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Rough set theory uses the concept of upper and lower approximations to encapsulate inherent
inconsistency in real-world objects. Information multisystems are represented using multisets
instead of crisp sets. This paper begins with an overview of recent works on multisets and
rough sets. Rough multiset is introduced in terms of lower and upper approximations and
explores related properties. The paper concludes with an example of certain types of information
multisystems.

1. Introduction

The advance in science and technology has given rise to a wide range of problems, where
the objects under analysis are characterized by many diverse features (attributes), which
may be quantitative and qualitative. Furthermore, the same objects may exist in several
copies with different values of attributes, and their convolution is either impossible or
mathematically incorrect. Examples of such problems are the classification of multicriteria
alternatives estimated by several experts, the recognition of graphic symbols, text document
processing, and so on. A convenient mathematical model for representing multiattribute
objects is a multiset or a set with repeating elements. The most essential property of multisets
is the multiplicity of the elements that allows us to distinguish it from a set and consider it as
a qualitatively new mathematical concept.

Huge chunks of information are acquired and stored every day in computer systems
for various global applications. It is hard to imagine a computer application that does not
interface with a database or one that does not dumpmegabytes of information into a database
every day. Information is constantly generated by a variety of basic day-to-day applications.
The information that is being acquired is growing exponentially every minute. It gives rise to
incomplete, uncertain, or vague information. Extracting useful information from such huge
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chunks of information is a difficult task. The convenient and effective tools to make this
process easier are the theories of rough sets.

In any information system, some situations may occur, where the respective counts of
objects in the universe of discourse are not single. In such situations we have to deal with
collections of information in which duplicates are significant. In such cases multisets play an
important role in processing the information. The information system dealing with multisets
is said to be an information multisystem. Thus, information multisystems are more compact
when compared to the original information system.

The authors have given a new dimension to Pawlak’s rough set theory, replacing its
universe by multisets. This is called a rough multiset and is a useful structure in modelling
information multisystem. The process involved in the intermediate stages of reactions in
chemical systems is a typical example of a situation which gives rise to multiset relations.
Information multisystem is represented using rough multisets and is more convenient than
ordinary rough sets. An illustrative example supporting this claim is provided in Section 4.

Rough multisets are defined in terms of lower mset approximation and upper mset
approximation with the help of equivalence mset relations introduced by the authors in
[1]. Grzymala-Busse introduced the concept of rough multisets using multirelations in [2].
A multirelation is a relation connecting two objects in which a pair is repeated more than
once. But a multiset relation according to the authors is in entirely different concept when
compared to the concept multirelation introduced by Grzymala-Busse. Multiset relation is
a relation connecting two objects in which each object and the pair are repeated more than
once; that is, in a multirelation “x is related to y” with the pair (x, y) repeated more than
once, but in the case of a multiset relation “x repeated m times” is related to “y repeated n
times” (i.e.,m/x is related to n/y)with the pair (m/x, n/y) repeated more than once. Thus,
a multirelation is a relation connecting the elements in the sets. At the same time multiset
relation is a relation connecting the elements in the multisets.

This paper proposes a systematic approach to rough multisets, related properties, and
information multisystems. It begins with the introduction to multisets and a brief survey
of Yager’s theory of bags [3]. The concept of mset relations, knowledge mset base, and
classifications are given in Section 3. Section 4 includes the discussion of the underlying
concepts of the rough set theory, introduction to rough multisets and related properties,
and information multisystems and concludes with information and decision tables of rough
multisets. The last section contains the conclusion and the scope of future work.

2. Theory of Multisets

This section begins with the origin of multisets (mset) and a brief survey of the notion of the
theory of multisets introduced by Yager [3].

In mathematics, a multiset (or bag) is the generalization of a set. A member of a
multiset can have more than one membership [4–6], while each member of a set has only one
membership. The use of multisets in mathematics predates the name “multiset” by nearly 90
years. Richard Dedekind used the termmultisets in a paper published in 1888. Knuth [7] also
lists other names that were proposed for multisets, such as list, bunch, bag, and weighted set.
Zermelo-Fraenkel’s set theory, commonly known as ZF theory, is the classical theory based
on first-order logic and is undoubtedly the foundation of mathematics. In first-order logic, a
formal theory MST (multiset theory) that contains ZF as a special case has been formulated.
MST was introduced by Cerf et al. [8] in 1972.
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Definition 2.1. AnmsetM drawn from the set X is represented by a function CountM or CM

defined as CM : X → N, where N represents the set of nonnegative integers.

Here CM(x) is the number of occurrences of the element x in the mset M. We present
the mset M drawn from the set X = {x1, x2, . . . , xn} as M = {m1/x1, m2/x2, . . . , mn/xn},
where mi is the number of occurrences of the element xi, i = 1, 2, . . . , n, in the mset M.
However, those elements which are not included in the mset M have zero count. Let M
be an mset from X with x appearing n times in M. It is denoted by x ∈n M.

Example 2.2. Let X = {a, b, c, d, e} be any set. Then M = {2/a, 4/b, 5/d, 1/e} is an mset
drawn from X.

