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We introduce a Markov decision process in continuous time for the optimal control of a simple
symmetrical immigration-emigration process by the introduction of total catastrophes. It is proved
that a particular control-limit policy is average cost optimal within the class of all stationary
policies by verifying that the relative values of this policy are the solution of the corresponding
optimality equation.

1. Introduction

The term “Markov decision process” was introduced by Bellman [1] for the description
of a stochastic process controlled by a sequence of actions. During the last fifty years, the
Markov decision process has been the subject of remarkable research activity. It is called
discrete-time Markov decision process or semi-Markov decision process if the times between
consecutive decision epochs are equal or random, respectively. The Markov decision process
in continuous time is a special semi-Markov decision process if the times between consecutive
decision epochs are exponentially distributed. Collections of results with some emphasis to
the theoretical aspects of Markov decision processes are given in the books of Derman [2],
Ross [3], Whittle [4, 5], Puterman [6], and Sennott [7]. The computational aspects of Markov
decision processes can be found in detail in the books of Puterman [6] and Tijms [8].

The most widely used optimization criteria in a Markov decision process are the
minimization of the finite-horizon expected cost, the minimization of the infinite-horizon
total expected discounted cost, and the minimization of the long-run expected average cost
per unit time. An intuitively appealing class of policies is the class of stationary policies.
A policy is said to be stationary if, at each decision epoch, it chooses one action which
depends only on the current state of the process. Although an optimal discounted-cost
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stationary policy exists if some mild conditions hold (see, e.g., [3] Section 6.2), there are cases
in which an optimal average-cost policy does not exist (see [3] pages 142-143). When the
state space is denumerable, there are two approaches for obtaining sufficient conditions that
guarantee the existence of optimal average-cost stationary policy. The first approach gives
sufficient conditions in terms of the solution of the optimality equation for the discounted-
cost problem (see, e.g., [3] Theorem 6.18). The second approach relates the solution of the
optimality equation for the average-cost problem (i.e., the relative values of the average-
cost optimal policy) directly to the solution of the optimality equation of the discounted-
cost problem (see, e.g., Miller [9]). Bather [10] gave sufficient conditions which guarantee
that a particular stationary policy is average-cost optimal using unbounded solutions of the
optimality equation. Note that Hordijk and Van der Duyn Schouten [11] studied the Markov
decision drift process, which unifies the above three types of Markov decision processes, and
followed the second approach in dealing with the problem of the existence of a stationary
average-cost optimal policy.

In many problems, it is intuitively reasonable that the optimal policy initiates the
controlling action if and only if the state of the process (e.g., number of customers in a queue,
degree of deterioration of a machine, content of a buffer, size of a biological population)
exceeds a critical number. Such a policy is known as a control-limit policy, and the critical
number is called the control-limit number. The proof of the optimality of a control-limit
policy is often a difficult problem and depends on the particular model. A standard method
that sometimes leads to the proof of the optimality of a control-limit policy is the method
of successive approximations. This method first establishes, by induction on the length of
the horizon, the optimality of a control-limit policy for the corresponding finite-horizon
discounted cost problem. Then, this structural property is transferred to the infinite-horizon
discounted cost problem, and, finally to the average-cost problem. We refer to a machine
replacement model (see Derman [2] pages 121–125), where this method has been used.

In the present paper, we present a Markov decision process in continuous time for the
optimal control of a symmetrical immigration-emigration process through total catastrophes
that annihilate the population size. It is assumed that the population is harmful and causes a
cost that is proportional to its size. The cost of the operation of the mechanism that introduces
the catastrophes is proportional to the rate at which catastrophes occur. In this model, it is
possible, following the method of successive approximations, to prove that the discounted-
cost optimal policy is of control-limit type, and this structural property is transferred to the
average-cost problem. However, in the present paper, we will prove that a particular control-
limit policy is average-cost optimal directly without using the discounted-cost problem. This
is possible if we apply Bather’s [10] general results. Specifically, we will show that (i) a
particular control-limit policy satisfies the average-cost optimality equation and (ii) some
mild conditions on the cost rates and transition rates are satisfied. Bather’s theory has been
applied to two other models (see Kyriakidis and Abakuks [12] and Kyriakidis [13]) in
which a simple immigration-birth process and a simple immigration process are controlled
through total catastrophes and through the introduction of a predator, respectively. The main
contribution of the present work is the presentation of a third application of Bather’s theory.
The solution of the optimality equation in this application contains linear and geometric
terms with respect to the population size in contrast with the solutions of the optimality
equations in the models studied in [12, 13] which contain linear and quadratic terms.

