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We consider the queueing maximal covering location-allocation problem (QM-CLAP) with an
M/G/1 queueing system. We first formulate the problem as a binary quadratic programming
problem and then propose a new solution procedure based on decomposition of the problem into
smaller binary quadratic sub-problems. The heuristic procedure GRASP is used to solve the sub-
problems, as well as the entire model. Some computational results are also presented.

1. Introduction

An extensively studied and widely used model in location theory is the maximal covering
location problem (MCLP). It can be stated as follows. Given a set of m demand points and a
set of n potential new facility locations in the plane, find the location of p (< n) new facilities
such that the demands covered are maximized. A demand point i is said to be covered by a
facility j if the distance (or time) between i and j is no more than a given fixed value, R. In
this simple form, the problem is attributed to Church and ReVelle [1] who have modeled it
as a binary integer program. Extensions and applications of this model have been discussed
by many including ReVelle [2], Schilling et al. [3], Marianov and ReVelle [4], Brotcorne et
al. [5], Marianov and Serra [6], and Goldberg [7]. A bibliography for some discrete location
problems, including maximal covering location problem, can also be found in ReVelle et al.
[8]. Erkut et al. [9] present a computational comparison for five maximal covering models.

A variant of this problem, usually called location in congested systems, takes into
account the stochastic nature of demand and response times. Berman et al. [10] are among
the first to incorporate such systems into location models. They extend Hakimi’s 1-median
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problem by assuming that demands at nodes follow a Poisson process, and the service
time has a general distribution, hence, a network with an M/G/1 queueing system. They
propose an algorithm to find the optimal location of a server on such networks. Berman and
Mandowsky [11] present a location-allocation model for districting a region with congestion.
Berman et al. [12] consider the problem of locating a single facility with M/G/k queueing
system. Batta and Berman [13] consider locating a single facility on a network with anM/G/k
queue. Batta [14] considers the problem of locating a single server on a network operating
as an M/G/1 with nonpreemptive priority queue. Marianov and ReVelle [15] consider the
queueing probabilistic location set covering problem with M/G/s/s queueing system. They
[4], also use an M/G/s/s queueing system for siting emergency facilities. Marianov and Serra
[16] consider probabilistic maximal covering models with constraints on waiting time and
for queue length. Jamil et al. [17] consider the problem of locating a single facility with a
“center-type” objective in an M/G/1 queueing environment. Silva and Serra [18] consider
the MCLP with an M/M/1 queueing system and with different priority levels. They consider
both a “directed choice environment” model, where a demand point may be allocated to
one center for one priority and to another center for a different priority, and a “user choice
environment,” where it is assumed that the customer always chooses the closest center. They
propose a heuristic procedure to solve this problem. Moghadas and Kakhki [19] consider the
QM-CLAP with M/M/k system and side constraints. In this model, k is unknown and some
constraints on the number of servers at each center, as well as constraints on the total costs of
establishing a center and locating servers, are imposed. Berman and Krass [20] is a thorough
review of the models with stochastic demands and congestion at facilities.

In this paper, we consider the maximal covering location problem in a congested
system. A single mobile server resides at each center, and demands for service occur in
time as a Poisson process. If the server is available, it is immediately dispatched to the
demand point. After providing the service, the server returns to its base. If the server is
busy, the customer waits in a queue with an M/G/1 system. The objective is to choose the
location of at most p service centers and to allocate demand points to those centers so that
the population covered is maximized. Each demand point should be serviced by at most
one established service center, and the average waiting time at each service center must not
exceed a given threshold. We first formulate the problem as a binary quadratic programming
problem with linear and quadratic constrains. Then we propose two solution procedures.
The first procedure is based on a decomposition of the problem into smaller binary quadratic
knapsack-type subproblems. The second method is the metaheuristic procedure GRASP.
Finally some computational results are presented.