To be clear, a set is a special case of an mset.
Let M and N be two msets drawn from a set X. Then, the following are defined in

[3, 9, 10]:

(1) M = N if CM(x) = CN(x), for all x ∈ X,

(2) M ⊆ N if CM(x) ≤ CN(x), for all x ∈ X,

(3) P = M ∪ N if CP (x) = Max{CM(x), CN(x)}, for all x ∈ X,

(4) P = M ∩N if CP (x) = Min{CM(x), CN(x)}, for all x ∈ X,

(5) P = M ⊕N if CP (x) = CM(x) + CN(x), for all x ∈ X,

(6) P = M 	N if CP (x) = Max{CM(x) − CN(x), 0}, for all x ∈ X,

where ⊕ and 	 represent mset addition and mset subtraction, respectively.
LetM be an mset drawn from a setX. The support set ofM denoted byM∗ is a subset

of X andM∗ = {x ∈ X : CM(x) > 0}; that is,M∗ is an ordinary set.M∗ is also called root set.
An mset M is said to be an empty mset if, for all x ∈ X, CM(x) = 0.
The cardinality of an mset M drawn from a set X is denoted by Card (M) or |M| and

is given by Card M =
∑

x ∈X CM(x).

Definition 2.3. A domain X is defined as a set of elements from which msets are constructed.
The mset space [X]n is the set of all msets whose elements are in X such that no element in
the mset occurs more than n times.

The set [X]∞ is the set of all msets over a domain X such that there is no limit on the
number of occurrences of an element in an mset.

If X = {x1, x2, . . . , xk}, then [X]n = {{n1/x1, n2/x2, . . . , nk/xk} : for i = 1, 2, . . . , k; ni ∈
{0, 1, 2, . . . , n}}.

Definition 2.4. Let X be a support set and [X]n the mset space defined over X. Then, for any
mset M ∈ [X]n, the complement Mc of M in [X]n is an element of [X]n such that

Cc
M(x) = n − CM(x), ∀x ∈ X. (2.1)

Note 1. Using Definition 2.4, the mset sum can be modified as follows:

CM1⊕M2(x) = min{n,CM1(x) + CM2(x)}, ∀x ∈ X. (2.2)
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3. Mset Relations and Knowledge Mset Base

This section gives the concept of relations, equivalence relations, and partitions in the context
of multisets. Knowledge mset base and classifications are introduced instead of knowledge
base and classifications in any information system.

A relation in mathematics is defined as an object that has its existence as such within a
definite context or setting. It is literally a case wherein any change in this setting will involve a
change in the relation that is being defined. The particular type of context that is needed here
is formalized as a collection of elements from which are chosen the elements of the relation
in question. The larger collection of elementary relations or tuples is constructed by means of
the set theoretic product commonly known as the Cartesian product.

In mathematics, especially set theory and logic [11, 12], a relation is a property that
assigns truth values to combinations (k-tuples) of k individuals. Typically, the property
describes a possible connection between the components of a k-tuple. For a given set of k-
tuples, a truth value is assigned to each k-tuple according to whether the property does or
does not hold. An example of a ternary or triadic relation is “X was—connected—Y by Z,”
where (X,Y,Z) is a 3-tuple of cities; for example, “Kerala is connected to Delhi viaMumbai by
road” is true, while “India is connected to USA via Pakistan by road” is false. The information
Table 1 can represent this relation.

The data given in the table are equivalent to the following ordered triples:

R = {(Kerala,Mumbai,Delhi), (India,Pakistan,USA)}. (3.1)

The table for relation R is an extremely simple example of a relational database. Theoretical
aspects of databases are the specializations of a branch of computer science. Their practical
impacts have become all too familiar to our everyday life. Computer scientists, logicians,
and mathematicians, however, tend to see things differently when they look at these concrete
examples and samples of the more general concept of a relation. According to Augustus De
Morgan, “when two objects, qualities, classes or attributes, viewed together by the mind, are
seen under some connection, that connection is called a relation.”

In any information multisystem, duplicates occur in the intermediate stages of
processing information. While processing, each information can be associated within the
elements of collections of information or with elements of another collection of information.
This type of association is called an mset relation. For example, in chemical systems the
chemical compounds are formed by interactions which take place in a systematic manner.
Some molecules in the set of molecules might occur in more than a single copy. From the
mathematical point of view, these sets of molecules are called msets and the rules of reactions
are called mset relations.

3.1. Knowledge Mset Base and Classifications

Knowledge is deep-seated in the classificatory abilities of human beings and other species.
For example, knowledge about the environment is primarily manifested as an ability to
classify a variety of situations from their point of survival in the real world.

Among the given finite mset M/=Φ (the universe) of objects any submset N ⊆ M of
the universe will be called anmset concept (i.e., concepts with repetition) or an mset category
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Table 1: Relation: X—connected by roads—to Z—via Y .

X-cities Y -cities Z-cities
Kerala Mumbai Delhi
India Pakistan USA

in M and any family of mset concepts in M will be referred to as abstract knowledge with
repetition. Empty mset Φ is admitted as an mset concept.

Some families of classifications with repetitions are more dealt with, like mset
classifications over M. A family of mset classifications over M will be called a knowledge
mset base over M denoted by KM. Thus, a knowledge mset base represents a variety of
mset classification skills of an intelligent agent or group of agents which constitute the
fundamental equipments of the agent needed to define its relation to the environment or
itself.

