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Exploiting an expansion for analytic functions of operators, the asymptotic distribution of an es-
timator of the functional regression parameter is obtained in a rather simple way; the result is ap-
plied to testing linear hypotheses. The expansion is also used to obtain a quick proof for the asymp-
totic optimality of a functional classification rule, given Gaussian populations.

1. Introduction

Certain functions of the covariance operator (such as the square root of a regularized inverse)
are important components of many statistics employed for functional data analysis. If Σ is a
covariances operator on a Hilbert space, ̂Σ a sample analogue of this operator, and ϕ a func-
tion on the complex plane, which is analytic on a domain containing a contour around the
spectrum of Σ, a tool of generic importance is the comparison of ϕ(̂Σ) and ϕ(Σ) by means of
a Taylor expansion:

ϕ
(

̂Σ
)

= ϕ(Σ) + ϕ̇Σ

(

̂Σ − Σ
)

+ remainder. (1.1)

(It should be noted that ϕ̇Σ is not in general equal to ϕ′(Σ), where ϕ′ is the numerical deriv-
ative of ϕ; see also Section 3.) In this paper, two further applications of the approximation in
(1.1) will be given, both related to functional regression.

The first application (Section 4) concerns the functional regression estimator itself.
Hall and Horowitz [1] have shown that the IMSE of their estimator, based on a Tikhonov
type regularized inverse, is rate optimal. In this paper, as a complementary result, the general
asymptotic distribution is obtained, with potential application to testing linear hypotheses of
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arbitrary finite dimension, mentioned in Cardot et al. [2] as an open problem: these authors
concentrate on testing a simple null hypotheses. Cardot et al. [3] establish convergence in
probability and almost sure convergence of their estimator which is based on spectral cutoff
regularization of the inverse of the sample covariance operator. In the present paper, the
covariance structure of the Gaussian limit will be completely specified. The proof turns out to
be routine thanks to a “delta-method” for ϕ(̂Σ)−ϕ(Σ), which is almost immediate from (1.1).

The second application (Section 5) concerns functional classification, according to a
slight modification of a method by Hastie et al. [4], exploiting penalized functional regres-
sion. It will be shown that this method is asymptotically optimal (Bayes) when the two
populations are represented by equivalent Gaussian distributions with the same covariance
operator. The simple proof is based on an upper bound for the norm of ϕ(̂Σ) − ϕ(Σ), which
follows at once from (1.1).

Let us conclude this section with some comments and further references. The expan-
sion in (1.1) can be found in Gilliam et al. [5], and the ensuing delta method is derived and
applied to regularized canonical correlation in Cupidon et al. [6]. For functional canonical
correlation see also Eubank and Hsing [7], He et al. [8], and Leurgans et al. [9]. When the
perturbation (̂Σ − Σ in the present case) commutes with Σ the expansion (1.1) can already be
found in Dunford & Schwartz [10, Chapter VII], and the derivative does indeed reduce to the
numerical derivative. This condition is fulfilled only in very special cases, for instance, when
the random function, whose covariance operator is Σ, is a second order stationary process on
the unit interval. In this situation, the eigenfunctions are known and only the eigenvalues
are to be estimated. This special case, that will not be considered here, is discussed in
Johannes [11] who in particular deals with regression function estimators and their IMSE is
Sobolev norms, when the regression is such a stationary process. General information about
functional data analysis can be found in the monographs by Ramsay and Sliverman [12] and
Ferraty and Vieu [13]. Functional time series are considered in Bosq [14]; see also Mas [15].

2. Preliminaries and Introduction of the Models

2.1. Preliminaries

As will be seen in the examples below, it is expedient to consider functional data as elements
in an abstract Hilbert space H of infinite dimension, separable, and over the real numbers.
Inner product and norm in H will be denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let (Ω,F,P) be a
probability space, X : Ω → H a Hilbert space valued random variable (i.e., measurable with
respect to the σ-field of Borel sets BH in H), and η : Ω → R a real valued random variable.
For all that follows it will be sufficient to assume that

E‖X‖4 < ∞, Eη2 < ∞. (2.1)

The mean and covariance operator of X will be denoted by

EX = μX, E
(

X − μX

) ⊗ (X − μX

)

= ΣX,X, (2.2)



Advances in Decision Sciences 3

respectively, where a ⊗ b is the tensor product in H. The Riesz representation theorem guar-
antees that these quantities are uniquely determined by the relations

E〈a,X〉 =
〈

a, μX

〉

, ∀a ∈ H,

E
〈

a,X − μX

〉〈

X − μX, b
〉

= 〈a,ΣX,Xb〉, ∀a ∈ H ∀b ∈ H,
(2.3)

see Laha & Rohatgi [16]. Throughout ΣX,X is assumed to be one-to-one.
Let L denote the Banach space of all bounded linear operators T : H → H equipped

with the norm ‖ · ‖L. An operator U ∈ L is called Hilbert-Schmidt if

∞
∑

k=1

‖Uek‖2 < ∞, (2.4)

for any orthonormal basis e1, e2, . . . of H. (The number in (2.4) is in fact independent of the
choice of basis.) The subspace LHS ⊂ L of all Hilbert-Schmidt operators is a Hilbert space in
its own right with the inner product

〈U,V 〉HS =
∞
∑

k=1

〈Uek, V ek〉, (2.5)

again independent of the choice of basis. This inner product yields the norm

‖U‖2HS =
∞
∑

k=1

‖Uek‖2, (2.6)

which is the number in (2.4). The tensor product for elements a, b ∈ H will be denoted by
a ⊗ b, and that for elements U,V ∈ LHS by U⊗HSV .