2. Problem Formulation

In order to formulate the problem, we use the following notations and variables:

–I: the set of all existing demand points (incident locations) (|I| = m),

–J : the set of all possible locations of new facilities (centers) (|J | = n),

–ai: population at point i,

–Ni: the set of points in a pre-specified neighborhood of i; that is, Ni = {j ∈ J : d(i, j) ≤
R},R is the covering radius, and d(i, j) is the distance between node i and candidate
center j,

–p: the maximum number of new facilities (centers) (p < n),
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–Wj : average waiting time at facility (center) j,

–τj : maximum allowable waiting time at center j,

xij =

{
1, if a call from point i is answered by facility (center) j,
0, otherwise,

yj =

{
1, if a new facility is located at site j ∈ J,

0, otherwise.

(2.1)

The queueing maximal covering location-allocation problem (QM-CLAP), with average
waiting time at a center constrained to be less than a given time, is modeled as follows
(Marianov and Serra [16]):

Max
∑
i∈I

∑
j∈Ni

aixij , (P)

s.t.
∑
j∈Ni

xij ≤ 1, ∀i ∈ I, (2.2)

xij ≤ yj , ∀i ∈ I, j ∈ J, (2.3)

∑
j∈J

yj ≤ p, (2.4)

Wj ≤ τj , ∀j ∈ J, (2.5)

xij , yj ∈ {0, 1}, ∀i ∈ I, j ∈ J. (2.6)

Constraints (2.2) guarantee that each point i is allocated to at most one service center j.
Constraints (2.3) ensure that a point is being served only by an established facility at j,
Constraint (2.4) establishes at most p new centers, and (2.5) ensures that the average waiting
time at each center j does not exceed a predetermined amount τj . The objective maximizes
the population covered.

Marianov and Serra [16] considered this problem for theM/M/1 andM/M/m queueing
systems and proposed heuristic methods to solve them. Corrêa and Lorena [21] proposed a
constructive genetic algorithm, and Corrêa et al. [22] proposed a clustering search procedure
to solve this problem. Corrêa et al. [23] convert the problem into a covering graph problem
and propose a decomposition approach to solve it. Silva and Serra [18] considered the priority
queueing covering location problem (PQCLP) for an M/M/1 system and proposed a GRASP
heuristic procedure to solve their problem.

In this paper, we consider a problem in which requests for services at each demand
point occur with a Poisson process. If the server is available at the time of a call, it travels to
the demand point to provide on-scene and perhaps off-scene services. A service is completed
only when the server returns home. If the server is unavailable, the customer is entered
into a queue with an M/G/1 system, with an infinite queue length and a FIFO discipline.
If we assume that the arriving calls from a demand point i have a Poisson distribution
with intensity fi, then the requests for service at center j is a Poisson process with an
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intensity λj , λj =
∑

i∈I:j∈Ni
fixij (see e.g., Marianov and Serra [16]). ′i ∈ I : j ∈ N

′
i denotes

the set of all demand points iwhich are in a neighborhood of candidate center j.
For an M/G/1 queueing system, the waiting time is given by the Pollaczek-Khintchine

formula (Kleinrock [24]):

Wj =

⎧⎪⎪⎨
⎪⎪⎩

λjS
2
j /2

1 − λjSj

, if 1 − λjSj > 0,

+∞, otherwise,

(2.7)

where Sj and S2
j are the first and the second moments of the service time at center j,

respectively. Hence, if the stability condition (1 − λjSj > 0) holds, then constraints (2.5) can
be written as

λj

(
1
2
S2
j + τjSj

)
≤ τj . (2.8)

Now, if we define Tıj and T2
ıj as the first and secondmoments of service times for the customer

i at center j, then we have (see, e.g., Jamil et al. [17])

Sj =
∑

i∈I:j∈Ni

hiTıjxij ,

S2
ıj =

∑
i∈I:j∈Ni

hiT
2
ıjxij ,

(2.9)

where hi is the fraction of calls originating from demand point i which is defined as
hi = fi/

∑
t∈I ft . Then,

(2.8) =⇒
⎛
⎝ ∑

t∈I:j∈Nt

ftxtj

⎞
⎠
⎛
⎝1

2

∑
i∈I:j∈Ni

hiT
2
ıjxij + τj

∑
i∈I:j∈Ni

hiTıjxij

⎞
⎠ ≤ τj

=⇒
⎛
⎝ ∑

t∈I:j∈Nt

ftxtj

⎞
⎠
⎛
⎝ ∑

i∈I:j∈Ni

hi

(
1
2
T2
ıj + τjTıj

)
xij

⎞
⎠ ≤ τj

=⇒
∑

i∈I:j∈Ni

∑
t∈I:j∈Nt

[
fthi

(
1
2
T2
ıj + τjTıj

)
xtjxij

]
≤ τj .