For mathematical reasons equivalence mset relations are used, instead of classifica-
tions about knowledge mset base, since these two concepts are actually interchangeable and
mset relations are easier to deal with.

The authors introduced new notations [1] for the purpose of defining Cartesian
product of msets, mset relations, and their domain and codomain. The entry of the form
(m/x, n/y)/k denotes that x is repeated m-times, y is repeated n-times, and the pair (x, y)
is repeated k-times. The counts of the members of the domain and codomain vary in relation
to the counts of the x coordinate and y coordinate in (m/x, n/y)/k. For this purpose
the notations C1(x, y) and C2(x, y) are introduced. C1(x, y) denotes the count of the first
coordinate in the ordered pair (x, y), and C2(x, y) denotes the count of the second coordinate
in the ordered pair (x, y).

Definition 3.1. Let M1 and M2 be two msets drawn from a set X, then the Cartesian product
ofM1 and M2 is defined as M1 ×M2 = {(m/x, n/y)/mn : x∈m M1, y∈nM2}.

We can define the Cartesian product of three or more nonempty msets by generalizing
the definition of the Cartesian product of two msets.

Definition 3.2. A submset R of M × M is said to be an mset relation on M if every member
(m/x, n/y) of R has a count of the product C1(x, y) and C2(x, y). One denotes m/x related
to n/y bym/x R n/y.

The Domain and Range of the mset relation R on M is defined as follows:
Dom R = {x ∈r M : ∃y ∈s M such that r/x R s/y} , where CDomR(x) = Sup{C1(x, y)

: x ∈r M},
Ran R = {y ∈s M : ∃x ∈r M such that r/x R s/y}, where CRan R(y) = Sup{C2(x, y) :

y ∈s M}.

Example 3.3. Let M = {8/x, 11/y, 15/z} be an mset. Then R = {(2/x, 4/y)/8,(5/x, 3/x)/15,
(7/x, 11/z)/77,(8/y, 6/x)/48,(11/y, 13/z)/143,(7/z, 7/z)/49,(12/z, 10/y)/120, (14/z, 5/
x)/70} is an mset relation defined on M. Here Dom R = {7/x, 11/y, 14/z} and
Ran R = {6/x, 10/y, 13/z}.

Definition 3.4. Let R be an mset relation defined on M and x ∈m M. One defines R(m/x),
the R-relative mset of m/x, the set of all n/y in M such that there exists some k such that
k/x R n/y; that is, R(m/x) = {n/y : ∃ some k with k/x R n/y}.
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Similarly, if M1 ⊆ M, then R(M1), the R-relative mset of M1, is the mset of all n/y
in M with the property that there exists some k such that k/x R n/y. From the preceding
definitions, we see that R(M1) is the union of all msets R(m/x).

Remark 3.5. If two msets have the same elements with distinct multiplicity, then their R-
relative msets are the same.

Example 3.6. From Example 3.3 we see that R(2/x) = R(5/x) = R(7/x) = { 3/x, 4/y, 11/z},
R(8/y) = R(11/y) = {6/x, 13/z}, and R(7/z) = R(12/z) = R(14/z) = {5/x, 10/y, 7/z}.
Now, ifM1 = {2/x, 11/y, 12/z} ⊆ M, then R(M1) = {6/x, 10/y, 12/z}.

Definition 3.7. (i) An mset relation R on an mset M is reflexive if m/x R m/x for all m/x in
M.

(ii) An mset relation R on an msetM is symmetric ifm/x R n/y implies n/y R m/x.
(iii) An mset relation R on an mset M is transitive if m/xRn/y, n/y R k/z, then

m/x R k/z.
Anmset relation R on anmsetM is called an equivalence mset relation if it is reflexive,

symmetric, and transitive.

Example 3.8. Let M = {3/x, 5/y, 3/z, 7/r} be an mset. Then the mset relation given by
R = {(3/x, 3/x)/9, (3/x, 3/z)/9, (3/x, 7/r)/21, (7/r, 3/x)/21, (5/y, 5/y)/25,(3/z, 3/z)/
9, (7/r, 7/r)/49, (3/z, 3/x)/9, (3/z, 7/r)/21, (7/r, 3/z)/21} is an equivalence mset rela-
tion.

Definition 3.9. A partition of a nonempty mset M is a collection P of nonempty submsets of
M such that

(1) each element of M belongs to one of the msets in P,

(2) ifM1 andM2 are distinct elements of P, thenM1 ∩ M2 = Φ.
The msets in P are called the blocks or cells of the partition.

Example 3.10. Let M = {4/x, 5/y, 7/z} be an mset, and consider the partition P =
{{4/x, 5/y}, {7/z}} of the mset M. Then the blocks of P are {4/x, 5/y} and {7/z}
and each element in a block is only related to every other’s element in the same
block. Thus, the equivalence mset relation determined by P is {(4/x, 4/x)/16, (4/x, 5/y)/20,
(5/y, 4/x)/20, (5/y, 5/y)/25, (7/z, 7/z)/49}.

