

(

x − s
h1

)

f(Xi, Xj)(t, s)dt ds.

(A.18)

Remark that by condition (3.8), the density f(Xi, Xj) is bounded. Then, we have

1

hd1

[

EKiKj
∣

∣

(

α −Hi
(

qα(x)
))(

α −Hj
(

qα(x)
))∣

∣

]

≤ C 1

hd1

∫

R2d
K1

(

x − t
h1

)

K1

(

x − s
h1

)

dsdt

≤ Chd1
∫

R2d
K1(u)K1(v)dudv ≤ Chd1 .

(A.19)

Hence,

∣

∣Cov
(

Li, Lj
)∣

∣ ≤ Chd1 ,
∑

S1

∣

∣Cov
(

Li, Lj
)∣

∣ ≤ Cn̂cNn hd1 . (A.20)
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Lemma 4.1(ii) of Carbon et al. [19] and |Li| ≤ Ch−d/21 permit to write

∣

∣Cov
(

Li, Lj
)∣

∣ ≤ Ch−d1 ϕ(‖i − j‖),
∑

S2

∣

∣Cov
(

Li, Lj
)∣

∣ ≤ Ch−d1
∑

(i, j)∈S2

ϕ(‖i − j‖) ≤ Cn̂h−d1
∑

i: ‖i‖> cn
ϕ(‖i‖)

≤ Cn̂h−d1 c
−(N+η)
n

∑

i: ‖i‖> cn
‖i‖N+ηϕ(‖i‖),

(A.21)

where η > 0 is a given sufficiently small real number. Using (A.20) and (A.21), we have

∑

i, j∈In
i/= j

∣

∣Cov
(

Li, Lj
)∣

∣ ≤
⎛

⎝Cn̂cNn h
d
1 + Cn̂h

−d
1 c

−(N+η)
n

∑

i: ‖i‖> cn
‖i‖N+ηϕ(‖i‖)

⎞

⎠. (A.22)

Let cn = h−d/(N+η)
1 ; then we get

∑

i, j∈In
i/= j

∣

∣Cov
(

Li, Lj
)∣

∣ ≤
⎛

⎝Cn̂hd(1−N/(N+η))
1 + Cn̂

∑

i: ‖i‖> cn
‖i‖N+ηϕ(‖i‖)

⎞

⎠

≤
⎛

⎝Cn̂hd(1−N/(N+η))
1 + Cn̂

∑

i: ‖i‖> cn
‖i‖N+η−θ

⎞

⎠.

(A.23)

Since θ > N + 1 and cn → ∞, if η < θ − (N + 1), we obtain
∑

i,j∈In,i/= j |Cov(Li, Lj)| = o(n̂).
This implies

∑

i,j∈In,i/= j Cov(Li, Lj) = o(n̂) and then gives the part (ii). For (iii), we have
(1/n̂)var(

∑

i∈In
Li) = (var(Li) + (1/n̂)

∑

i,j∈In,i/= j Cov(Li, Lj)) → V (x). This completes the
proof.

Proof of Lemma 4.2. The proof is similar to that of Lemma 3.2 of Tran [30]. For the sake of
brevity, we detail the main parts. We have

α ̂f(x) − gn
(

x, qα(x)
)

=
1

n̂hd1

∑

i∈In

(

αKi −KiHi
(

qα(x)
))

. (A.24)

Let Sn =
∑nk

ik=1, k=1,...,N
Li, with Li = (1/hd/21 )[αKi −KiHi(qα(x)) − E(αKi −KiHi(qα(x)))]. A

simple computation gives

[

n̂hd1
V (x)

]1/2
([

α ̂f(x) − gn
(

x, qα(x)
)

]

− E
[

α ̂f(x) − gn
(

x, qα(x)
)

])

= (n̂V (x))−1/2Sn. (A.25)



Advances in Decision Sciences 21

By assumptions H9(i)-(ii), there exists a sequence sn → ∞ of positive integers such
that

snqn = o

(

[

n̂
(

hd1

)1+(1−2/r)2N]1/(2N)
)

. (A.26)

It suffices, for example, to take sn = ([n̂(hd1 )
1+(1−2/r)2N]

1/(2N)
/qn)

1/2
.

Let p = pn = [(n̂hd1 )
1/(2N)/sn]; then we have

qp−1 = qsn
[

(

n̂hd1
)−1/(2N)

]

≤ C
(

[

n̂hd(1+(1−2/r)2N)
1

]1/(2N)[
(n̂hd1 )

]−1/(2N)
)

≤ Chd(1−2/r)1 .

(A.27)

This last term tends to 0 when n → +∞. Thus, it can be assumed without loss of generality
that q < p. Suppose that there exist integers r1, . . . , rN such that n1 = r1(p + q), . . . , nN =
rN(p + q).