(2.10)

Therefore, the problem with an M/G/1 queue can be written as

Max
∑
i∈I

∑
j∈Ni

aixij ,

s.t. (2.2)–(2.4), (2.10) and (2.6).
(2.11)

To determine Tıj and T2
ıj, we use the same assumptions as in Berman et al. [10]; that is, the

average service time for demand point i from service center j consists of travel time to the
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scene, on the scene service time, travel time back to the center j, and possibly additional

off-scene time. Tıj and T2
ıj are defined as

Tıj =
βd
(
i, j
)

v
+ Zı,

T2
ıj =

(
βd
(
i, j
)

v

)2

+ 2

(
βd
(
i, j
)

v

)(
Zı

)
+ Z2

ı ,

(2.12)

where the parameter β is greater than or equal to one, d(i, j) is the distance between demand
point i and center at j, v is the speed, and Zı is the average on-scene plus off-scene (“non-
travel related”) service time associated with node i.

This problem is NP-hard, and, in general, as the problem is a nonconvex programming
problem, even small instances cannot be solved with the existing commercial softwares. A
semidefinite programming relaxation for the problem is recently presented by Kakhki and
Moghadas [25]. In Section 3 we discuss an approach for decomposing the problem into
smaller subproblems and present some solution procedures.

3. A Solution Approach for Problem P

The basic idea for our proposed algorithm is to decompose the problem into smaller
subproblems which is inspired by the solution methods suggested in the literature for the
capacitated p-median problem (see, e.g., Baldacci et al. [26] and Lorena and Senne [27]).

Suppose that we have determined the location of k − 1(k ≤ p) centers and want to
determine the location of the kth center from among the n−k+1 remaining candidate centers.
If we remove the demand points assigned to the previous k − 1 centers, then constraints
(2.2) would be satisfied for any customer. In addition we consider the constraints (2.3) and
(2.4) implicitly. Therefore, the problem can be decomposed into smaller binary quadratic
subproblems (BQSP) as follows:

vj =Max
∑

i∈I:j∈Ni

aixij ,

s.t.
∑

i∈I:j∈Ni

∑
t∈I:j∈Nt

[
fthi

(
1
2
T2
ıj + τjTıj

)
xtjxij

]
≤ τj , xij ∈ {0, 1}, ∀i ∈ I, j ∈ J,

(Pj)

where I is the set of remaining demand points, not assigned to the k − 1 previous centers.
Now starting with k = 1, we can solve n − k + 1 binary quadratic subproblems Pj for

all j not in the set of selected centers, J∗. We then find the optimal solution, j∗, delete all the
demand points assigned to j∗ from I, and add j∗ to J∗. The procedure is continued until k ≥ p,
or all the nodes are covered (I = φ). This procedure is outlined in Algorithm 1, below.

Solve (Pj, I ) solves the binary quadratic subproblem Pj for a candidate center j. If a
demand point i(i ∈ I) is assigned to j, then i is added to I∗j .Update (I) removes all demand

points assigned to j∗ from I.
This procedure can be easily extended to solve the more general case of fixed

charge facilities; that is, when the objective is Max
∑

i∈I:j∈Ni
aixij −

∑
j∈J cjyj , where cj is
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algorithm Heuristic procedure
begin

Set k = 1, J∗ = φ, I = I;
While k ≤ p & I /=φ do
begin

For all j /∈ J∗ do
(vj , I

∗
j ) = Solve (Pj , I );

end;
j∗ = Arg (Max {vj : j /∈ J∗});
Let J∗ = J∗ ∪ {j∗} and Update (I);
k = k + 1;

end;
end;

Algorithm 1: Heuristic algorithm for solving P .

the cost of establishing a center at site j. Notice that problem P is nonlinear and can be
decomposed into smaller binary quadratic subproblems. Treating the quadratic terms xijxtj ’s
as a single variable and using linearization methods, such as that of Sherali and Adams [28]
will considerably increase the dimension of the problem. Instead we propose to solve the
subproblem Pj using GRASP. In the next section, we discuss this procedure in more detail.