If R is an equivalence mset relation over M, then M/R is the family of all m-
equivalence classes of R (or classification of M) referred to as mset categories or mset
concepts of R. R(m/x) or [m/x]R denotes the mset category in R containing an element
x ∈m M.

By a knowledge mset base, we can understand a relational multisystemKM = (M,R),
whereM is a nonempty finite mset called the universe and R is a family of equivalence mset
relations over M.

If P ⊆ R and P /=Φ, the ∩P (intersection of all equivalence mset relations belonging to
P) is also an equivalence mset relation and will be denoted by IND(P) and will be called an
indiscernibility mset relation over P .
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Moreover,

[m/x]IND(P) =
⋂

R

[m/x]R. (3.2)

Thus, M/IND(P) (i.e., the family of all m-equivalence classes of the equivalence mset relation
IND(P)) denotes knowledge mset base associated with the family of equivalence mset
relations P , called P -basic knowledge mset base about M in KM. M-equivalence classes of
IND(P) are called basic mset categories (mset concepts) of knowledge P .

In fact P -basic mset categories are those properties of the universe which can be
expressed employing knowledge P . In other words, they are fundamental building blocks
of our knowledge or basic properties of the universe which can be expressed employing
knowledge P .

Let KM = (M,R) be a knowledge mset base. IND(KM) denotes the family of all
equivalence mset relations defined in KM as

IND(KM) = {IND(P) : P ⊆ R}. (3.3)

Thus, IND(KM) is the maximal mset of equivalence mset relations containing all elementary
mset relations of KM.

Finally the family of all mset categories in the knowledge mset baseKM = (M,R)will
be referred to as KM mset categories.

4. Rough Multiset and Information Multisystems

In 1982 Pawlak [13] introduced a newmathematical tool “Rough Sets” that is devised to deal
with vagueness and uncertainty. Surprisingly, this is again a contribution to humanity from
one belonging to the field of computer science—during the same period, the same community
that gifted several other elegant creations, like the fuzzy set theory by Lotfi Zadeh in 1965. It
is also interesting to note that both of the theories address basically the same issue, namely,
“vagueness” and this fact is not merely a coincidence. That “vagueness” in general is different
from “probability” which is now gaining acceptance after the long, fierce debates that took
place during the years immediately following the advent of the fuzzy set theory in 1965.
So Pawlak did not have to fight that battle. Yet he had to utter this warning, which is an
excellent distinctive criterion, namely, “vagueness is the property of sets whereas uncertainty
is the property of an element” [14]. In the introduction to his short communication [15],
Pawlak declares that “we compare this concept with that of the fuzzy set and we show that
these two concepts are different.” However, later in Pawlak a probable change in opinion is
observed as reflected in the following categorical remark: “Both fuzzy and rough set theory
represent two different approaches to vagueness. Fuzzy set theory addresses gradualness
of knowledge, expressed by the fuzzy membership—whereas rough set theory addresses
granularity of knowledge expressed by indiscernibility relation” [16].

Rough set theory is a powerful tool for dealing with the uncertainty, granularity,
and incompleteness of knowledge in information systems. When there is a huge amount
of data, it is very difficult to extract useful information from them, mainly because of the
incompleteness of the data; that is, there might be some critical pieces of data that is missing.
Vagueness and uncertainty lead to difficulty in extracting useful information from very large
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databases. Rough set theory differs from others by being a fundamental approach to several
disciplines of artificial intelligence like expert systems, machine learning, and knowledge
discovery from databases.

Definition 4.1 (information system). An information system is a pair S = (M,A), where M is
a nonempty finite set of objects called the universe of discourse and A is a nonempty finite
set of attributes.

Information multisystems are represented using multisets instead of crisp sets.
Multisets are defined as those sets in which an element may have several occurrences as
against one in a crisp set. The very definition of multisets implies the omission of object
identifiers. Number of occurrences of each object is denoted in an additional column namedC

(counts or multiplicity). Table 3 is themultiset representation of the informationmultisystem.
Formally, an informationmultisystem can be defined as a triple, S = (M,A,R), whereM is an
mset of objects,A is the set of attributes, and R is an mset relation defined onM. For example,
the chemical system can be defined as S = (M,A,R), where M is the mset of all possible
molecules, A is an algorithm describing the reaction vessel or domain and how the rules are
applied to the molecules inside the vessel, and R is the set of “collision” rules, representing
the interaction among the molecules.

In the Pawlak rough set model, an equivalence relation on the universe of objects is
defined based on their attribute values. After the introduction of Pawlak’s rough set, many
mathematicians introduced different rough set models based on various types of binary
relations instead of equivalence binary relations. Based on these studies, Yao and Lin [17]
introduced a new type of rough set model called nonstandard rough set model induced
by various binary relations. Pawlak’s standard rough set is considered and extended to the
context of multisets.

LetN ⊆ M, and R is an equivalence mset relation. We will say thatN is an R-definable
mset if N is the union of some mset categories; otherwise, N is an R-undefinable mset.

The R-definable msets are those submsets of the universe which can be exactly defined
in the knowledge mset base KM, whereas the R-undefinable msets cannot be defined in this
knowledge mset base.

The R-definable msets will also be called R-exact msets, and R-undefinable msets will
also be called R-inexact mset or R-rough mset.