The rest of the paper is organized as follows. The model is presented is Section 2. In
Section 3, the average-cost optimal policy within the restricted class of control-limit policies
is found, and in Section 4, it is verified that this policy is average-cost optimal within the
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wider class of all stationary policies. Numerical results that compare the optimal policy of
the present problem with the optimal policy of the problem in which a simple immigration
process is controlled through total catastrophes are presented in Section 5. In Section 6, we
consider the case in which the immigration rate is not equal to the emigration rate, and
we give a condition that guarantees the optimality of the policy which always introduces
catastrophes. In Section 7, we summarize the results of the paper.

2. The Model

Consider a population of individuals which grow in a habitat with infinite capacity according
to a simple symmetrical immigration-emigration process. Let ν denote the immigration and
the emigration rate. We suppose that the individuals are harmful. For example, the individ-
uals may be insects which destroy a crop or spread a disease. We refer to such individuals as
pests. Assume that the rate at which damage is caused by the pests is proportional to their
population size. Defining the unit of cost to be the cost per unit time of the damage caused by
each pest, it follows that the cost of the damage caused by the pests is i per unit time, where
i is the current population size.

The pest population may be controlled by some action which introduces total catas-
trophes. When such a catastrophe occurs, the population size of the pests is instantaneously
reduced to zero. Let u be the control variable, where u is the rate at which catastrophes occur.
Assume that the unit of time has been chosen in such a way that the available values of
u are restricted to the closed interval [0, 1] so that if the maximal level of control is being
applied,then catastrophes occur at an average rate of one per unit time and the length of
time until the occurrence of a catastrophe is exponentially distributed with unit mean. The
controlling action gives rise to costs due to labour, materials, risk, and so forth. Let the cost
of taking controlling action u be ku per unit time, where k > 0. A stationary policy is defined
by a sequence {ui}, where ui ∈ [0, 1] is the level of control applied whenever the process is
in state i, i ≥ 1.

If the stationary policy ui, i ≥ 0, is employed, our assumptions imply that we have a
continuous time Markov chain model for the population growth of the pests with the state
space S = {0, 1, 2, . . .} and the following transition rates:

Transition Rate

i → i + 1, ν (i ≥ 0),

i → i − 1, ν (i ≥ 2),

i → 0, ui (i ≥ 2),

1 → 0, ν + u1.

(2.1)

The expected long-run average cost per unit time of a policy ui, i ≥ 0 is defined as the
limit as t → ∞ of the expected cost incurred in the time interval [0, t] divided by t, given
that the policy ui, i ≥ 0 is employed. We aim to find a stationary policy which minimises
the expected long-run average cost per unit time among all stationary policies. An intuitively
appealing class of policies is P ≡ {Px : x = 1, 2, . . .}, where Px is the stationary policy according
to which ui = 0, 1 ≤ i ≤ x−1, and ui = 1, i ≥ x. Thus, Px is a policy of “bang-bang” type, where
controlling action is not taken as long as the population size is less than x, but controlling
action is taken at the maximal possible level whenever the population size is greater than or
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equal to x.We refer to Px as a control-limit policy. In Section 3, the optimal policy Px∗ within P
is found, and in Section 4, the optimality of Px∗ within the wider class of all stationary policies
is established using Bather’s [10] general results.