The two problems to be considered in this paper both deal with cases where the best
linear predictor of η in terms of X is linear:

E
(

η | X) = α +
〈

X, f
〉

, α ∈ R, f ∈ H. (2.7)

Just as in the univariate case (Rao [17, Section 4g]), we have the relation

ΣX,Xf = E
(

η − μη

)(

X − ηX
)

= ΣX,η. (2.8)

It should be noted that if ΣX,X is one-to-one and ΣX,η in its range, we can solve (2.8) and
obtain

f = Σ−1
X,X ΣX,η. (2.9)

Since the underlying distribution is arbitrary, the empirical distribution, given a sam-
ple (X1, η1), . . . , (Xn, ηn) of independent copies of (X, η), can be substituted for it. The
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minimization property is now the least squares property, the same formulas are obtained
with μX , ΣX,X , μη, and ΣX,η replaced with their estimators

μ̂X =
1
n

n
∑

i=1

Xi = X, (2.10)

̂ΣX,X =
1
n

n
∑

i=1

(

Xi −X
)

⊗
(

Xi −X
)

, (2.11)

μ̂η =
1
n

n
∑

i=1

ηi = η, (2.12)

̂ΣX,η =
1
n

n
∑

i=1

(

ηi − η
) ×

(

Xi −X
)

. (2.13)

Let us next specify the two problems.

2.2. Functional Regression Estimation

The model here is

η = α +
〈

X, f
〉

+ ε, (2.14)

where ε is a real valued error variable and the following assumption is satisfied.

Assumption 2.1. The error variable has a finite second moment, and

ε ⊥⊥ X, Eε = 0, Var ε = v2 < ∞. (2.15)

Example 2.2. The functional regression model in Hall and Horowitz [1] is essentially obtained
by choosing H = L2(0, 1), so that the generic observation is given by

η = α +
∫1

0
X(t)f(t) dt + ε. (2.16)

Example 2.3. Mas and Pumo [18] argue that in the situation of Example 2.2, the derivative
X′ of X may contain important information and should therefore be included. Hence, these
authors suggest to choose for H the Sobolev space W2,1(0, 1) in which case the generic
observation satisfies

η = α +
∫1

0
X(t)f(t)dt +

∫1

0
X′(t)f ′(t)dt + ε. (2.17)

Example 2.4. Just as in the univariate case, we have that the model

η = α +
〈

X, f
〉2 + ε, (2.18)
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quadratic in the inner product of H, is in fact linear in the inner product of LHS, because

〈X, f〉2 = 〈X ⊗X, f ⊗ f
〉

HS. (2.19)

We will not pursue this example here.

In the infinite dimensional case ̂ΣX,X cannot be one-to-one, and in order to estimate f
from the sample version of (2.9), a regularized inverse of Tikhonov type will be used, as in
Hall & Horowitz [1]. Thus, we arrive at the estimator (see also (2.11) and (2.13))

̂fδ =
(

δI + ̂ΣX,X

)−1
(

1
n

n
∑

i=1

ηi
(

Xi −X
)

)

=
(

δI + ̂ΣX,X

)−1
̂ΣX,η, for some δ > 0.

(2.20)

Let us also introduce

fδ = (δI + Σ)−1Σf, f ∈ H. (2.21)

In Section 4, the asymptotic distribution of this estimator will be obtained, and the result will
be applied to testing.

2.3. Functional Classification

The method discussed here is essentially the one in Hastie et al. [4] and Hastie et al. [19,
Sections 4.2 and 4.3]. Let P1 and P2 be two probability distributions on (H,BH) with means
μ1 and μ2 and common covariance operator Σ. Consider a random element (I, X) : Ω →
{1, 2} × H with distribution determined by

P
{

X ∈ B | I = j
}

= Pj(B), B ∈ BH,

P
{

I = j
}

= πj ≥ 0, π1 + π2 = 1.
(2.22)

In this case, the distribution of X is π1P1 + π2P2, with mean

μX = π1μ1 + π2μ2, (2.23)

and covariance operator

ΣX,X = Σ + π1π2
(

μ1 − μ2
) ⊗ (μ1 − μ2

)

. (2.24)
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Hastie et al. [19] now introduce the indicator response variables ηj = 1{j}(I), j = 1, 2,
and assume that the ηj satisfies (2.7) for αj ∈ R and fj ∈ H. Note that

μηj = Eηj = πj, (2.25)

ΣX,ηj = Eηj
(

X − μX

)

=

⎧

⎨

⎩

π1π2
(

μ1 − μ2
)

, j = 1,

π1π2
(

μ2 − μ1
)

, j = 2.
(2.26)

Since ηj is Bernoulli, we have, of course, E(ηj | X) = P{I = j | X}. Precisely as for matrices
(Rao & Toutenburg [20, Theorem A.18]), the inverse of the operator in (2.24) equals

Σ−1
X,X = Σ−1 − γ · Σ−1((μ1 − μ2

) ⊗ (μ1 − μ2
))

Σ−1, (2.27)

where γ = π1π2/(1 + π1π2〈μ1 − μ2,Σ−1(μ1 − μ2)〉), provided that the following assumption is
satisfied.