MsetN ⊆ Mwill be called exact mset inKM if there exists an equivalencemset relation
R ∈ IND(KM) such that N is R-exact mset and N is said to be a rough mset in KM, if N is
R-rough mset for any R ∈ IND(KM).

A rough mset is a formal approximation of a conventional mset in terms of a pair of
msets which give the lower approximation and upper approximation of the original mset.

4.1. Approximations of an Mset

Let M be an mset and R an equivalence mset relation on M. R generates a partition M/R =
{M1,M2, . . . ,Mm} onM, whereM1,M2, . . . ,Mm are them-equivalence classes generated by
the equivalence mset relation R.

An m-equivalence class in R containing an element x ∈m M is denoted by [m/x]. The
pair (M,R) is called an mset approximation space. For any N ⊆ M, we can define the lower
mset approximation and upper mset approximation of N by
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RL(N) = {m/x : [m/x] ⊆ M},
RU(N) = {m/x : [m/x] ∩ M/=Φ}, (4.1)

respectively.
The pair (RL(N), RU(N)) is referred to as the rough mset of N. The rough mset

(RL(N), RU(N)) gives rise to a description of N under the present knowledge, that is, the
classification ofM.

Suppose that R is an arbitrary mset relation on M. With respect to R, we can define a
neighborhood of an element m/x inM as follows:

r(m/x) =
{
n/y : y ∈n M,m/xRn/y

}
. (4.2)

The mset r(m/x) is also called an R-relative mset.

Definition 4.2. Let R be an arbitrary mset relation on the universal msetM, and let r(m/x) be
the R-relative mset (i.e., neighborhood of m/x) in M. For any N ⊆ M, a pair of lower and
upper mset approximations RL(N) and RU(N), are defined by

RL(N) = {m/x : r(m/x) ⊆ M},
RU(N) = {m/x : r(m/x) ∩ M/=Φ}. (4.3)

The pair (RL(N), RU(N)) is referred to as rough mset of N.

4.2. Properties of Rough Multisets

For any equivalence mset relation R on a nonempty mset M, the following conditions hold:

(i) for every N ⊆ M, RL(N) = [RU(Nc)]c;

(ii) RL(M) = M;

(iii) ifN ⊂ M with CN(x) < CM(x), then RL(N) = ∅;
(iv) for any submsets M1 and M2 of M, RL(M1 ∩M2) = RL(M1) ∩ RL(M2);

(v) ifM1 ⊆ M2, then RL(M1) ⊆ RL(M2);

(vi) for any submsets M1 and M2 of M, RL(M1 ∪M2) ⊇ RL(M1) ∪ RL(M2);

(vii) for any submsets M1 and M2 of M, RL(M1 ⊕M2) ⊇ RL(M1) ⊕ RL(M2);

(viii) for any submsets M1 and M2 of M, RL(M1ΘM2) = RL(M1)ΘRL(M2);

(ix) for every N ⊆ M,RL(N) ⊆ RL(RL(N));

(x) for every N ⊆ M,N ⊆ RL(RU(N));

(xi) for every N ⊆ M,RU(N) ⊆ RL(RU(N));

(xii) for any submsets M1 and M2 of M, RU(M1 ⊕M2) = RU(M1) ⊕ RU(M2);

(xiii) for any submsets M1 and M2 of M, RU(M1 	M2) = RU(M1) 	 RU(M2).
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Proof. (i) One has

[RU(Nc)]c = {x ∈m M : [m/x] ∩Nc
/= ∅}c

= {x ∈m M : [m/x] ∩Nc = ∅}
= {x ∈m M : [m/x] ⊆ N}
= RL(N).

(4.4)

(ii) Since, for every x ∈m M, [m/x] ⊆ M, x ∈m RL(M). Thus, M ⊆ RL(M). Also since
RL(M) ⊆ M, hence RL(M) = M.

(iii) Since R is an equivalence mset relation and CN(x) < CM(x), there is no
equivalence class in the submset ofN. Hence, RL(N) = ∅.

(iv) One has

RL(M1 ∩M2) = {x ∈m M : [m/x] ⊆ M1 ∩M2}
= {x ∈m M : [m/x] ⊆ M1} ∩ {x ∈m M : [m/x] ⊆ M2}
= RL(M1) ∩ RL(M2).

(4.5)

(v) If M1 ⊆ M2 and x ∈m RL(M1), then [m/x] ⊆ M1 and so [m/x] ⊆ M2; hence,
x ∈m RL(M2). Thus, RL(M1) ⊆ RL(M2).

(vi) Since M1 ⊆ M1 ∪ M2 and M2 ⊆ M1 ∪ M2, so RL(M1) ⊆ RL(M1 ∪ M2) and
RL(M2) ⊆ RL(M1 ∪M2); hence, RL(M1 ∪M2) ⊇ RL(M1) ∪ RL(M2).

(vii) One has

RL(M1 ⊕M2) = {x ∈m M : [m/x] ⊆ M1 ⊕M2}
⊇ {x ∈m M : [m/x] ⊆ M1} ⊕ {x ∈m M : [m/x] ⊆ M2}
= RL(M1) ⊕ RL(M2).