Bather’s theory has also been applied to two other pest-control models (see [12, 13]). It
has not been applied to any other problem for the optimal control of a denumerable Markov
chain in continuous time. Note that the present model is a special case of a more general
model that was studied in [14]. In that paper, it was assumed that the immigration and
emigration rates were not necessarily equal and the cost rate caused by i pests was equal
to di, where {di} is a nondecreasing sequence such that di → ∞, as i → ∞, and di ≤ Aim for
some constant A > 0 and integer m. The characterization of the form of the optimal policy
was achieved in that work by the standard method of successive approximations that we
describe in Section 1. The approach that we follow in the present paper is direct, since it does
not use discounted programming. It includes only the solution of the corresponding average-
cost optimality equation and the verification of certain conditions on the transition rates and
on the cost rates. It also enables us, as we will see in Section 3, (i) to obtain a measure of the
advantage of starting the process in state i ≥ 0 rather than in some other state j ≥ 0 when
using the optimal policy and (ii) to obtain some interesting inequalities for the minimum
average cost and the optimal critical value x∗.

3. The Optimal Policy within the Class P

The equilibrium probabilities πi, i = 0, 1, . . . under the policy Px, x ≥ 1 satisfy the following
balance equations:

2νπi = νπi−1 + νπi+1, 1 ≤ i ≤ x − 1,

(2ν + 1)πi = νπi−1 + νπi+1, i ≥ x.

(3.1)

The above equations together with the normalising condition
∑∞

i=0 πi = 1 yield

πi =
2
(
1 − ρ

)[(
ρ − 1

)
i + x − ρ(x − 1)

]

(1 − ρ)2x2 +
(
1 − ρ2

)
x + 2ρ

, 0 ≤ i ≤ x − 1,

πi =
2
(
1 − ρ

)
ρi−x+1

(
1 − ρ

)2
x2 +

(
1 − ρ2

)
x + 2ρ

, i ≥ x,

(3.2)

where, ρ = (2ν + 1 − √
4ν + 1)/(2ν).

Using a well-known result (see, e.g., Theorem 5.10 in Ross [3]), the average cost gx
under the policy Px can be expressed in terms of the equilibrium probabilities πi, i = 0, 1, . . .
and the cost rates under Px as follows:

gx =
x−1∑

i=0

πii +
∞∑

i=x

πi(i + k). (3.3)
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Substituting (3.2) into (3.3), we obtain

gx =
(1 − ρ)3x3 + 3ρ(1 − ρ)2x2 +

(
1 − ρ

)(
2ρ2 + 5ρ − 1

)
x + 6ρ2 + 6kρ

(
1 − ρ

)

3
(
1 − ρ

)[
(1 − ρ)2x2 +

(
1 − ρ2

)
x + 2ρ

] . (3.4)

Proposition 3.1. There exists a policy Px∗ that is optimal within the class P. The appropriate value of
x∗ is equal to θ + 1, where θ is the integer part of the unique positive root of the polynomial

A(x) = (1 − ρ)3x4 + 4(1 − ρ)2x3 +
(
ρ − 1

)(
ρ2 − 2ρ − 5

)
x2

+2
(
1 − ρ

)(
2ρ + 1 − 6kρ

)
x − 12kρ, x ≥ 0.

(3.5)

Proof. Using the above expression for gx we find for x ≥ 1 that gx+1 − gx is equal to A(x)
multiplied by a positive quantity. Temporarily, treat x as a continuous real variable in the
interval [0,∞). Note that A′′(x) > 0, x ≥ 0, since 0 < ρ < 1. Hence, A(x), x ≥ 0 is strictly
convex. The convexity ofA(x), the inequalityA(0) = −12kρ < 0, and the fact thatA(x) → ∞,
as x → ∞ imply that the equation A(x) = 0 has a unique positive root r and A(x) < 0 (0 ≤
x < r), A(x) > 0 (x > r). It follows that the sequence gx, x = 1, 2, . . . attains its minimum at
the integer x∗ = θ + 1, where θ is the integer part of r.

4. Verification of Optimality

According to the results of Bather [10] the policy Px∗ is optimal within the class of all
stationary policies if there exists a constant g and a sequence of nonnegative numbers {hi},
i = 0, 1, 2, . . . such that

g = min
0≤u≤1

{i + ku + νhi+1 + uh0 + νhi−1 − (2ν + u)hi}, i ≥ 1, (4.1)

g = νh1 − νh0, (4.2)

g = i + νhi+1 + νhi−1 − 2νhi, 1 ≤ i ≤ x∗ − 1, (4.3)

g = i + k + νhi+1 + νhi−1 + h0 − (2ν + 1)hi, i ≥ x∗, (4.4)

and each stationary policy satisfies certain conditions on the cost rates and transition rates.
Equation (4.1) is referred as the optimality equation. The cost structure and transition rates
for the present problem are such that all Bather’s conditions are clearly satisfied, except for
the following one, which needs careful attention.