Assumption 2.5. The vector μ1 − μ2 lies in the range of Σ, that is,

Σ−1(μ1 − μ2
)

is well defined. (2.28)

It will also be assumed that

π1 = π2 =
1
2
. (2.29)

Assuming (2.28), (2.8) can be solved and yields after some algebra

fj = Σ−1
X,XΣX,ηj =

⎧

⎨

⎩

γΣ−1(μ1 − μ2
)

, j = 1,

γΣ−1(μ2 − μ1
)

, j = 2.
(2.30)

If only X, and not I, is observed, the rule in Hastie et al. [19] assigns X to P1 if and only if

E
(

η1 | X
)

> E
(

η2 | X
)

,

⇐⇒ (2.31)

〈

X − μX,Σ−1(μ1 − μ2
)

〉

>
(π2 − π1)

2γ
. (2.32)

Because of assumption (2.29), the rule reduces to

〈

X − 1
2
(

μ1 + μ2
)

,Σ−1(μ1 − μ2
)

〉

> 0. (2.33)
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Hastie et al. [19] claim that in the finite dimensional case, their rule reduces to Fisher’s
linear discriminant rule and to the usual rule when the distributions are normal. This remains
in fact true in the present infinite dimensional case. Let us assume that

Pj = G(μj,Σ
)

, j = 1, 2, (2.34)

where G(μ,Σ) denotes a Gaussian distribution with mean μ and covariance operator Σ. It is
well known [21–23] that under Assumption 2.5 these Gaussian distributions are equivalent.
This is important since there is no “Lebesguemeasure” onH [24]. However, now the densities
of P1 and P2 with respect to P1 can be considered; it is well known that

dP1

dP2
(x) = e−〈x−(1/2)(μ1+μ2),Σ−1(μ1−μ2)〉, x ∈ H. (2.35)

This leads at once to (2.33) as an optimal (Bayes) rule, equal in appearance to the one for the
finite dimensional case.

In most practical situations, μ1, μ2, and Σ are not known, but a training sample
(I1, X1), . . . , (In, Xn) of independent copies of (I, X) is given. Let

Xj =
1
nj

∑

j∈Jj

Xi, Jj =
{

i : Ii = j
}

, #Jj = nj, (2.36)

̂Σ =
1
n

2
∑

j=1

∑

i∈Jj

(

Xi −Xj

)

⊗
(

Xi −Xj

)

, (2.37)

and we have (cf. (2.24))

̂ΣX,X = ̂Σ +
n1n2

n

(

X1 −X2

)

⊗
(

X1 −X2

)

. (2.38)

Once again the operator ̂Σ (and ̂ΣX,X for that matter) cannot be one-to-one. In order to
obtain an empirical analogue of the rule (2.32), Hastie et al. [4] employ penalized regression,
and Hastie et al. [19] also suggest to use a regularized inverse. (The methods are related.)
Here the latter method will be used and X will be assigned to P1 if and only if

〈

X − 1
2

(

X1 +X2

)

,
(

δI + ̂Σ
)−1(

X1 −X2

)

〉

> 0. (2.39)

Section 5 is devoted to showing that this rule is asymptotically optimal when Assumption
(2.5) is fulfilled.

3. A Review of Some Relevant Operator Theory

It is well known [16] that the covariance operator Σ is nonnegative, Hermitian, of finite trace,
and hence Hilbert-Schmidt and therefore compact. The assumption that Σ is one-to-one is
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−δ
Ω

Γ

i

−i
D

0 σ2
1 + 1σ2

1−(1/2)δ

Figure 1

equivalent to assuming that Σ is strictly positive. Consequently, Σ has eigenvalues σ2
1 > σ2

2 >
· · · ↓ 0, all of finite multiplicity. If we let P1, P2, . . . be the corresponding eigenprojections, so
that ΣPk = σ2

k
Pk, we have the spectral representation:

Σ =
∞
∑

k=1

σ2
kPk, with

∞
∑

k=1

Pk = I. (3.1)

The spectrum ofΣ equals σ(Σ) = {0, σ2
1 , σ

2
2 , . . .} ⊂ [0, σ2

1]. Let us introduce a rectangular
contour Γ around the spectrum as in Figure 1, where δ > 0 is the regularization parameter in
(2.20), and let Ω be the open region enclosed by Γ. Furthermore, let D ⊃ (Ω ∪ Γ) = Ω be an
open neighborhood of Ω and suppose that

ϕ : D −→ C is analytic. (3.2)

We are interested in approximations of ϕ(˜Σ) = ϕ(Σ+Π), whereΠ ∈ L is a perturbation.
The application we have in mind arises for Π = ̂Π = ̂Σ − Σ and yields an approximation of
ϕ(̂Σ); see also Watson [25] for the matrix case. Therefore, we will not in general assume that
Π and Σ will commute. In the special case where X is stationary, as considered in Johannes
[11], there exists a simpler estimator Σ of Σ, such that Σ andΠ do commute, which results in
a simpler theory; see also Remark (4.1).