(4.6)

(viii) One has

RL(M1 	M2) = {x ∈m M : [m/x] ⊆ M1 	M2}
= {x ∈m M : [m/x] ⊆ M1} 	 {x ∈m M : [m/x] ⊆ M2}
= RL(M1) 	 RL(M2).

(4.7)

(ix) Since RL(N) = {x ∈m M : [m/x] ⊆ N} and RL(RL(N)) = {x∈mM : [m/x] ⊆
RL(N)}, to prove that RL(N) ⊆ RL(RL(N)), it is enough to prove that [m/x] ⊆ RL(N).

Let

y ∈n [m/x] =⇒ [
n/y

]
= [m/x] ⊆ N

=⇒ [
n/y

] ⊆ N

=⇒ y ∈n RL(N)

=⇒ [m/x] ⊆ RL(N)

=⇒ RL(N) ⊆ RL(RL(N)).

(4.8)
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(x) Let x ∈m N, we want to show that x ∈m RL(RU(N)), that is, [m/x] ⊆
RU(N) or [n/y] ∩ N/= ∅ for all y ∈n [m/x]. Since R is an equivalence mset relation, then
[m/x] = [n/y] or [m/x] ∩ [n/y] = ∅ for all x∈mM, y∈nM, then, for all x ∈m N and
y ∈n [m/x], [m/x] ∩ N/= ∅; that is, y ∈n RU(N) for all y ∈n [m/x], then [m/x] ⊆ RU(N);
thus, x ∈m RL(RU(N)) and soN ⊆ RL(RU(N)).

(xi) Let x ∈m RU(N); we want to show that x ∈m RL(RU(N)). Since x ∈m RU(N), then
[m/x] ∩ N/= ∅; also R is an equivalence relation; hence, [n/y] ∩ N/= ∅ for all y ∈n [m/x],
then y ∈n RU(N) for all y ∈n [m/x]; that is, [m/x] ⊆ RU(N); thus, x ∈m RL(RU(N)). Hence,
RU(N) ⊆ RL(RU(N)).

(xii) One has

RU(M1 ⊕ M2) = {x ∈m M : [m/x] ∩M1 ⊕M2 /= ∅}
= {x ∈m M : ([m/x] ∩M1) ⊕ ([m/x] ∩M2)/= ∅}
= {x ∈m M : [m/x] ∩M1 /= ∅} ⊕ {x ∈m M : [m/x] ∩M2 /= ∅}
= RU(M1) ⊕ RU(M2).

(4.9)

(xiii) One has

RU(M1 	M2) = {x ∈m M : [m/x] ∩M1 	M2 /= ∅}
= {x ∈m M : ([m/x] ∩M1) 	 ([m/x] ∩M2)/= ∅}
= {x ∈m M : [m/x] ∩M1 /= ∅} 	 {x ∈m M : [m/x] ∩M2 /= ∅}
= RU(M1) 	 RU(M2).

(4.10)

The following example shows that the equalities in the properties (vi), (vii), and (x)
does not always hold.

Example 4.3. From Example 3.8, the equivalence classes are [3/x] = {3/x, 3/z, 7/r}, [5/y] =
{5/y}, [3/z] = {3/x, 3/z, 7/r}, and [7/r] = {3/x, 3/z, 7/r}. Let M1{3/x, 5/y} and M2 =
{5/y, 3/z, 7/r} be two submsets of M. Then RL(M1) = {5/y} and RL(M2) = {5/y}.
Therefore,RL(M1)⊕RL(M2) = {5/y}. ButM1⊕M2 = {3/x, 5/y, 3/z, 7/r} andRL(M1⊕M2) =
{3/x, 5/y, 3/z, 7/r}. Thus, RL(M1 ⊕M2)/=RL(M1) ⊕ RL(M2).

Also M1 ∪ M2 = {3/x, 5/y, 3/z, 7/r} and RL(M1 ∪ M2) = {3/x, 5/y, 3/z, 7/r}. But
RL(M1) ∪ RL(M2) = {5/y}. Therefore, RL(M1 ∪M2)/=RL(M1) ∪ RL(M2) = {5/y}.

Furthermore, RU(M1) = {3/x, 5/y, 3/z, 7/r} and RL(RU(M1)) = RL(M) = M.
Therefore, RL(RU(M1))/=M1.

Theorem 4.4 (see [1]). For any submsetsM1 and M2 of M

(1) (M1 	M2)
c = Mc

1 ⊕M2,

(2) (M1 ⊕M2)
c = Mc

1 	M2.
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Theorem 4.5. For any submsetsM1 and M2 of M

(1) RL[(M1 	M2)
c] = RL(Mc

1) ⊕ RL(M2),

(2) RL[(M1 ⊕M2)
c] = RL(Mc

1) 	 RL(M2).

Proof. (1) One has

RL

[
(M1 	M2)c

]
=
{
x ∈m M : [m/x] ⊆ (M1 	M2)c

}

=
{
x ∈m M : [m/x] ⊆ Mc

1 ⊕M2
}

=
{
x ∈m M : [m/x] ⊆ Mc

1

} ⊕ {x ∈m M : [m/x] ⊆ M2}
= RL

(
Mc

1

) ⊕ RL(M2).