Given any stationary policy, let ci be the cost rate in state i and qi the sum of the
transition rates out of state i, i ≥ 0. For every stationary policy, there must exist a positive,
decreasing sequence {φi} and a positive integer n such that

∑∞
i=n φi = ∞ and

ci ≥ qihiφi, i ≥ n. (4.5)
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Note that if the (4.1)–(4.4) and the condition (4.5) are satisfied, then the constant g turns out
to be the minimum average cost. Thus, to verify the optimality of Px∗ , we choose g = gx∗ , so
that from(3.4)

g =
(1 − ρ)3(x∗)3 + 3ρ(1 − ρ)2(x∗)2 +

(
1 − ρ

)(
2ρ2 + 5ρ − 1

)
x∗ + 6ρ2 + 6kρ

(
1 − ρ

)

3
(
1 − ρ

)[
(1 − ρ)2(x∗)2 +

(
1 − ρ2

)
x∗ + 2ρ

] , (4.6)

find a sequence (hi) such that (4.1)–(4.4) are satisfied, and then, for every stationary policy,
find a sequence {φi} and an integer n such that condition (4.5) is satisfied. Let

h0 = 0. (4.7)

The unique solution of the difference equations (4.3) and (4.4), given the conditions (4.2) and
(4.7) and the expression (4.6) for g, is given by

hi = − 1
6ν

i3 +
g

2ν
i2 +

3g + 1
6ν

i, 0 ≤ i ≤ x∗, (4.8)

hi = i + k − g + cρi, i ≥ x∗ − 1, (4.9)

where

c =

[
−(x∗)3 + 3g(x∗)2 +

(
3g + 1 − 6ν

)
x∗ − 6ν

(
k − g

)]

6νρx∗ . (4.10)

Lemma 4.1. The sequence {hi}, i = 0, 1, . . . defined by (4.8) and (4.9) is nonnegative and increasing.

Proof. From the expression (4.8), we have

hi+1 − hi =
(i + 1)

(
2g − i

)

2ν
, 0 ≤ i ≤ x∗ − 1. (4.11)

Therefore to prove that the sequence {hi}, 0 ≤ i ≤ x∗, is nonnegative and increasing, it is
sufficient to show that

x∗ − 1 < 2g. (4.12)

Given the expression (4.6) for g, it can be easily verified that the inequality A(x∗ − 1) ≤ 0,
which follows from the proof of Proposition 3.1, implies the above inequality. Hence, {hi},
0 ≤ i ≤ x∗, is nonnegative and increasing. From the expression (4.9), we have

Δhi ≡ hi+1 − hi = 1 − c
(
1 − ρ

)
ρi, i ≥ x∗ − 1. (4.13)
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If c < 0, thenΔhi > 0, i ≥ x∗−1, since ρ < 1, and hence {hi}, i ≥ x∗−1 is increasing. If c > 0, then
{Δhi}, i ≥ x∗ − 1 is increasing in i. Note that it has been proved that Δhx∗−1 = hx∗ − hx∗−1 > 0.
Hence, Δhi > 0, i ≥ x∗ − 1 and consequently, {hi}, i ≥ x∗ − 1, is increasing.

The function to be minimised on the right-hand side of (4.1) is linear function of u.
Hence, the minimum is achieved either at u = 0 or at u = 1. Since {hi} is solution of (4.3) and
(4.4), to prove that (4.1) is satisfied, we need to check that

i + νhi+1 + νhi−1 − 2νhi ≤ i + k + νhi+1 + νhi−1 + h0 − (2ν + 1)hi, 1 ≤ i ≤ x∗ − 1,

i + k + νhi+1 + νhi−1 + h0 − (2ν + 1)hi ≤ i + νhi+1 + νhi−1 − 2νhi, i ≥ x∗,
(4.14)

which simplify to

hi ≤ k, 1 ≤ i ≤ x∗ − 1, (4.15)

hi ≥ k, i ≥ x∗. (4.16)