The resolvent of Σ,

R(z) = (zI − Σ)−1, z ∈ ρ(Σ) = [σ(Σ)]c, (3.3)

is analytic on the resolvent set ρ(Σ), and the operator

ϕ(Σ) =
1

2πi

∮

Γ
ϕ(z)R(z)dz (3.4)
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is well defined. For the present operator Σ, as given in (3.1), the resolvent equals more explic-
itly

R(z) =
∞
∑

k=1

1
z − σ2

k

Pk. (3.5)

Substitution of (3.5) in (3.4) and application of the Cauchy integral formula yields

ϕ(Σ) =
∞
∑

k=1

ϕ
(

σ2
k

)

Pk. (3.6)

Example 3.1. The two functions

ϕ1(z) =
1

δ + z
, ϕ2(z) =

z

δ + z
, z ∈ C \ {−δ}, (3.7)

are analytic on their domain that satisfies the conditions. With the help of these functions we
may write (cf. (2.20) and (2.21))

̂fδ − fδ =
(

ϕ1(Σ)
)

(

1
n

n
∑

i=1

εi
(

Xi −X
)

)

+
(

ϕ2

(

̂Σ
)

− ϕ2(Σ)
)

f, f ∈ H, (3.8)

and (cf. (2.39))

(

δI + ̂Σ
)−1(

X1 −X2

)

= ϕ1

(

̂Σ
)(

X1 −X2

)

. (3.9)

Regarding the following brief summary and slight extension of some of the results in
[5], we also refer to Dunford & Schwartz [10], Kato [26], and Watson [25]. Henceforth, we
will assume that

‖Π‖L ≤ δ

4
. (3.10)

For such perturbations, we have σ(˜Σ) = σ(Σ + Π) ⊂ Ω, so that the resolvent set of ˜Σ satisfies

ρ
(

˜Σ
)

= ρ(Σ + Π) ⊃ Ωc ⊃ Γ. (3.11)

It should also be noted that

‖R(z)‖L = sup
k∈N

1
∣

∣z − σ2
k

∣

∣

≤ 2
δ

∀z ∈ Ωc. (3.12)
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The basic expansion (similar to Watson [25])

˜R(z) =
(

zI − ˜Σ
)−1

= R(z) +
∞
∑

k=1

R(z)(ΠR(z))k, z ∈ Ωc, (3.13)

can be written as

˜R(z) = R(z) + R(z)ΠR(z)(I −ΠR(z))−1, (3.14)

useful for analyzing the error probability for δ → 0, as n → ∞, and also as

˜R(z) = R(z) + R(z)ΠR(z) + R(z)(ΠR(z))2(I −ΠR(z))−1, (3.15)

useful for analyzing the convergence in distribution of the estimators.
Let us decompose the contour Γ into two parts Γ0 = {−(1/2)δ + iy : −1 ≤ y ≤ 1} and

Γ1 = Γ \ Γ0, write Mϕ = maxz∈Γ|ϕ(z)|, and observe that (3.10) and (3.12) entail that

∥

∥

∥(I −ΠR(z))−1
∥

∥

∥

L
≤ 2, z ∈ Ωc. (3.16)

We now have

∥

∥

∥

∥

1
2πi

∮

Γ
ϕ(z)R(z)(ΠR(z))k(I −ΠR(z))−1dz

∥

∥

∥

∥

L

≤ 1
π
Mϕ‖Π‖kL

∮

Γ
‖R(z)‖k+1L dz

≤ 1
π
Mϕ‖Π‖kL

{

∫+1

−1

(

1
4
δ2 + y2

)−(1/2)(k+1)
dy +

∣

∣

∣

∣

∣

∫

Γ1
1dz

∣

∣

∣

∣

∣

}

≤ 2
π
Mϕ‖Π‖kL

{

(

4
δ

)k

+ 5 + 2‖Σ‖L
}

, k ∈ N.

(3.17)

Multiplying both sides by ϕ(z), taking (1/2πi)
∮

Γ, and using 0 < C < ∞ as a generic constant
that does not depend on Π or δ, (3.14) and (3.15) yield the following.

Theorem 3.2. Provided that (3.10) is fulfilled, one has

∥

∥ϕ(Σ + Π) − ϕ(Σ)
∥

∥

L ≤ CMϕ
‖Π‖L
δ

, (3.18)

∥

∥ϕ(Σ + Π) − ϕ(Σ) − ϕ̇ΣΠ
∥

∥

L ≤ CMϕ

(‖Π‖L
δ

)2

, (3.19)
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where ϕ̇Σ : L → L is a bounded operator, given by

ϕ̇ΣΠ =
∑

k

ϕ′
(

σ2
k

)

PkΠPk +
∑∑

j /= k

ϕ
(

σ2
k

) − ϕ
(

σ2
j

)

σ2
k
− σ2

j

PjΠPk. (3.20)

Remark 3.3. If Σ and Π commute, so will Pk and Π, and R(z) and Π, and the expressions
simplify considerably. In particular, (3.20) reduces to

ϕ̇ΣΠ =

(

∑

k

ϕ′
(

σ2
k

)

Pk

)

Π, (3.21)

that is, ϕ̇Σ = ϕ′(Σ), where ϕ′ is the numerical derivative of ϕ, and ϕ′(Σ) should be understood
in the sense of “functional calculus” as in (3.6). For the commuting case, see Dunford &
Schwartz [10].

Let us now present some basic facts that are useful to subsequent statistical appli-
cations. Dauxois et al. [27] have shown that there exists a Gaussian random element GΣ :
Ω → LHS, such that

√
n(̂Σ−Σ) d→ GΣ, as n → ∞, inLHS. Because the identity map fromLHS

in L is continuous, we may state

√
n
(

̂Σ − Σ
)

d−→ GΣ, as n −→ ∞, in LHS =⇒ in L, (3.22)

by the continuous mapping theorem. This entails that

∥

∥

∥

̂Π
∥

∥

∥

L
=
∥

∥

∥

̂Σ − Σ
∥

∥

∥

L
= Op

(

1√
n

)

, as n −→ ∞, (3.23)

so that condition (3.10) is fulfilled with arbitrary high probability for n sufficiently large.
Expansions (3.14) and (3.15) and the resulting inequalities hold true for ˜Σ replaced with
̂Σ(ω) = Σ + ̂Π(ω) for ω ∈ {‖ ̂Π‖L ≤ δ/4}.