4. Solving Subproblem Pj with GRASP

GRASP (Greedy Randomized Adaptive Search Procedure) has been developed in late 1980s
by Feo and Resende [29, 30]. Since then, it has been successfully applied to many problems,
including the maximal covering location problem (Resende [31]). A bibliography of different
applications is compiled by Festa and Resende [32, 33]. GRASP consists of two main phases:
construction and local search. In the construction phase, a solution is built using a greedy
function and randomization. In the local search, an optimal solution in the neighborhood of
the solution found in the construction phase is obtained. Here we describe the details of the
procedure for solving subproblems Pj with GRASP. Algorithm 2 shows the GRASP algorithm
for solving BQSP Pj .

Algorithm 3 shows the details of the preprocess and CGRS-LS procedures. Here W(I∗j )
is defined as W(I∗j ) =

∑
i∈I∗j ai. The procedure starts with k = 1, key = 1. The best solution

is stored in BestSolution. The steps of the algorithm are repeated for Maxitr iterations. If
a new solution is constructed in the construction phase, then key is set equal to one, the local
search is performed, and the best solution is updated.

The restricted candidate list (RCL) for our problem includes all demand points that can
improve the objective while maintaining the waiting time constraint. If this list is empty, then
key is set equal to zero and no local search is performed; otherwise, a candidate point is
randomly selected and key is set to one, the local search is performed, and the best solution
is updated.

Algorithm 4 shows the procedure for constructing the restricted candidate list. In this
procedure, the so-called candidate parameter α ranges from zero to one. α = 0 indicates that the
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algorithm GRASP − BQSP(I, j)
begin

preprocess;
While k ≤Max i tr & key == 1 do
begin

CGRS − LS(I, I∗j , BestSolution);
k = k + 1;

end;
I∗j = BestSolution, vj = W(BestSolution);
return I∗j , vj ;

end;

Algorithm 2: GRASP procedure for solving BQSP Pj .

procedure preprocess
begin

Set k = 1, key = 1, I∗j = φ;
BestSolution = φ, W(BestSolution) = 0;

end;

procedure CGRS − LS(I, I∗j , BestSolution)
begin

ConstructGreedyRandomSolution BQSP(I, I∗j );
If key == 1 then

LocalSearch BQSP(I∗j );
If W(I∗j ) > W(BestSolution) then

BestSolution = I∗j ;
end;

end;
return I, I∗j , BestSolution;

end;

Algorithm 3: Preprocess and CGRS-LS procedures.

points are randomly selected, while α = 1 yields the greedy selection. S1 and Ritj are defined
as

S1 =
∑
i∈I∗j

∑
t∈I∗j

fiht

(
1
2
T2
ıj + τjTıj

)
,

Ritj = fiht

(
1
2
T2
ıj + τjTıj

)
.

(4.1)
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procedure MakeRCL BQSP(I, I∗j )
begin

Set RCL = φ;
amax = max{ai : i ∈ I \ I∗j , S1 + Riij +

∑
t∈I∗j (Ritj + Rtij) ≤ τj ,

stabilty condition is maintained};
For i ∈ I \ I∗j do

If ai ≥ α × amax & S1 + Riij +
∑

t∈I∗j (Ritj + Rtij) ≤ τj then
RCL = RCL ∪ {i}

end;
end;
return RCL;

end;

Algorithm 4:MakeRCL BQSP procedure.