Using the result of Lemma 4.1, we deduce that the inequalities (4.16) hold if and only
if hx∗ ≥ k, which using (4.8) with i = x∗ can be written equivalently as

(x∗)3 − x∗ − 6νk
3x∗(x∗ + 1)

≤ g. (4.17)

Substituting g from (4.6) and ν from the relation

ν =
ρ

(
1 − ρ

)2 , (4.18)

the inequality (4.17) reduces to A(x∗) ≥ 0, which follows from the proof of Proposition 3.1.
If x∗ > 1, then we have to check that (4.15) holds, which again using the result of

Lemma 4.1 is true if and only if hx∗−1 ≤ k. Using (4.8) with i = x∗ − 1 the last inequality is
equivalent to

g ≤ (x∗)3 − 3(x∗)2 + 2x∗ + 6νk
3x∗(x∗ − 1)

. (4.19)

Substituting for g from (4.6) and ν from (4.18), the above inequality reduces to A(x∗ − 1) ≤ 0,
which follows from the proof of Proposition 3.1.

Thus, it has been proved that the sequence {hi}, i ≥ 0, defined by (4.8) and (4.9),
satisfies (4.1). To prove the extra condition (4.5), let n = x∗ and

φi =
[
(2ν + 1)

(
i + k − g + cρi

)]−1
, i ≥ x∗. (4.20)

The fact that the sequence {φi}, i ≥ x∗ is positive and decreasing with
∑∞

i=n φi = ∞ is
immediate from its definition and Lemma 4.1. For every stationary policy f and every state
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Table 1: The critical numbers x∗, x′.

ν \ k 1 5 10 20 50

0.5 1,1 2,2 3,3 4,4 6,7
1 1,1 3,3 4,4 5,6 7,9
5 2,1 5,4 6,6 8,10 12,18
10 3,1 6,5 8,8 10,13 15,23
20 3,1 7,5 9,9 13,15 19,29
50 7,1 9,5 12,10 16,17 24,37

i, i ≥ x∗, we have that ci ≥ i and qi ≤ 2ν + 1. Hence, the sequence {φi} will satisfy (4.5) for all
stationary policies if

i ≥ (2ν + 1)
(
i + k − g + cρi

)
φi, i ≥ x∗. (4.21)

The sequence {φi} as defined in (4.20) satisfies the above inequalities.
The proof of the following proposition, which is the main result of the paper, has been

completed.

Proposition 4.2. The policy Px∗ is optimal within the class of all stationary policies.

Remark 4.3. The method that we use in the present work for proving the optimality of Px∗

enables us to compute the difference hi − hj for any states i, j ≥ 0. This difference is equal to
the difference in total expected costs over an infinitely long period of time by starting in state
i rather than in state j when using the policy Px∗ (see Chapter 3 in Tijms’s book [8]).

Remark 4.4. The inequalities (4.17) and (4.19) imply that the minimum average cost g is
bounded below and above by two rational functions of the optimal critical point x∗. Note
also that from (4.17) and (4.19), we deduce that x∗ is bounded above by the square root of
1 + 12νk.

5. Numerical Results

In Table 1, we present for different values of ν and k the critical number x∗ for the present
model and the critical number x′ for the simplermodel in which a simple immigration process
is controlled through total catastrophes (see Kyriakidis and Abakuks [12]). The value of x∗

is equal to θ + 1, where θ is the integer part of the unique positive root of A(x) = 0, while x′

is found from (2.9) in [12]. In Table 2, we present the corresponding minimum average costs
gx∗ and gx′ (see (4) and (3.5) in [12]).

From Table 1, we see that the critical points x∗ and x′ are nondecreasing as k increases,
for fixed ν. This is intuitively reasonable, since it seems preferable to avoid introducing
catastrophes if the cost of their introduction take large values. From this table we can see
that the critical points x∗ and x′ are nondecreasing as ν increases for fixed k.We also observe
that for k ∈ {1, 5, 10}, the critical value x∗ is greater or equal to the critical value x′, while
for k ∈ {20, 50}, the critical value x∗ is smaller or equal to the critical value x′. This can be
explained intuitively, since, in the model of the present paper, for large values of k, it seems
preferable to initiate the mechanism that introduces catastrophes when the population size
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Table 2: The minimum average costs gx∗ , gx′.