(4.11)

(2) One has

RL

[
(M1 ⊕M2)c

]
=
{
x ∈m M : [m/x] ⊆ (M1 ⊕M2)c

}

=
{
x ∈m M : [m/x] ⊆ Mc

1 	M2
}

=
{
x ∈m M : [m/x] ⊆ Mc

1

} 	 {x ∈m M : [m/x] ⊆ M2}
= RL

(
Mc

1

) 	 RL(M2).

(4.12)

The following example gives the analysis of information multisystems with a given
number of objects and attributes.

Example 4.6. Let us consider mset of balls (objects) M = {k1/b1, k2/b2, k3/b3, k4/b4, k5/b5,
k6/b6, k7/b7, k8/b8} which are of different colors (attributes) {black, blue, red}, different
types {football, cricket ball,volleyball}, and different prices (attributes) {costly, cheap}.
Thus, the information system S = (M,A) consists of

∑8
i=1 ki objects and 5 attributes.

The balls can be classified as costly black cricket ball, cheap blue football, and so forth.
Thus, the mset of balls in M can be classified according to color, type, and cost. The example
follows.

Balls k1/b1, k3/b3, k7/b7 are black, k2/b2, k4/b4 are blue, and k5/b5, k6/b6, k8/b8
are red.

Among the balls k1/b1, k5/b5 are foot balls, k2/b2, k6/b6 are cricket balls and k3/b3,
k4/b4, k7/b7, k8/b8 are volleyballs which are of k2/b2, k7/b7, k8/b8 that are costly and
k1/b1, k3/b3, k4/b4, k5/b5, k8/b8 that are cheap.

In other words by these classifications three equivalence mset relations R1, R2, and R3

are defined with the following m-equivalence classes:

M/R1 = {{k1/b1, k3/b3, k7/b7}, {k2/b2, k4/b4}, {k5/b5, k6/b6, k8/b8}},
M/R2 = {{k1/b1, k5/b5}, {k2/b2, k6/b6}, {k3/b3, k4/b4, k7/b7, k8/b8}},

M

R3
= {{k2/b2, k7/b7, k8/b8}, {k1/b1, k3/b3, k4/b4, k5/b5, k8/b8}}.

(4.13)

Thesem-equivalence classes are mset concepts (mset categories) in our knowledge mset base
KM = (M, {R1, R2, R3}).
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Basic mset categories are mset intersections of elementary mset categories. For ex-
ample, msets

{k1/b1, k3/b3, k7/b7} ∩ {k3/b3, k4/b4, k7/b7, k8/b8} = {k3/b3, k7/b7},
{k2/b2, k4/b4} ∩ {k2/b2, k6/b6} = {k2/b2},

{k5/b5, k6/b6, k8/b8} ∩ {k3/b3, k4/b4, k7/b7, k8/b8} = {k8/b8}
(4.14)

are {R1, R2} basic mset categories of black volleyballs, blue cricket balls, and red volleyballs,
respectively.

Msets

{k1/b1, k3/b3, k7/b7} ∩ {k3/b3, k4/b4, k7/b7, k8/b8} ∩ {k2/b2, k7/b7, k8/b8} = {k7/b7},
{k2/b2, k4/b4} ∩ {k2/b2, k6/b6} ∩ {k2/b2, k7/b7, k8/b8} = {k2/b2},

{k5/b5, k6/b6, k8/b8} ∩ {k3/b3, k4/b4, k7/b7, k8/b8} ∩ {k2/b2, k7/b7, k8/b8} = {k8/b8}
(4.15)

are elementary {R1, R2, R3} basic mset categories of black volleyball of cheap cost, blue cricket
ball of high cost, and red volleyball of cheap cost, respectively.

Msets

{k1/b1, k3/b3, k7/b7} ∪ {k2/b2, k4/b4} = {k1/b1, k2/b2, k3/b3, k4/b4, k7/b7},
{k2/b2, k4/b4} ∪ {k5/b5, k6/b6, k8/b8} = {k2/b2, k4/b4, k5/b5, k6/b6, k8/b8},

{k1/b1, k3/b3, k7/b7} ∪ {k5/b5, k6/b6, k8/b8} = {k1/b1, k3/b3, k5/b5, k6/b6, k7/b7, k8/b8}
(4.16)

are {R1}mset categories black or blue (not red), blue or red (not black), and black or red (not
blue), respectively.

Note that some mset categories are not available in this knowledge mset base. For
example, msets

{k2/b2, k4/b4} ∩ {k1/b1, k5/b5} = Φ,

{k1/b1, k3/b3, k7/b7} ∩ {k2/b2, k6/b6} = Φ
(4.17)

are empty which means that mset categories of blue footballs and black cricket balls do not
exist in our knowledge mset base (i.e., empty mset categories).

4.3. Information Tables and Decision Tables

From the information system S = (M,A) as in Example 4.6, the information table rep-
resenting the universe of discourse is constructed.

Table 2 can be analyzed in the following way. The first 5-tuple can be interpreted as k1
number of black football with cheap cost, similar way for the rest of the tuples.