As in Tran [30], the random variables Li are set into large blocks and small blocks. Let

U(1,n, x, j) =
Jk(p+q)+p
∑

ik=jk(p+q)+1
k=1,...,N

Li,

U(2,n, x, j) =
jk(p+q)+p
∑

ik=jk(p+q)+1
k=1,...,N−1

(jN+1)(p+q)
∑

iN=jN(p+q)+p+1
Li,

U(3,n, x, j) =
jk(p+q)+p
∑

ik=jk(p+q)+1
k=1,...,N−2

(jN−1+1)(p+q)
∑

iN−1=jN−1(p+q)+p+1

jN(p+q)+p
∑

iN=jN(p+q)+1
Li,

U(4,n, x, j) =
jk(p+q)+p
∑

ik=jk(p+q)+1
k=1,...,N−2

(jN−1+1)(p+q)
∑

iN−1=jN−1(p+q)+p+1

(jN+1)(p+q)
∑

iN=jN(p+q)+p+1
Li,

(A.28)

and so on. Finally

U
(

2N−1,n, x, j
)

=
(jk+1)(p+q)
∑

ik=jk(p+q)+p+1
k=1,...,N−1

jN(p+q)+p
∑

iN=jN(p+q)+1
Li,

U
(

2N,n, x, j
)

=
(Jk+1)(p+q)
∑

ik=jk(p+q)+p+1
k=1,...,N

Li.

(A.29)
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Setting J = {0, . . . , r1 − 1} × · · · × {0, . . . , rN − 1}, we define for each integer i = 1, . . . , 2N ,

T(n, x, i) =
∑

j∈J
U(i,n, x, j). (A.30)

Then, we have Sn =
∑2N

i=1 T(n, x, i). Note that T(n, x, 1) is the sum of variables Li in big blocks.
The variables T(n, x, i), 2 ≤ i ≤ 2N are variables in small blocks.

As raised by Biau and Cadre [20], if one does not have the equalities ni = ri(p + q),
the term say T(n, x, 2N + 1) (which contains the Li’s at the ends not included in the blocks
above) can be added. This will not change the proof much.
Thus, to prove the lemma it suffices to prove that

Sn

(n̂V (x))1/2
=

T(n, x, 1)

(n̂V (x))1/2
+
∑2N

i=2 T(n, x, i)

(n̂V (x))1/2
D−→ N(0, 1). (A.31)

The general approach is to show that as n → ∞,

Q1 ≡

∣

∣

∣

∣

∣

∣

∣

∣

E exp [iuT(n, x, 1)] −
rk−1
∏

jk=0
k=1,...,N

E exp [iuU(1,n, x, j)]

∣

∣

∣

∣

∣

∣

∣

∣

−→ 0,

Q2 ≡ n̂−1E

(

2N
∑

i=2

T(n, x, i)

)2

−→ 0,

Q3 ≡ n̂−1∑

j∈J
E[U(1,n, x, j)]2 −→ V (x),

Q4 ≡ n̂−1∑

j∈J
E
[

(U(1,n, x, j))21{|U(1,n,x,j)|>ε(V (x)n̂)1/2}
]

−→ 0

(A.32)

for all ε > 0.
This can be easily done as in Tran [30].

The following two lemmas will be used to prove Lemma 4.4.

Lemma A.3. Under conditionsH1, H3, and H4, (3.4), (3.7), (3.8), (3.9), and

(i) assumption (3.5) and H6

or

(ii) assumption (3.6) and H7,

(A.33)

one has

∣

∣q̂α(x) − qα(x)
∣

∣

P−→ 0. (A.34)



Advances in Decision Sciences 23

Lemma A.4. Under conditions of Lemma A.3, one has

∣

∣

∣

̂fx
(

qα(x)
) − fx(qα(x)

)

∣

∣

∣

P−→ 0. (A.35)

Proof of Lemma 4.4. We have

∣

∣

∣g
(1)
n
(

x, q∗α(x)
) − fX, Y

(

x, qα(x)
)

∣

∣

∣ ≤ ̂f(x)
∣

∣

∣

̂fx
(

q∗α(x)
) − fx(q∗α(x)

)

∣

∣

∣

+ fx
(

q∗α(x)
)

∣

∣

∣

̂f(x) − fX(x)
∣

∣

∣

+ fX(x)
∣

∣fx
(

q∗α(x)
) − fx(qα(x)

)∣

∣.

(A.36)

Lemma A.3 implies the convergence in probability of q∗α(x) to qα(x). Then, by H1, the third
term of the right-hand side of the previous inequality tends to zero in probability. Lemma A.7
with Lemma A.3 gives the convergence in probability to zero of the second term. To deal with
the first term, we can notice that

∣

∣

∣

̂fx
(

q∗α(x)
) − fx(q∗α(x)

)

∣

∣

∣ ≤
∣

∣

∣

̂fx
(

q∗α(x)
) − ̂fx(qα(x)

)

∣

∣

∣

+
∣

∣

∣

̂fx
(

qα(x)
) − fx(qα(x)

)

∣

∣

∣ +
∣

∣fx
(

qα(x)
) − fx(q∗α(x)

)∣

∣.
(A.37)

The third term of the right-hand side (of the previous inequality) is the same as the third
term of the previous inequality. The second one is treated by Lemma A.4. For the first term,
we have

∣

∣

∣

̂fx
(

q∗α(x)
) − ̂fx(qα(x)