Example 3.4. Application to asymptotic distribution theory. In this application δ > 0 will be
kept fixed: see also Section 4.1. It is based on the delta method for functions of operators [6]
which follows easily from (3.19). In conjunction with (3.22) this yields

√
n
(

ϕ2

(

̂Σ
)

− ϕ2(Σ)
)

d−→ ϕ̇2,ΣGΣ, as n −→ ∞, in L. (3.24)

In turn this yields

√
n
(

ϕ2

(

̂Σ
)

− ϕ2(Σ)
)

f
d−→ (

ϕ̇2,ΣGΣ
)

f, as n −→ ∞, in H, (3.25)

for any f ∈ H, by the continuous mapping theorem. This result will be used in Section 4.



12 Advances in Decision Sciences

Example 3.5. Application to classification. Here we will let δ = δ(n) ↓ 0, as n → ∞, and write
ϕ1,n(z) = 1/(δ(n) + z) to stress this dependence on sample sizes. Since

max
z∈Γ

∣

∣ϕ1,n(z)
∣

∣ ≤ 1
δ(n)

, (3.26)

it is immediate from (3.18) that

∥

∥

∥ϕ1,n(̂Σ) − ϕ1,n(Σ))
∥

∥

∥

L
= Op

(

1
δ2(n)

√
n

)

, as n −→ ∞, (3.27)

a result that will be used in Section 5.

4. Asymptotics for the Regression Estimator

4.1. The Asymptotic Distribution

The central limit theorem in Hilbert spaces entails at once

1√
n

n
∑

i=1

εi
(

Xi − μ
) d−→ G0, as n −→ ∞, in H, (4.1)

where G0 is a zero mean Gaussian random variable in H, and

1√
n

n
∑

i=1

{(

Xi − μ
) ⊗ (Xi − μ

) − Σ
} d−→ GΣ, as n −→ ∞, in LHS, (4.2)

where GΣ is a zero mean random variable inLHS. These convergence results remain true with
μ replaced by X and, because ε ⊥⊥ X by assumption (2.15), we also have that jointly

⎡

⎢

⎢

⎣

1√
n

n
∑

i=1

εi
(

Xi −X
)

√
n
(

̂Σ − Σ
)

⎤

⎥

⎥

⎦

d−→
[G0

GΣ

]

, as n −→ ∞, in H × LHS, (4.3)

where GΣ is the same in (3.22), and

G0 ⊥⊥ GΣ. (4.4)
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Because the limiting variables are generated by the sums of iid variables on the left in
(4.1) and (4.2) we have

EG0 ⊗ G0 = E
{

ε
(

X − μ
)} ⊗ {ε(X − μ

)}

=
(

Eε2
)

E
(

X − μ
) ⊗ (X − μ

)

= v2Σ,

(4.5)

EGΣ⊗HSGΣ = E
{(

X − μ
) ⊗ (X − μ

) − Σ
}⊗HS

{(

X − μ
) ⊗ (X − μ

) − Σ
}

, (4.6)

for the respective covariance structures. These are important to further specify the limiting
distribution of the regression estimator as will be seen in Section 4.2.

Let us write, for brevity,

̂fδ − fδ = Un + Vn, (4.7)

where, according to (2.20) and (2.21),

Un =
(

ϕ1

(

̂Σ
))

(

1
n

n
∑

i=1

εi
(

Xi −X
)

)

,

Vn =
(

ϕ2

(

̂Σ
)

− ϕ2(Σ)
)

f.

(4.8)

Note that ϕ1 and ϕ2 depend on δ.
With statistical applications in mind, it would be interesting if there would exist num-

bers an ↑ ∞ and δ(n) ↓ 0, as n → ∞, such that

an

(

̂fδ(n) − f
)

d−→ H, as n −→ ∞, in H, (4.9)

whereH is a nondegenerate random vector. It has been shown in Cardot et al. [28], however,
that such a convergence in distribution when we center at f is not in general possible.

Theorem 4.1. For fixed δ > 0, one has

√
n
(

̂fδ − fδ
)

d−→ H = H1 +H2, as n −→ ∞, in H, (4.10)

whereH1 = ϕ1(Σ)G0 andH2 = (ϕ̇2,ΣGΣ)f are zero mean Gaussian random elements, andH1 ⊥⊥ H2.

Further information about the structure of the covariance operator of the random
vector H on the right in (4.10) will be needed in order to be able to exploit the theorem
for statistical inference. This will be addressed in the next section.
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4.2. Further Specification of the Limiting Distribution

It follows from (4.5) that G0 has a Karhunen-Loève expansion

G0 =
∞
∑

i=1

vσjZjpj , (4.11)

where the real valued random variables

Zj

(

j ∈ N
)

are iid N(0, 1). (4.12)

Accordingly H1 in (4.10) can be further specified as

H1 = ϕ1(Σ)G0 = v
∞
∑

j=1

σj

δ + σ2
j

Zjpj . (4.13)

The Gaussian operator in (4.2) has been investigated in Dauxois et al. [27], and here we
will briefly summarize some of their results in our notation. By evaluating the inner product
in LHS in the basis p1, p2 . . . it follows from (4.6) that

E
〈

pj ⊗ pk,GΣ
〉

HS

〈GΣ, pα ⊗ pβ
〉

HS

= E

〈

pj ,
〈

X − μ, pk
〉(

X − μ
) − σ2

kpk
〉

×
〈

pα,
〈

X − μ, pβ
〉(

X − μ
) − σ2

βpβ
〉

= E
〈

X − μ, pj
〉〈

X − μ, pk
〉〈

X − μ, pα
〉〈

X − μ, pβ
〉 − δj,kδα,βσ

2
kσ

2
β.