ν \ k 1 5 10 20 50

0.5 0.63, 0.83 1.19, 1.90 1.55, 2.78 2.26, 4.63 2.90, 6.63
1 1.00, 1.50 1.63, 3.00 2.10, 4.20 2.71, 6.00 3.80, 9.60
5 2.31, 5.83 3.34, 8.44 4.10, 10.91 5.12, 14.67 6.92, 22.52
10 3.28, 10.91 4.50, 14.00 5.42, 17.11 6.67, 22.09 8.92, 32.82
20 4.63, 20.95 6.05, 24.40 7.17, 28.14 8.69, 34.43 11.48, 48.69
50 7.44, 50.98 8.99, 54.73 10.38, 59.08 12.35, 66.96 16.04, 86.39

is relatively small, because the emigrations of pests may reduce their size below the critical
point before a catastrophe occurs. Consequently, in this case, the catastrophe mechanism,
which causes high costs, stops. From Table 2, we see that for fixed value of ν, the minimum
average costs gx∗ and gx′ increase as k increases. From this table we can also see that, for fixed
value of k, the minimum average costs gx∗ and gx′ increase as ν increases. We also observe
that in all cases, gx∗ is considerably smaller than gx′ . This is intuitively reasonable, since the
emigration of the individuals causes a considerable reduction of the cost that they cause.

6. Control of the Asymmetric Process

Consider the same model as the one introduced in Section 1 with the following modification:
the emigration rate of the pests is μ, where μ is different from the immigration rate ν. As stated
in Section 2, the optimality of a control-limit policy can be proved through the discounted-
cost problem (see [14]). However, in this case, it is not possible to repeat the approach that
we developed in the case in which ν is equal to μ. This is due to the fact that it is difficult to
minimize analytically with respect to x the average cost gx, x ≥ 1 of the control-limit policy
Px, since it is given by

gx =
Num(x)
Den(x)

, x ≥ 1, (6.1)

where

Num(x) = βx−1
[(
1 − β

)2(1 − r)2
(
r − β

)
x2 + (r − 1)

(
1 − β

)(
3βr − 1 − r − β

)
x

+2
(
r − β

)(
r2β2 + r + β − 3rβ

)
+ 2kr

(
1 − β

)3(1 − r)
]
+ 2β(1 − r)3,

(6.2)

Den(x) = 2
(
1 − β

)
(1 − r)

[
βx−1

[(
β − r

)(
β − 1

)
(1 − r)x +

(
r − β

)(
1 − rβ

)]
+ (1 − r)2

]
, (6.3)

r =

(

ν + μ + 1 −
√(

ν − μ
)2 + 2

(
ν + μ

)
+ 1

)

(
2μ

) , β =
ν

μ
. (6.4)



10 Advances in Decision Sciences

Nevertheless, it can be shown by arguments similar to those presented in Section 4 that if

k ≤
[
ν +

(
μ − ν

)(
μr − ν

)]
(1 − r) +

(
μr − ν

)
r

(1 − r)
[
νr + μr(1 − r)

] , (6.5)

then the policy P1 is optimal, since the corresponding optimality equation is satisfied with
g = g1 and

hi = i + ν − μ + k − g1 +
(
μ + g1 − ν − k

)
(μν−1r)

i
, i ≥ 0. (6.6)

7. Discussion

A widely used criterion for the optimal control of a stochastic process is the minimization
of the expected long-run average cost per unit time. A usual method in the literature
to prove that the optimal policy has a specific structure is to show that the solution
of the corresponding average-cost optimality equation possess specific properties such as
monotonicity or convexity. This is usually achieved through the corresponding finite-horizon
and infinite-horizon discounted cost problems, since, in general, it is difficult to solve
explicitly the average-cost optimality equation.

In the present paper, we present a problem for controlling a denumerable Markov
chain in continuous time in which it is possible to solve explicitly the average-cost optimality
equation. Consequently, a particular stationary policy is proved to be average-cost optimal,
since in this problem, some extra conditions on the cost rates and on the transition rates are
valid.
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