)

∣

∣

∣ ≤ 1
h2

∑

i∈In

Wi

∣

∣

∣

∣

K

(

q∗α(x) − Yi

h2

)

−K
(

qα(x) − Yi

h2

)∣

∣

∣

∣

, (A.38)

whereWni = Ki/
∑

i∈In
Ki. Therefore, using the fact that K is Lipschitz (assumptionH5), we

get

∣

∣

∣

̂fx
(

q∗α(x)
) − ̂fx(qα(x)

)

∣

∣

∣ ≤ 1
h22

∣

∣q∗α(x) − qα(x)
∣

∣. (A.39)

Then, for any ε > 0, we have

P
(∣

∣

∣

̂fx
(

q∗α(x)
) − ̂fx(qα(x)

)

∣

∣

∣ > ε
)

≤ P
(

∣

∣q∗α(x) − qα(x)
∣

∣ > εh22

)

. (A.40)

This permits to conclude that the weak convergence of q∗α(x) to qα(x) (Lemma A.3) implies
that of ̂fx(q∗α(x)) to ̂f

x(qα(x)). This yields the proof.

Proof of Lemma A.3. By hypothesisH5, the function ̂Fx(·) is continuous and strictly increasing.
Thus, the inverse function ̂Fx(·)(−1) is continuous and strictly increasing. In particular, the
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continuity of ̂Fx(·)(−1) at ̂Fx(qα(x)) gives (see also the proof of Theorem 3.1 of Ferraty et al.
[28], page 383)

∀ε > 0, ∃η = η(ε) > 0, ∀y,
∣

∣

∣

̂Fx
(

y
) − ̂Fx(qα(x)

)

∣

∣

∣ ≤ η =⇒ ∣∣y − qα(x)
∣

∣ ≤ ε, (A.41)

and thus

∀ε > 0, ∃η > 0, P
(∣

∣q̂α(x) − qα(x)
∣

∣ > ε
) ≤ P

(∣

∣

∣

̂Fx
(

q̂α(x)
) − ̂Fx(qα(x)

)

∣

∣

∣ > η
)

= P
(∣

∣

∣Fx
(

qα(x)
) − ̂Fx(qα(x)

)

∣

∣

∣ > η
)

.
(A.42)

So, to prove the weak convergence of the quantile estimate q̂α(x) to qα(x) it suffices
to prove that the conditional distribution estimate ̂Fx(qα(x)) converges in probability to
Fx(qα(x)). That is done in the following lemma.

Lemma A.5. Under conditions of Lemma A.3, one has

̂Fx
(

qα(x)
) − Fx(qα(x)

) P−→ 0. (A.43)

In order to establish Lemma A.4, we introduce the following notations and state the
following three technical lemmas. For y ∈ R, let

Γi
(

x, y
)

=
1

n̂hd1h2
K1

(

x −Xi

h1

)

K

(

y − Yi

h2

)

, Δi
(

x, y
)

= Γi
(

x, y
) − EΓi

(

x, y
)

,

fn
(

x, y
)

=
1

n̂hd1h2

∑

i∈In

K1

(

x −Xi

h1

)

K

(

y − Yi

h2

)

,

(A.44)

and Sn(x, y) =
∑

i∈In
Δi(x, y) = fn(x, y) − Efn(x, y),

In
(

x, y
)

=
∑

i∈In

E
(

Δi
(

x, y
))2

, Rn
(

x, y
)

=
∑

i/= j
i,j∈In

∣

∣EΔi
(

x, y
)

Δj
(

x, y
)∣

∣.
(A.45)

Lemma A.6. Under the conditions of Lemma A.3, one has for y ∈ R

∣

∣fn
(

x, y
) − fX,Y

(

x, y
)∣

∣

P−→ 0. (A.46)

Lemma A.7. If the conditions of Lemma A.3 are satisfied, then ̂f(x) P→ fX(x).

Lemma A.8. Under the conditions of Lemma A.3, one has for y ∈ R

In
(

x, y
)

+ Rn
(

x, y
)

= O

(

1

n̂hdKhH

)

. (A.47)
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Proof of Lemma A.4. Let y = qα(x). We have

∣

∣

∣

̂fx
(

y
) − fx(y)

∣

∣

∣ ≤ 1
̂f(x)

∣

∣fn
(

x, y
) − fX,Y

(

x, y
)∣

∣ +
1
̂f(x)

fx
(

y
)

∣

∣

∣

̂f(x) − fX(x)
∣

∣

∣. (A.48)

Lemmas A.7 and A.6 give, respectively, the weak convergence of ̂f(x) to fX(x) and fn(x, y)
to fX, Y (x, y). This finishes the proof since, byH1, fX(x) > 0 and fx(y) is bounded.