(4.14)

This last expression does not in general further simplify. However, if we assume that
the regressor X satisfies

X
d= Gaussian

(

μ,Σ
)

, (4.15)

it can be easily seen that the

〈

X − μ, pj
〉 d= N

(

0, σ2
j

)

are independent, (4.16)

so that the expression in (4.14) equals zero if (j, k)/= (α, β). As in Dauxois et al. [27], we obtain
in this case

E
〈

pj ⊗ pk,GΣ
〉

HS

〈GΣ, pα ⊗ pβ
〉

HS =

{

0,
(

j, k
)

/=
(

α, β
)

,

v2
j,k,

(

j, k
)

=
(

α, β
)

,
(4.17)

where

v2
j,k =

{

2σ4
j , j = k,

σ2
j · σ2

k, j /= k.
(4.18)
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Consequently the pj ⊗pk (j ∈ N, k ∈ N) are an orthonormal basis of eigenvectors of the
covariance operator ofGΣ with eigenvalues v2

j,k
. HenceGΣ has the Karhunen-Loève expansion

(in LHS)

GΣ =
∞
∑

j=1

∞
∑

k=1

vj,kZj,kpj ⊗ pk, (4.19)

where the random variables

Zj,k

(

j ∈ N, k ∈ N
)

are iid N(0, 1). (4.20)

Let us, for brevity, write (see (3.7) for ϕ2)

wj,k =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ϕ2
(

σ2
k

) − ϕ2

(

σ2
j

)

σ2
k
− σ2

j

, j /= k

ϕ′
2

(

σ2
j

)

, j = k

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

=
δ

(

δ + σ2
j

)

(

δ + σ2
k

)

, ∀j, k ∈ N, (4.21)

H2 =
(

ϕ̇2,Σ G)f

=
∞
∑

j=1

∞
∑

k=1

wj,kPjGΣPkf

=
∞
∑

j=1

∞
∑

k=1

wj,kPj

⎛

⎝

∞
∑

α=1

∞
∑

β=1

vα,βZα,βpα ⊗ pβ

⎞

⎠Pkf

=
∞
∑

j=1

∞
∑

k=1

wj,kvj,kZj,k〈f, pk〉pj .

(4.22)

Summarizing, we have the following result.

Theorem 4.2. The random element H1, on the right in (4.10) can be represented by (4.13). If one

assumes that the regressor X d= Gaussian(μ,Σ), the random element H2 on the right in (4.10) can be
represented by (4.22), where the Zj,k in (4.20) are stochastically independent of the Zj in (4.12).

4.3. Asymptotics under the Null Hypothesis

Let us recall that fδ is related to f according to (2.21) so that the equivalence

H0 : fδ = 0 ⇐⇒ f = 0, (4.23)

where again δ > 0 is fixed, holds true. The following is immediate from Theorem 4.1.
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Theorem 4.3. Under the null hypothesis in (4.23), one has

n
∥

∥

∥

̂fδ
∥

∥

∥

2 d−→ ‖H‖2 = ‖H1‖2, as n −→ ∞, (4.24)

where

‖H1‖2 d= v2
∞
∑

j=1

σ2
j

(

δ + σ2
j

)2
Z2

j . (4.25)

An immediate generalization of the hypothesis in (4.23) is

H0 : fδ = fδ,0 =
(

ϕ2(Σ)
)

f0 ⇐⇒ f = f0, (4.26)

for some given f0 ∈ H. This hypothesis is in principle of interest for confidence sets. Of course,
testing (4.26) can be reduced to testing (4.23) by replacing the ηi with

η′
i = ηi −

〈

Xi, fδ,0
〉

= α +
〈

Xi, f − fδ,0
〉

+ εi, (4.27)

and then using the estimator

̂f ′
δ =

(

δI + ̂Σ
)−1
(

1
n

n
∑

i=1

η′
i

(

Xi −X
)

)

. (4.28)

Since f − fδ,0 = 0 the following is immediate.

Theorem 4.4. Assuming (4.27), one has

n
∥

∥

∥

̂f ′
δ

∥

∥

∥

2 d−→ ‖H1‖2, as n −→ ∞, (4.29)

where ‖H1‖2 has the same distribution as in (4.25). Related results can be found in Cardot et al. [2].

Another generalization of the hypothesis in (4.23) is

H0 : fδ ∈ M =
[

q1, . . . , qM
]

, (4.30)

where q1, . . . , qM are orthonormal vectors inH. LetQ andQ⊥ denote the orthogonal projection
onto M and M

⊥ respectively, and note that fδ ∈ M if and only if ‖Q⊥fδ‖ = 0. A test statistic
might be based on ‖Q⊥

̂fδ‖2 and we have the following.