In this algorithm S1 is actually the left hand side of (2.10). If demand point i (i ∈ I \I∗j )
is added to I∗j , then the left hand side of this equation is increased by Riij +

∑
t∈I∗j (Ritj + Rtij),

so S1 + Riij +
∑

t∈I∗j (Ritj + Rtij)must be less than τj .
In the local search, we use the 2-exchange neighborhood structure. The exchange

between two demand points i ∈ I∗j and s ∈ I\I∗j is only possible if as > ai, and, in addition,
adding s to I∗j and deleting i from I∗j would not violate the constraints. The procedure for
local search is shown in Algorithm 5.

If s ∈ I\I∗j is added to and i ∈ I∗j is deleted from I∗j , then S1 is increased by Rssj +∑
t∈I∗j (Rtsj + Rstj) and decreased by Riij +

∑
t∈I∗j , t /= i(Ritj + Rtij). In the above procedure, i ∈ I∗j

is replaced by a demand point r (r ∈ I\I∗j ) which has maximum population and would not
violate the constraints.

Finally, in construction and local search phases, adding i ∈ I to I∗j is possible only if
the stability condition is not violated.

5. GRASP for Problem P

Our procedure for solving P is similar to that proposed for the maximal covering problem by
Resende [31]). The main difference is in selection of the greedy function for construction of
the restricted candidate list. The construction of the restricted candidate list is illustrated in
Algorithm 6.

We use the GRASP procedure to solve the subproblem Pj for any candidate facili-
ty j (j ∈ J \ J∗), as indicated in line 5.

There are few differences between our implementation of GRASP and that of Silva
and Serra [18] for the M/M/1 case with priorities. In Silva and Serra [18], the allocation is
based on a set Dij which is constructed for each candidate center j. Dij contains the indices
of all demand points i for which d(i, j) is less than R. Entries in Dij are ordered according
to their distances from j. Demand points from Dij are assigned to j as long as the waiting
time constraint is not violated. Another difference is in the selection of the greedy function.
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procedure LocalSearch BQSP (I∗j )
begin

Set key = 1;
While key == 1 do
begin

key = 0;
For all i ∈ I∗j do

smax = i , amax = ai ;
For all s ∈ I \I∗j do

If (S1 − (Riij +
∑

t∈I∗j , t /= i(Ritj + Rtij)) + (Rssj +
∑

t∈I∗j (Rtsj + Rstj)) ≤ τj) & (as > ai)
& stability condition is maintained then

If as > amax then
amax = as , smax = s;

end;
end;

end;
If smax /= i then

r = smax , key = 1;
S1 = S1 − (Riij +

∑
t∈I∗j , t /= i(Ritj + Rtij)) + (Rrrj +

∑
t∈I∗j (Rtrj + Rrtj));

I∗j = I∗j ∪ {r} \ {i} , I = I ∪ {i} \ {r};
end;

end;
end;
return I∗j ;

end;

Algorithm 5: LocalSearch BQSP procedure.

procedureMackRCL–MainProblem(J∗, I)
begin

set RCL MP = φ;
For all j ∈ J \ J∗ do

[I∗j , vj]← GRASP BQSP(I, j);
end;
vmax = max{vj : j ∈ J \ J∗};
RCL MP = {j | j ∈ J \ J∗, vj ≥ α × vmax};
return RCL MP ;

end;

Algorithm 6: MackRCL–MainProblem procedure.

In Silva and Serra [18], the greedy function is the total costumer arrival rate, while ours is
the amount of increase in the objective function. Finally their local search is a comprehensive
search over all feasible solutions which improves the objective, while we use a 2-exchange
neighborhood search.
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Table 1: Computational results for test problems solved with the heuristic procedure.