In order to prove Lemma A.5, we introduce the following notations and state the
following three lemmas. For y ∈ R, let

˜Γi
(

x, y
)

=
1

n̂hd1
K1

(

x −Xi

h1

)

K2

(

y − Yi

h2

)

, ˜Δi
(

x, y
)

= ˜Γi
(

x, y
) − E˜Γi

(

x, y
)

,

˜In
(

x, y
)

=
∑

i∈In

E
(

˜Δi
(

x, y
)

)2
, ˜Rn

(

x, y
)

=
∑

i/= j
i,j∈In

∣

∣

∣E ˜Δi
(

x, y
)

˜Δj
(

x, y
)

∣

∣

∣,

gn
(

x, y
)

=
∑

i∈In

˜Γi
(

x, y
)

, g
(

x, y
)

= Fx
(

y
)

fX(x).

(A.49)

Lemma A.9. Under conditions of Lemma A.5, one has

gn
(

x, qα(x)
) P−→ g

(

x, qα(x)
)

. (A.50)

Lemma A.10. Under conditions of Lemma A.5, one has

˜In
(

x, qα(x)
)

+ ˜Rn
(

x, qα(x)
)

= O

(

1

n̂hd1

)

. (A.51)

Proof of Lemma A.5. Let y = qα(x); it is easy to see that

∣

∣

∣

̂Fx
(

y
) − Fx(y)

∣

∣

∣ ≤ 1
̂f(x)

{

∣

∣gn
(

x, y
) − g(x, y)∣∣ +

(

Fx
(

y
)

∣

∣

∣fX(x) − ̂f(x)
∣

∣

∣

)}

. (A.52)

Lemmas A.7 and A.9 give, respectively, the weak convergence of ̂f(x) to fX(x) and gn(x, y)
to g(x, y) and yield the proof.

Proof of Lemma A.6. Remark that

∣

∣fn
(

x, y
) − fX,Y

(

x, y
)∣

∣ ≤ ∣∣fn
(

x, y
) − Efn

(

x, y
)∣

∣ +
∣

∣Efn
(

x, y
) − fX,Y

(

x, y
)∣

∣. (A.53)
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The asymptotic behavior of the bias term is standard, in the sense that it is not affected by the
dependence structure of the data. We have

∣

∣Efn
(

x, y
) − fX, Y

(

x, y
)∣

∣

=

∣

∣

∣

∣

∣

1

hdKhH

∫

Rd+1
K

(

x − u
hK

)

H

(

y − v
hH

)

fX,Y (u, v)dudv − fX, Y
(

x, y
)

∣

∣

∣

∣

∣

≤
∫

Rd+1
K(t)H(s)

∣

∣fX, Y
(

x − hKt, y − hHs
) − fX,Y

(

x, y
)∣

∣dt ds.

(A.54)

This last term goes to zero byH1 and the Lebesgue dominated Theorem.
The proof of the weak convergence of Sn(x) = fn(x, y) − Efn(x, y) to zero is similar

to that of Theorem 3.3 of Carbon et al. [19] or Lemma 3.2 of Dabo-Niang and Yao [27].
For the sake of completeness, we present it entirely. Let us now introduce a spatial block
decomposition that has been used by Carbon et al. [19].

Without loss of generality, assume that ni = 2pqi for 1 ≤ i ≤ N. The random variables
Δi(x, y) can be grouped into 2Nq1 . . . qN cubic blocksU(1,n, j) of side p (as previously). Then,
for each integer 1 ≤ i ≤ 2N , define T(n, i) =

∑qk−1
jk=0, k=1,...,N

U(i,n, j) and get the following

decomposition Sn(x, y) =
∑2N

i=1 T(n, i).
Observe that, for any ε > 0,

P
(∣

∣Sn
(

x, y
)∣

∣ > ε
)

= P

(∣

∣

∣

∣

∣

2N
∑

i=1

T(n, i)

∣

∣

∣

∣

∣

> ε

)

≤ 2NP
(

|T(n, 1)| > ε

2N

)

. (A.55)

We enumerate in an arbitrary way the q̂ = q1 . . . qN terms U(1,n, j) of the sum T(n, 1) that
we callW1, . . . ,Wq̂. Note thatU(1,n, j) is measurable with respect to the σ-field generated by
Vi(x, y), with i such that 2jkp + 1 ≤ ik ≤ (2jk + 1)p, k = 1, . . . ,N.
These sets of sites are separated by a distance at least p, and since K1 and K2 are bounded,
then we have for all i = 1, . . . , q̂,

|Wi| ≤ C
(

n̂hd1h2
)−1

pN‖K1‖∞‖K2‖∞. (A.56)

Lemma 4.4 in Carbon et al. [19] ensures that there exist independent random variables
W∗

1 , . . . ,W
∗
q̂
such that

q̂
∑

i=1

E
∣

∣Wi −W∗
i

∣

∣ ≤ Cq̂
(

n̂hd1h2
)−1

pN‖K1‖∞‖K2‖∞ψ
(

n̂, pN
)

ϕ
(

p
)

. (A.57)

Markov’s inequality leads to

P

⎛

⎝

q̂
∑

i=1

∣

∣Wi −W∗
i

∣

∣ >
ε

2N+1

⎞

⎠ ≤ C2N+1
(

n̂hd1h2
)−1

pNq̂ψ
(

n̂, pN
)

ε−1ϕ
(

p
)

. (A.58)
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By Bernstein’s inequality, we have