Consider the information Table 3 with respect to the given information system S =
(M,A).
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Table 2

Labels Item Color Price No. of items
b1 Football Black Cheap k1
b2 Cricket ball Blue Costly k2
b3 Volleyball Black Cheap k3
b4 Volleyball Blue Cheap k4
b5 Football Red Cheap k5
b6 Cricket ball Red Cheap k6
b7 Volleyball Black Costly k7
b8 Volleyball Red Costly k8

Table 3

Blocks Labels Items No. of items Colors Price
X1 b1 Football k1 Black Cheap
X1 b3 Volleyball k3 Black Cheap
X1 b7 Volleyball k7 Black Costly
X2 b2 Cricket ball k2 Blue Costly
X2 b4 Volleyball k4 Blue Cheap
X3 b5 Football k5 Red Cheap
X3 b6 Cricket ball k6 Red Cheap
X3 b8 Volleyball k8 Red Costly

Table 3 can be analyzed in the following way. The table contains three blocks
X1, X2, and X3 with the block X1 containing k1/b1 black footballs and k3/b3 black
volleyballs with cheap cost and k7/b7 black volleyballs with high cost. Similarly block X2

contains k2/b2 blue cricket balls with high cost and k4/b4 blue volleyballs with cheap cost,
and block X3 contains k5/b5 red footballs and k6/b6 red cricket balls with cheap cost and
k8/b8 red volleyballs with high cost.

With respect to the information Table 3, the decision table can be constructed in
the following way. The first column of the decision table represents object identifiers with
multiplicity. Identifiers are used to uniquely identify each row in the table. The decision table
has six attributes {P1, P2, P3, P4, P5, D, C}. The attributeD is the decision attribute with values
1, 2, 3, and C is the count (multiplicity) of the object. The other attributes are color and cost—
the condition attributes. In Table 2 the universe of discourseM consists of

∑8
i=1 ki objects. The

partition of M based on Table 3, the objects of decision attribute D, is

X1 = {k1/b1, k3/b3, k7/b7},
X2 = {k2/b2, k4/b4},
X3 = {k5/b5, k6/b6, k8/b8}.

(4.18)

With respect to this decision, the decision Table 4, presented above, follows.



Advances in Decision Sciences 15

Table 4

Attributes P1 P2 P3 P4 P5 D C

b1 1 0 0 0 1 1 k1
b2 0 1 0 1 0 2 k2
b3 1 0 0 0 1 1 k3
b4 0 1 0 0 1 2 k4
b5 0 0 1 0 1 3 k5
b6 0 0 1 0 1 3 k6
b7 1 0 0 1 0 1 k7
b8 0 0 1 0 1 3 k8

Table 5: Lower approximation decision.

Attribute P1 P2 P3 P4 P5 D C

b2 0 1 0 1 0 2 k2
b4 0 1 0 0 1 2 k4

Considering the target set X = {k1/b1, k2/b2, k4/b4}, the lower approximations and
upper approximations are given as follows:

RL(X) = {k2/b2, k4/b4},
RU(X) = {k1/b1, k3/b3, k7/b7} ∪ {k2/b2, k4/b4}

= {k1/b1, k2/b2, k3/b3, k4/b4, k7/b7}.
(4.19)

From the above-discussed information multisystem, decision tables (Tables 5 and 6),
associated with each block, there exist two nonnegative integers representing the minimum
(lower) and maximum (upper) number of copies. The minimum and maximum values may
depend upon some statistical analysis of the data concerning the necessity and utility of each
item and the number of items needed for the relevant programmes. The decision is taken
about the number of items that are needed according to their demand and other factors
involved.

5. Conclusion and Future Work

Pawlak introduced the concept of rough sets which have a wide range of applications
in various fields like artificial intelligence, cognitive sciences, knowledge discovery from
databases, machine learning expert systems, and so forth [18–26]. These types of situations
deal with objects and attributes. Many situations may occur, where the counts of the objects
in the universe of discourse are not single. In information systems we come across situations
which involve the concept of a multiset. This paper begins with Yager’s theory of multisets.
After presenting the theoretical study, the concepts mset relations, equivalence mset relations,
partitions, and knowledge mset base have been established. Finally the concept of rough
multisets and related properties with the help of lower mset approximation and upper mset
approximations have been introduced. It is observed that rough multisets are important
frameworks for certain types of information multisystems.
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Table 6: Upper approximation decision.

Attribute P1 P2 P3 P4 P5 D C

b1 1 0 0 0 1 1 k1
b2 0 1 0 1 0 2 k2
b3 1 0 0 0 1 1 k3
b4 0 1 0 0 1 2 k4
b7 1 0 0 1 0 1 k7

Chakrabarty [27, 28] introduced two types of bags called IC bags and nk bags, which
are suitable for situations, where the counts of the objects in information system are not fixed
and are represented in the form of intervals of positive integers and power set of positive
integers (P(N)). These kinds of problems appear, for instance, during a nuclear fission,
when a nucleus (consisting of protons and neutrons) is split into multiple nuclei, each of
them with its own number of protons and neutrons. Thus, the information multisystem
can be associated with IC bags or nk bags by the help of lower mset approximations and
upper mset approximations. This association could be used for certain types of decision
analysis problems and could prove useful asmathematical tools for building decision support
systems.
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