Number of
demand points

Percent of population covered Least number of Average CPU
p = 1 p = 3 p = 5 p = 10 p = 15 facilities needed time for 100%

for 100% pop.
coverage

pop. coverage
(seconds)

20 77.05 98.10 — — — 4 0.79
30 70.74 95.24 100 — — 5 2.30
50 47.33 72.57 85.52 — — 9 6.58
100 34.22 58.90 74.22 94.18 100 15 55.97
150 26.23 48.34 66.34 89.77 98.46 18 192.85
200 22.37 43.46 60.64 86.36 95.74 22 468.40

6. Computational Results

The queueing maximal covering location-allocation problem with an M/G/1 is considerably
more difficult to solve than the one with an M/M/1 system, since the waiting time (quality
of service) constraints are quadratic with possibly indefinite coefficient matrices. Hence,
even small-sized problems cannot be solved with the state-of-the-art software packages of
today. Here we have tried to solve some randomly generated test problems by the proposed
algorithms. We first considered the solution of problems with heuristic algorithm where
subproblems Pj were solved with GRASP. Then we used the GRASP to solve the entire model
P . All calculations were performed on a Pentium IV processor with 2.80GHz and 2.50GB of
RAM.

The number of points in the instances ranged from 20 to 200. In these instances, the
number of candidate locations, n, was taken to be equal to the number of points, m. We
assume that each demand point is also a potential server location, and the distances are
considered to be Euclidean.

fi and τj , namely, the daily call rate and the average time limit, were taken to be 0.005
times the population and 12.75 minutes for each candidate center. The covering radius, R,
was taken to be 1.5 miles. Parameters α and β were set to 0.85 and 2; respectively, and v was
set to 5 (miles/hour). Zı is assumed to be the same for all demand points and was taken
to be 0.5 (hour). The maximum number of iterations was set to 20. Each problem was run 5
times. Percent of coverage listed are the averages. Tables 1 and 2 show the results for instances
solved with the suggested heuristic and with the GRASP procedure, respectively.

Comparison of the results for the two approaches reveals that solving the subproblems
with GRASP takes far less time than does solving the entire model. The CPU time increases
dramatically for the second algorithm as the number of points increases, while the coverage
does not improve substantially. For example, as indicated in Tables 1 and 2, for the 200 point
test problem, the first approach provides a solution with 100% coverage by selecting p = 22 in
468.40 seconds, while the second approach gives a solution with 100% coverage with p = 21
in 9905.76 seconds.

Finally, in order to have some idea about our solution methods, we tried to solve some
small instances by enumerating all possible outcomes. The results for 5 and 10 points with 1
and 2 centers are shown in Table 3.
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Table 2: Computational results for test problems solved with GRASP.

Number of
demand points

Percent of population covered Least number of Average CPU
p = 1 p = 3 p = 5 p = 10 p = 15 facilities needed time for 100%

for 100% pop.
coverage

pop. coverage
(seconds)

20 77.05 100 — — — 3 24.36
30 70.74 98.09 100 — — 5 63.45
50 47.33 74.85 87.08 — — 9 194.24
100 34.22 60.05 75.20 95.77 100 15 1270.66
150 26.23 51.37 68.13 91.16 98.79 18 4205.43
200 22.37 45.38 62.17 87.31 96.61 21 9905.76

Table 3: Comparison of the results for enumerative method with the heuristic procedure and GRASP.

m = n = 5, p = 1 m = n = 10, p = 1 m = n = 10, p = 2

Enumeration method
Percent of population covered 100 90.47 100

Population covered 2630 3230 3570
Selected center(s) 1 or 2 or 4 or 5 2 2,5

Heuristic procedure
Percent of population covered 100 90.47 100

Population covered 2630 3230 3570
Selected center(s) 1 or 2 or 4 or 5 2 2,1

GRASP
Percent of population covered 100 90.47 100

Population covered 2630 3230 3570
Selected center(s) 1 or 2 or 4 or 5 2 5,10

For these limited instances, there were no discrepancies between the solutions.
However, this of course is no proof that the algorithm always obtains an optimal solution,
but we hope and expect it to at least obtain a rather good solution.

7. Conclusion

In this paper we considered the queueing maximal covering problem with an M/G/1
queueing system. A quadratically constrained integer programming model was presented
for the problem. To solve the problem, we first considered a heuristic algorithm based on
decomposing the problem into smaller knapsack-type subproblems. Then we solved the
binary quadratic subproblems with GRASP. We also used GRASP to solve the entire model.
Our limited computational results showed that using the proposed heuristic algorithm
provide better solutions.
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