P

⎛

⎝

∣

∣

∣

∣

∣

∣

q̂
∑

i=1

W∗
i

∣

∣

∣

∣

∣

∣

>
ε

2N+1

⎞

⎠ ≤ 2 exp

⎧

⎪

⎨

⎪

⎩

−ε2/(2N+1)2

4
∑q̂

i=1 EW
∗2
i + 2C

(

n̂hd1h2
)−1

pNε/2N+1

⎫

⎪

⎬

⎪

⎭

. (A.59)

Combining (A.55), (A.58), and (A.59), we get

P
(∣

∣Sn
(

x, y
)∣

∣ > ε
) ≤ 2NP

⎛

⎝

q̂
∑

i=1

∣

∣Wi −W∗
i

∣

∣ >
ε

2N+1

⎞

⎠ + 2NP

⎛

⎝

∣

∣

∣

∣

∣

∣

q̂
∑

i=1

W∗
i

∣

∣

∣

∣

∣

∣

>
ε

2N+1

⎞

⎠

≤ 2N+1 exp

⎧

⎪

⎨

⎪

⎩

−ε2/(2N+1)2

4
∑q̂

i=1 EW
∗2
i + 2C

(

n̂hd1h2
)−1

pNε/2N+1

⎫

⎪

⎬

⎪

⎭

+ C22N+1ψ
(

n̂, pN
)(

n̂hd1h2
)−1

pNq̂ε−1ϕ
(

p
)

.

(A.60)

Let λ > 0 and set

ε = εn =

(

log n̂

n̂hd1h2

)1/2

, p = pn =

(

n̂hd1h2
log n̂

)1/2N

. (A.61)

By the fact thatW∗
i andWi have the same distribution, we have

q̂
∑

i=1

EW∗2
i =

q̂
∑

i=1

EW2
i ≤ In

(

x, qα(x)
)

+ Rn
(

x, qα(x)
)

. (A.62)

Then, by Lemma A.8, we get
∑q̂

i=1 EW
∗2
i = O(1/n̂hd1h2). Thus, for the case (i) of the theorem

a simple computation shows that for sufficiently large n,

P
(∣

∣Sn
(

x, y
)∣

∣ > λεn
) ≤ 2N+1 exp

{

−λ2 log n̂
22N+4C + 2N+2Cλ

}

+ C2N+1pNh−d1 h−12 λ
−1ε−1n ϕ

(

p
)

≤ Cn̂−b + C2N+1pNh−d1 h−12 λ
−1ε−1n ϕ

(

p
)

,

(A.63)

where b > 0 and depends on λ. For case (ii), we obtain

P
(∣

∣Sn
(

x, y
)∣

∣ > λεn
) ≤ 2N+1 exp

{

−λ2 log n̂
22N+4C + 2N+2Cλ

}

+ C2N+1n̂˜βh−d1 h−12 λ
−1ε−1n ϕ

(

p
)

≤ Cn̂−b + C2N+1n̂˜βh−d1 h−12 λ
−1ε−1n ϕ

(

p
)

.

(A.64)
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Then, (A.63) and (A.64) can be condensed in

P
(∣

∣fn
(

x, y
) − Efn

(

x, y
)∣

∣ > λεn
) ≤
⎧

⎨

⎩

Cn̂−b + Cλ−1h−d1 h−12 ε
(θ−2N)/N
n under (i),

Cn̂−b + Cλ−1h−d1 h−12 n̂˜βε(θ−N)/N
n under (ii).

(A.65)

Then, to prove the convergence in probability of U1n(x), it suffices to show that for,
respectively, (i) and (ii)

Cn̂−b −→ 0, λ−1h−d1 h−12 ε
(θ−2N)/N
n −→ 0,

Cn̂−b −→ 0, λ−1h−d1 h−12 n̂˜βε(θ−N)/N
n −→ 0.

(A.66)

Clearly, n̂−b → 0 if b > 0. On the one hand, we have

λ−1h−d1 h−12 ε
(θ−2N)/N
n ≤ C

[

n̂hdθ/(θ−2N)
1 h

θ/(θ−2N)
2 (log n̂)−1

](2N−θ)/2N
. (A.67)

This last goes to 0 byH6.
On the other hand, we have

λ−1h−d1 h−12 n̂˜βε(θ−N)/N
n

≤ C
[

n̂hd(θ+N)/(θ−N(1+2˜β))
1 h

(θ+N)/(θ−N(1+2˜β))
2

(

log n̂
)(N−θ)/(θ−N(1+2˜β))

](N(1+2˜β)−θ)/2N
,

(A.68)

which goes to 0 byH7. This yields the proof.

Proof of Lemma A.7. By using the same arguments as in Lemma A.6, we get

∣

∣

∣E ̂f(x) − fX(x)
∣

∣

∣ =
∣

∣

∣

∣

∫

Rd

K1(s)
[

fX(x − sh) − fX(x)
]

ds

∣

∣

∣

∣

. (A.69)

This last term tends to zero by Lebesgue dominated Theorem. Let

Γi(x) =
1

n̂hd1
K1

(

x −Xi

h1

)

, Δi(x) = Γi(x) − EΓi(x). (A.70)

Then we have ̂f(x) − E ̂f(x) =∑i∈In
Δi(x) = Sn(x).