Theorem 4.5. Under H0 in (4.30), one has

n
∥

∥

∥Q⊥
̂fδ
∥

∥

∥

2 d−→
∥

∥

∥Q⊥H
∥

∥

∥

2
, as n −→ ∞. (4.31)
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The distribution on the right in (4.31) is rather complicated if q1, . . . , qM remain arbi-
trary. But if we are willing to assume (4.20), it follows from (4.27) that

∥

∥

∥Q⊥H
∥

∥

∥

2
=
∥

∥

∥Q⊥H1

∥

∥

∥

2
+
∥

∥

∥Q⊥H2

∥

∥

∥

2
+ 2
〈

Q⊥H1, Q
⊥H2

〉

= v2
∞
∑

j=1

∞
∑

k=1

σj

δ + σ2
j

σk

δ + σ2
k

ZjZk

〈

Q⊥pj ,Q⊥pk
〉

+
∞
∑

j=1

∞
∑

k=1

∞
∑

α=1

∞
∑

β=1

wj,kwα,βvj,kvα,βZj,kZα,β

〈

f, pk
〉〈

f, pβ
〉

〈

Q⊥pj ,Q⊥pα
〉

+ 2v
∞
∑

j=1

σj

δ + σ2
j

Zj

∞
∑

α=1

∞
∑

β=1

wα,βvα,βZα,β

〈

f, pβ
〉

〈

Q⊥pj ,Q⊥pα
〉

.

(4.32)

A simplification is possible if we are willing to modify the hypothesis in (4.30) and
use a so-called neighborhood hypothesis. This notion has a rather long history and has been
investigated by Hodges & Lehmann [29] for certain parametric models. Dette & Munk [30]
have rekindled the interest in it by an application in nonparametric regression. In the present
context we might replace (4.30)with the neighborhood hypothesis

H0,ε :
∥

∥

∥Q⊥fδ
∥

∥

∥

2 ≤ ε2, for some ε > 0. (4.33)

It is known from the literature that the advantage of using a neighborhood hypothesis is
not only that such a hypothesis might be more realistic and that the asymptotics are much
simpler, but also that without extra complication we might interchange null hypothesis and
alternative. This means in the current situation that we might as well test the null hypothesis

H ′
0,ε :

∥

∥

∥Q⊥fδ
∥

∥

∥

2 ≥ ε2, for some ε > 0, (4.34)

which could be more suitable, in particular in goodness-of-fit problems.
The functional g �→ ‖Q⊥g‖2, g ∈ H, has a Fréchet derivative at fδ given by the func-

tional g �→ 2〈g,Q⊥fδ〉, g ∈ H. Therefore, the delta method in conjunction with Theorem 4.1
entails the following result.

Theorem 4.6. One has

√
n

{

∥

∥

∥Q⊥
̂fδ
∥

∥

∥

2 −
∥

∥

∥Q⊥fδ
∥

∥

∥

2
}

d−→ 2
〈

H, Q⊥fδ
〉

, as n −→ ∞. (4.35)
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The limiting distribution on the right in (4.35) is normal with mean zero and com-
plicated variance

Δ2 = 4E
〈

H, Q⊥fδ
〉2

= 4
{

E

〈

H1, Q
⊥fδ
〉2

+ E

〈

H2, Q
⊥fδ
〉2
}

= 4v2
∞
∑

j=1

σ2
j

(

δ + σ2
j

)2

〈

pj ,Q
⊥fδ
〉2

+ 4E

〈 ∞
∑

j=1

∞
∑

k=1

wj,kPj

⎛

⎝

∞
∑

α=1

∞
∑

β=1

vα,βZα,βpα ⊗ pβ

⎞

⎠Pkf,Q
⊥fδ

〉
2

= 4v2
∞
∑

j=1

σ2
j

(

δ + σ2
j

)2

〈

pj ,Q
⊥fδ
〉2

+ 4
∞
∑

j=1

∞
∑

k=1

w2
j,kv

2
j,k

〈

f, pk
〉2
〈

pj ,Q
⊥fδ
〉2

.

(4.36)

Remark 4.7. As we see from the expressions in (4.24), (4.32), and (4.36), the limiting distribu-
tions depend on infinitelymany parameters that must be suitably estimated in order to be in a
position to use the statistics for actual testing. Estimators for the individual parameters are not
too hard to obtain. The eigenvalues σ2

j and eigenvectors pj of Σ, for instance, can in principle

be estimated by the corresponding quantities of ̂Σ. Although in any practical situation only a
finite number of these parameters can be estimated, theoretically this number must increase
with the sample size and some kind of uniform consistency will be needed for a suitable
approximation of the limiting distribution. This interesting question of uniform consistency
seems to require quite some technicalities and will not be addressed in this paper.

Remark 4.8. In this paper we have dealt with the situation where Σ is entirely unknown. It has
been observed in Johannes [11] that ifX is a stationary process on the unit interval, the eigen-
functions pj of the covariance operator are always the same, known system of trigonometric
functions, and only its eigenvalues σ2

j are unknown. Knowing the pj leads to several simplifi-
cations. In the first place, Σ can now be estimated by the expression on the right in (3.1)with
only the σ2

k
replaced with estimators. If ˜Σ is this estimator, it is clear that Σ and ˜Π = ˜Σ − Σ

commute, so that the derivative ϕ̇2,Σ now simplifies considerably (see Remark 3.3). Secondly,
we might consider the special case of H0 in (4.30), where qj = pj , j = 1, . . . ,M. We now have

fδ ∈ M =
[

p1, . . . , pM
]⇐⇒ f ∈ M, (4.37)

so that even for fixed δwe can test the actual regression function. In the third place, under the
null hypothesis in (4.37), the number of unknown parameters in (4.32) reduces considerably
because nowQ⊥pj = 0 for j = 1, . . . ,M. When the pj are known, in addition to all the changes
mentioned above, also the limiting distribution of Σ differs from that of ̂Σ. Considering all
these modifications that are needed, it seems better not to include this important special case
in this paper.
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4.4. Asymptotics under Local Alternatives

Again we assume that X is Gaussian. Suppose that

f = fn = ˜f +
1√
n
g, for ˜f, g ∈ H. (4.38)

For such fn only minor changes in the asymptotics are required, because the conditions on
the Xi and εi are still the same and do not change with n. Let us write

fδ = fn,δ = ˜fδ +
1√
n
gδ, (4.39)

where ˜fδ = (δI + Σ)−1 ˜f , gδ = (δI + Σ)−1Σg. The following is immediate from a minor modi-
fication of Theorem 4.1.