Let In(x) =
∑

i∈In
E(Δi(x))

2 and Rn(x) =
∑

i/= j, i,j∈In
|EΔi(x)Δj(x)|.

Lemma 2.2 of Tran [30] gives that

var
(

̂f(x)
)

≤ In(x) + Rn(x) = O

(

1

n̂hd1

)

. (A.71)
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Consider εn = (log n̂/n̂hd1 )
1/2

and p = (n̂hd1/ log n̂)
1/2N

and use the same arguments as in the
proof of Lemma A.6, to get for sufficiently large n

P

⎛

⎝|Sn(x)| > λ
√

√

√

√

log n̂

n̂hd1

⎞

⎠ ≤
⎧

⎨

⎩

Cn̂−b + C2N+1pNh−d1 ε−1n ϕ
(

p
)

under (i),

Cn̂−b + C2N+1n̂˜βh−d1 ε−1n ϕ
(

p
)

under (ii),
(A.72)

with b > 0. It suffices to show that for the case (i) (resp., (ii)) pNh−d1 ε−1n ϕ(p) → 0 (resp.,
n
˜βh−d1 ε−1n ϕ(p) → 0). A simple computation shows for, respectively, (i) and (ii)

pNh−d1 ε−1n ϕ
(

p
) ≤ C

[

n̂hdθ/(θ−2N)
1 log n̂−1

](2N−θ)/2N
,

n̂˜βh−d1 ε−1n ϕ
(

p
) ≤ C

[

n̂hd(N+θ)/(θ−N(1+2˜β))
1

(

log n̂
)(N−θ)/(θ−N(1+2˜β))

](N(1+2˜β)−θ)/2N
,

(A.73)

and these last go to 0 by, respectively,H6 andH7, which yields the proof.

Proof of Lemma A.8. We have n̂hd1h2In(x, y) = n̂hd1h2
∑

i∈In
(EΓ2i (x, y) − E2Γi(x, y)). First,

remark that

n̂hd1h2
∑

i∈In

EΓ2i
(

x, y
)

= h−d1 h−12

∫

Rd+1
K2

1

(

x − z
h1

)

K2
(

y − v
h2

)

fX, Y (z, v)dzdv

=
∫

Rd+1
K2

1(z)K
2(v)fX, Y

(

x − h1z, y − h2v
)

dzdv.

(A.74)

By assumptionH1 and Lebesgue dominated Theorem, this last integral converges to

fX, Y
(

x, y
)

∫

Rd+1
K2

1(z)K
2(v)dzdv. (A.75)

Next, notice that

n̂hd1h2
∑

i∈In

E2Γi
(

x, y
)

= h−d1 h−12

(∫

Rd+1
K1

(

x − z
h1

)

K

(

y − v
h2

)

fX, Y (z, v)dzdv
)2

. (A.76)

By an usual change of variables, we obtain

n̂hd1h2
∑

i∈In

E2Γi
(

x, y
)

= hd1h2
(∫

Rd+1
K1(z)K(v)fX, Y

(

x − h1z, y − h2v
)

dzdv

)2

. (A.77)

This last term tends to 0 byH1 and Lebesgue dominated Theorem.
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Let us now prove that for n being large enough, there exists C such that
n̂hd1h2Rn(x, y) < C. Let S = {i, j,dist(i, j) ≤ sn}, where sn is a real sequence that converges to
infinity and will be specified later. Then Rn(x, y) = R1

n(x, y) + R
2
n(x, y), with

R1
n
(

x, y
)

=
∑

i,j∈S

∣

∣EΔi
(

x, y
)

Δj
(

x, y
)∣

∣, R2
n
(

x, y
)

=
∑

i, j∈Sc

∣

∣EΔi
(

x, y
)

Δj
(

x, y
)∣

∣, (A.78)

where Sc stands for the complement of S. Now, by change of variables, H3, and Lebesgue
dominated Theorem, we get

E

[∣

∣

∣

∣

K

(

y − Yi

h2

)∣

∣

∣

∣

∣

∣

∣

∣

K

(

y − Yj

h2

)∣

∣

∣

∣

| (Xi, Xj
)

]

= h2H

∫

R2
K(t)K(s)f (Xi,Xj)

(

y − h2t, y − h2s
)

dt ds = O
(

h22

)

.

(A.79)

Similarly, we have

E

[∣

∣

∣

∣

K

(

y − Yi

h2

)∣

∣

∣

∣

| Xi

]

= h2

∫

R

K(t)fXi
(

y − h2t
)

dt = O(h2). (A.80)

In addition, by (3.8), we get EKiKj = O(h2d1 ) and EKi = O(hd1 ). Let us consider R
1
n(x, y). We

have
∣

∣EΔi
(

x, y
)

Δj
(

x, y
)∣

∣ =
∣

∣EΓi
(

x, y
)

Γj
(

x, y
) − EΓi

(

x, y
)

EΓj
(

x, y
)∣

∣

≤ E[E∣∣Γi
(

x, y
)

Γj
(

x, y
)∣

∣ | (Xi, Xj
)]

+
(

E
[

E
∣

∣Γi
(

x, y
)∣

∣ | Xi
])2

≤ n̂−2h−2d1 h−22 EKiKjE

[∣

∣

∣

∣

K

(

y − Yi

h2

)∣

∣

∣

∣

∣

∣

∣

∣

K

(

y − Yj

h2

)∣

∣

∣

∣

| (Xi, Xj
)

]

+ n̂−2h−2d1 h−22

(

EKiE

[∣

∣

∣

∣

K

(

y − Yi

h2

)∣

∣

∣

∣

| Xi

])2

≤ Cn̂−2.

(A.81)

Then n̂hd1h2R
1
n(x, y) ≤ n̂−1hd1h2

∑

i,j∈S 1 ≤ Chd1h2s
N
n . Let us now compute R2

n(x, y). Since K1

and K are bounded, by applying Lemma 4.1(ii) of Carbon et al. [19] we get

∣

∣EΔi
(

x, y
)

Δj
(

x, y
)∣

∣ ≤ Cn̂−2h−2d1 h−22 ψ(1, 1)ϕ(‖i − j‖). (A.82)

Then, we obtain that

n̂hd1h2R
2
n
(

x, y
) ≤ Cn̂−1h−d1 h−12

∑

i,j∈Sc
ψ(1, 1)ϕ(‖i − j‖)

≤ Ch−d1 h−12 s
−N
n

∑

‖i‖>sn
‖i‖Nϕ(‖i‖)

≤ Ch−d1 h−12 s
−N
n

∑

‖i‖>sn
‖i‖N−θ.

(A.83)

As θ > N + 1, the choice sn = (hd1h2)
−1/N

gives the desired result and yields the proof.
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Proof of Lemma A.9. We have

∣

∣Egn
(

x, y
) − g(x, y)∣∣

=

∣

∣

∣

∣

∣

1

n̂hd1

∑

i∈In

∫

Rd+1
K1

(

x − z
h1

)

K2

(

y − v
h2

)

fX,Y (z, v)dzdv −
∫y

−∞
fX, Y (x, u)du

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∫y

−∞

∫

Rd+1
K1(s)K(t)

[

fX, Y (x − sh1, u − th2) − fX, Y (x, u)
]

dudsdt

∣

∣

∣

∣

,

(A.84)

and this last term tends to zero byH1 and Lebesque dominated Theorem. We have

gn
(

x, y
) − Egn

(

x, y
)

=
∑

i∈In

˜Δi
(

x, y
)

= ˜Sn
(

x, y
)

. (A.85)

The sequel of the proof uses the same decomposition and similar lines as in the proof
of Lemma A.6. Taking εn = λ(log n̂/n̂hd1 )

1/2
, p = (n̂hd1/ log n̂)

1/2N
and making use of

Lemma A.10, we obtain, for λ > 0, the existence of b > 0 such that, for n being large enough,

P
(∣

∣gn
(

x, y
) − Egn

(

x, y
)∣

∣ > εn
) ≤
⎧

⎨

⎩

Cn̂−b + C2N+1pNh−d1 ε−1n ϕ
(

p
)

under (i),

Cn̂−b + C2N+1n̂˜βh−d1 ε−1n ϕ
(

p
)

under (ii).
(A.86)

To prove the convergence of the lemma, it suffices to show, respectively, for (i) and (ii)
that

pNh−d1 ε−1n ϕ
(

p
) −→ 0,

n̂
˜βh−d1 ε−1n ϕ

(

p
) −→ 0.

(A.87)

A simple computation gives

pNh−d1 ε−1n ϕ
(

p
) ≤ C

[

n̂hdθ/(θ−2N)
1 log n̂−1

](2N−θ)/2N
, (A.88)

and this last goes to 0 by AssumptionH6. Analogously, we have

h−d1 ε−1n ϕ
(

p
) ≤ C

[

n̂hd(N+θ)/(θ−N(1+2˜β))
1

(

log n̂
)(N−θ)/(θ−N(1+2˜β))

](N(1+2˜β)−θ)/2N
, (A.89)

which goes to 0 by AssumptionH7. This yields the proof.
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Proof of Lemma A.10. Our conditions and the proof of Lemma 2.2 in Tran [30] yield easily the
result. More precisely, let y = qα(x) and write

n̂hd1 ˜In
(

x, y
)

= n̂hd1
∑

i∈i

(

E

(

(

˜Γi
(

x, y
)

)2
)

− E2
(

˜Γi
(

x, y
)

)

)

,

n̂hd1
∑

i∈i
E

(

(

˜Γi
(

x, y
)

)2
)

= h−d1

∫

Rd+1
K2

1

(

x − z
h1

)

K2
2

(

y − v
h2

)

fX, Y (z, v)dzdv,

n̂hd1
∑

i∈i

(

E2
(

˜Γi
(

x, y
)

))

= h−d1

(∫

Rd+1
K1

(

x − z
h1

)

K2

(

y − v
h2

)

fX, Y (z, v)dzdv
)2

.