Theorem 4.9. For fδ = fn,δ as in (4.39), one has

√
n
(

̂fδ − ˜fδ
)

d−→ gδ +H1 + ˜H2, (4.40)

where H1 = ϕ1(Σ)G0 is the same as in (4.13), ˜H2 is obtained from H2 in (4.22) by replacing f with
˜f , and H1 ⊥⊥ ˜H2.

By way of an example, let us apply this result to testing the neighborhood hypothesis
and consider the asymptotics of the test statistics in (4.35) under the local alternatives fn,δ in
(4.39)with

∥

∥

∥Q⊥
˜fδ
∥

∥

∥

2
= ε2, gδ ⊥ M,

〈

˜fδ, gδ
〉

> 0. (4.41)

Note that under such alternatives, ̂fδ(n) is still a consistent estimator of ˜f for any δ(n) ↓
0, as n → ∞, and so is ̂fδ for fδ. The following is immediate from Theorem 4.9. To conclude
this section, let us first assume that parameters can be suitably estimated. We then arrive
at the limiting distribution of a test statistics that allows the construction of an asymptotic
level-α test whose asymptotic power can be computed.

Theorem 4.10. For fδ = fn,δ, as in (4.40) and (4.41), one has

Tn =
√
n

̂Δ

(

∥

∥

∥Q⊥
̂fδ
∥

∥

∥

2 − ε2
)

d−→ N

⎛

⎜

⎝

2
〈

gδ,Q
⊥
˜fδ
〉

Δ
, 1

⎞

⎟

⎠, as n −→ ∞, (4.42)

assuming that ̂Δ is a consistent estimator ofΔ in (4.36). Note that the limiting distribution isN(0, 1)
under H0 (i.e., gδ = 0).
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5. Asymptotic Optimality of the Classification Rule

In addition to Assumption 2.5 and (2.34), it will be assumed that the smoothness parameter
δ = δ(n) in (2.39) satisfies

δ(n) −→ 0, δ(n) � n−1/4, as n −→ ∞. (5.1)

We will also assume that the sizes of the training samples n1 and n2 (see (2.36)) are deter-
ministic and satisfy (n = n1 + n2)

0 < lim
n→∞

inf
nj

n
≤ lim

n→∞
sup

nj

n
< 1. (5.2)

Let us recall from (3.7) that ϕ1(z) = ϕ1,n(z) = 1/{δ(n) + z}, z /= − δ(n).
Under these conditions the probability of misclassification equals P{〈X − (1/2)(X1 +

X2), ϕ1,n(̂Σ)(X1 −X2)〉 > 0 | X d= G(μ2,Σ)}. Let us note that
∣

∣

∣

∣

〈

X − 1
2

(

X1 +X2

)

, ϕ1,n

(

̂Σ
)(

X1 −X2

)

〉

−
〈

X − 1
2
(

μ1 + μ2
)

, ϕ1,n(Σ)
(

μ1 − μ2
)

〉∣

∣

∣

∣

≤ 1
2

{∥

∥

∥X1 − μ1

∥

∥

∥ +
∥

∥

∥X2 − μ2

∥

∥

∥

}

∥

∥ϕ1,n(Σ)
∥

∥

L
∥

∥μ1 − μ2
∥

∥

+
∥

∥

∥

∥

X − 1
2

(

X1 +X2

)

∥

∥

∥

∥

×
[∥

∥

∥ϕ1,n

(

̂Σ
)

− ϕ1,n(Σ)
∥

∥

∥

L

∥

∥

∥X1 −X2

∥

∥

∥

+
{∥

∥

∥X1 − μ1

∥

∥

∥ +
∥

∥

∥X2 − μ2

∥

∥

∥

}

∥

∥ϕ1,n(Σ)
∥

∥

L
]

.

(5.3)

Since ‖Xj − μj‖ = Op(n−1/2), ‖ϕ1,n(Σ)‖L = O(δ−1(n)), and, according to (3.21),

∥

∥

∥ϕ1,n

(

̂Σ
)

− ϕ1,n(Σ)
∥

∥

∥

L
= Op

(

1
δ2(n)

√
n

)

, (5.4)

it follows from (5.1) that the limit of the misclassification probability equals

lim
n→∞

P

{〈

X − μ2 − 1
2
(

μ1 − μ2
)

, ϕ1,n(Σ)
(

μ1 − μ2
)

〉

> 0
}

= 1 −Φ
(

1
2

〈

μ1 − μ2,Σ−1(μ1 − μ2
)

〉

)

,

(5.5)

where Φ is the standard normal cdf.
For (5.5) we have used the well-known property of regularized inverses that ‖(δ +

Σ)−1Σf −f‖ → 0, as δ → 0, for all f ∈ H, and the fact that we may choose f = Σ−1(μ1−μ2) by
Assumption 2.5. Since rule (2.33) is optimal when parameters are known, we have obtained
the following result.

Theorem 5.1. Let Pj
d= G(μj,Σ) and let Assumption 2.5 and (5.1) be satisfied. Then the classification

rule (2.39) is asymptotically optimal.
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