(A.90)

Since K2(t) ≤ 1 for any t ∈ R, we have

n̂hd1
∑

i∈i

(

E2
(

˜Γi
(

x, y
)

))

≤ h−d1
(∫

Rd

K1

(

x − z
h1

)[∫

R

fX, Y (z, v)dv
]

dz

)2

= hd1

(∫

Rd

K1(t)fX(x − th1)dt
)2

,

(A.91)

which goes to 0 by Assumption H1 and Lebesgue dominated Theorem. By a change of
variables, we have

n̂hd1
∑

i∈i
E

(

(

˜Γi
(

x, y
)

)2
)

=
∫

Rd+1
K2

1(s)K
2
2

(

y − v
h2

)

fX,Y (x − sh1, v)dsdv

=
∫

Rd+1
K2

1(s)K
2
2

(

y − v
h2

)

× (1]−∞,y[(v) + 1]y,∞[(v)
)

fX, Y (x − sh1, v)dsdv.

(A.92)

Remark that if v ∈ ]y,∞[, then K2
2((y − v)/h2) → 0, and if v ∈ ] − ∞, y[, then K2

2((y −
v)/h2) → 1. Thus

lim
n→∞

K2
1(s)K

2
2

(

y − v
h2

)

1]−∞,y[(v)fX,Y (x − sh, v) = K2
1(s)1]−∞,y[(v)fX, Y (x, v). (A.93)

Then, we deduce from the dominated convergence Theorem that

lim
n→∞

n̂hd1
∑

i∈i
E

(

(

˜Γi
(

x, y
)

)2
)

=
∫

Rd+1
K2

1(s)1]−∞,y[(v)fX, Y (x, v)dsdv

=
∫y

−∞
fX, Y (x, v)dv

∫

Rd

K2
1(s)ds.

(A.94)

Let us now prove that there exists C such that n̂hd1 ˜Rn < C, for n being large enough. As K1

and K2 are bounded, by applying Lemma 4.1(ii) of Carbon et al. [19], we obtain

∣

∣

∣E˜Γi
(

x, y
)

˜Γj
(

x, y
)

∣

∣

∣ ≤ Cn̂−2h−2d1 ψ(1, 1)ϕ(‖i − j‖). (A.95)



Advances in Decision Sciences 33

Let Dn be a sequence of real numbers tending to 0 as n → ∞ and S = {i, j ∈ In,dist(i, j) ≤
Dn}. Then, ˜Rn ≤ ˜R1

n + ˜R
2
n, with

˜R1
n =
∑

i,j∈S

∣

∣

∣E˜Γi
(

x, y
)

˜Γj
(

x, y
)

∣

∣

∣, ˜R2
n =
∑

i,j∈Sc

∣

∣

∣E˜Γi
(

x, y
)

˜Γj
(

x, y
)

∣

∣

∣, (A.96)

where Sc stands for the complement of S. Now,

˜R1
n =

1

n̂2h2d1

∑

i,j∈S

∣

∣

∣

∣

∫

R2d+2
K1

(

x − u1
h1

)

K2

(

y − v1
h2

)

K1

(

x − u2
h2

)

×K2

(

y − v2
h2

)

fZi,Zj(u1, v1, u2, v2)du1 dv1 du2 dv2

−
∫
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K1

(

x − u1
h1

)

K2

(

y − v1
h2

)

fX,Y (u1, v1)du1dv1

×
∫

Rd+1
K1

(

x − u2
h1

)

K2

(

y − v2
h2

)

fX,Y (u2, v2)du2dv2

∣

∣

∣

∣

≤ 1

n̂2h2d1

∑

i,j∈S

∣

∣

∣

∣

∫

R2d
K1

(

x − u1
h1

)

K1

(

x − u2
h1

)

×
∫

R2

[

fZi,Zj(u1, v1, u2, v2) − fX,Y (u1, v1)fX,Y (u2, v2)
]

dv1 dv2

∣

∣

∣

∣

du1 du2

≤ 1

n̂2h2d1

∑

i, j∈S

∫

R2d

(

K1

(

x − u1
h

)

K1

(

x − u2
h1

))

×
∣

∣

∣fXi,Xj(u1, u2) − fX(u1)fX(u2)
∣

∣

∣du1du2.

(A.97)

UnderH3 and (3.8), we get

n̂hd1 ˜R
1
n ≤ C

(∫

Rd

|K1(u)|du
)2

n̂−1hd1
∑

i,j∈S0

1 ≤ Cn̂−1hd1D
N
n n̂ = Chd1D

N
n . (A.98)

Now, using (A.95), one can write

n̂hd1 ˜R
2
n = Cn̂−1h−d1

∑

i,j∈Sc

{

ϕ(‖i − j‖)} ≤ Ch−d1
∑

‖i‖>Dn

{

ϕ(‖i‖)}

≤ Ch−d1 D−N
n

∑

‖i‖>Dn

‖i‖N−θ.
(A.99)

As θ > N + 1, the choice Dn = h−d/N1 gives the desired result. This ends the proof.
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