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We develop a test for equality of variances given two independent random samples of obser-
vations. The test can be expected to perform well when both sample sizes are at least moderate
and the sample variances are asymptotically equivalent to the maximum likelihood estimators
of the population variances. The test is motivated by and is here assessed for the case when
both populations sampled are assumed to be normal. Popular choices of test would be the two-
sample F test if normality can be assumed and Levene’s test if this assumption is dubious. Another
competitor is the Wald test for the difference in the population variances. We give a nonparametric
analogue of this test and call it the R test. In an indicative empirical study when both populations
are normal, we find that when both sample sizes are at least 25 the R test is nearly as robust as
Levene’s test and nearly as powerful as the F test.

1. Introduction: Testing Equality of Variances for
Two Independent Samples

In the two-sample problem, we are given two independent random samplesX11, . . . , X1n1 and
X21, . . . , X2n2 . The location problem attracts most attention. Assuming that the samples are
from normal populations, the pooled t-test is used to test equality of means assuming equal
variances and Welch’s test can be used when equality of variances is suspect but normality is
not. When normality is in doubt, the Wilcoxon test is often used.

The corresponding dispersion problem is of interest to confirm the validity of, for
example, the pooled t-test, and when dispersion differences are of direct interest. For
example, testing for reduced variability is of interest in confirming natural selection (see,
e.g., [1, Section 5.5]) and if some processes are in control. In exploratory data analysis, it is
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sensible to assess if one population is more variable than another. If it is, the cause may be that
one population is bimodal and the other is not; the consequences of this in both the scenario
and the model can then be explored in depth.

The study here introduces a new test of equality of variances. The asymptotic null
distribution of the test statistic is χ2

1, but, depending on the populations sampled from, this
may or may not be satisfactory for small to moderate sample sizes.

To assess this, and other aspects of the proposed test, an indicative empirical study is
undertaken. We give comparisons when both populations sampled are normal, when both
samples have the same sample size, and for 5% level tests. First, we derive a finite sample
correction to the critical values based on the asymptotic null distributionwhen sampling from
normal populations. Different corrections would be needed when sampling from different
distributions. Next, we show that in moderate samples the new test is nearly as powerful as
the F test when normality may be assumed and, finally, that it is nearly as robust as Levene’s
test when normality is in doubt. Moore and McCabe [2, page 519] claim that the “F test and
other procedures for inference about variances are so lacking in robustness as to be of little
use in practice.” The new test gives a counterexample to that proposition.

We acknowledge that the new test is the most effective for at least moderate sample
sizes. In the normal case, each random sample should have at least 25 observations, which is
what we would expect of a serious study aiming at reasonable power that cannot be hoped
for with samples of size 10 or so. See Section 4.

We are aware of more expansive comparative studies such as [3, 4]. Our goal here is
not to emulate these studies but to show that the new test is competitive in terms of test size,
robustness, and power.

In Section 2, the new test is introduced. Sections 3, 4, and 5 give the results of
an empirical investigation when the populations sampled are assumed to be normal. In
Section 3, we investigate test size, showing that the asymptotic χ2 critical values should only
be used for moderate to large sample sizes. For smaller sample sizes, a finite sample cor-
rection to the asymptotic 5% χ2 critical value is given. This results in actual test sizes between
4.6% and 5.3%.

In Section 4, we show that when normality holds, the new test is not as powerful as
the Levene test for smaller sample sizes but overtakes it for moderate samples of about 25.
The new test is always inferior to the optimal F test. However, the R test has power that ap-
proaches that of the F test, being at least 95% that of the F test throughout most of the pa-
rameter space in samples of at least 80.

In Section 5, we show that if we sample from t-distributions with varying degrees of
freedom, the F test is highly nonrobust for small degrees of freedom, as is well known for
fat-tailed distributions. When both populations sampled are gamma distributions, chosen to
model skewness differences from normality, or t-distributions, chosen to model kurtosis dif-
ferences, the new test performs far better than the F test, and is competitive with the Levene
test.

That the new test gives a good compromise between power and robustness and is
valid when normality does not hold are strong reasons for preferring the new test for sample
sizes that are at least moderate, and normality is dubious.

2. Competitor Tests for Equality of Variance

Initially we assume that we have two independent random samplesXi1, . . . , Xini from normal
populations, N(μi, σ

2
i ) for i = 1 and 2. We wish to test H : σ2

1 = σ2
2 against the
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alternative K : σ2
1 /=σ2

2 , with the population means being unknown nuisance parameters. If
S2
i =

∑ni

j=1(Xij −Xi.)
2/(ni − 1), in which Xi. =

∑ni

j=1 Xij/ni, i = 1, 2, then the S2
i are the unbiased

sample variances, and the so-called F test is based on their quotient, S2
2/S

2
1 = F, say. It is well

known and will be confirmed yet again in Section 5 that the null distribution of F, Fn1−1,n2−1, is
sensitive to departures from normality. If Fn1−1,n2−1(x) is the cumulative distribution function
of the Fn1−1,n2−1 distribution, and if cp is such that Fn1−1,n2−1(cp) = p, then the F test rejects H
at the 100α% level when F ≤ cα/2 and when F ≥ c(1−α/2).

Common practice when normality is in doubt is to use Levene’s test or a nonpara-
metric test such as Mood’s test. Levene’s test is based on the ANOVA F test applied to the
residuals. There are different versions of Levene’s test using different definitions of residual.
The two most common versions use residuals based on the group means, |Xij − Xi.|, and the
group medians, |Xij − X̃i.|, in which X̃i. is the median of the ith sample. The latter is called
the Brown-Forsythe test. Again it is well known that these tests are robust in that when the
population variances are equal but the populations themselves are not normal, they achieve
levels close to nominal. However, this happens at the expense of some power. As the empiri-
cal study in this paper is intended to be indicative rather than exhaustive, we will henceforth
make comparisons only with the Levene test, based on a test statistic we denote by L.

We now construct a new test that we call the R test. For univariate parameters θ, a
Wald test statistic of H : θ = θ0 against the alternative K : θ /= θ0 is based on θ̂, the maximum
likelihood estimator of θ, usually via the test statistic (θ̂ − θ0)

2/est var(θ̂), where est var(θ̂)
is the asymptotic variance of θ̂ evaluated when θ = θ̂. Under the null hypothesis, this test
statistic has an asymptotic χ2

1 distribution. As well as being equivalent to the likelihood ratio
test, the F test is also a Wald test for testing H : θ = σ2

2/σ
2
1 = 1 against K : θ /= 1.

Rayner [5] derived the Wald test for testing H : θ = σ2
2 − σ2

1 = 0 against K : θ /= 0. The
test statistic is

(
S2
1 − S2

2

)2

2S4
1/(n1 + 1) + 2S4

2/(n2 + 1)
=W, say. (2.1)

Being a Wald test, the asymptotic distribution of W is χ2
1, while its exact distribution is not

immediately obvious. However,W is a 1-1 function of F, so the two tests are equivalent. Since
the exact distribution of F is available, the F test is the obvious test to use.

InW , the variances var(S2
j ) are estimated optimally using the Rao-Blackwell theorem.

This depends very strongly on the assumption of normality. If normality is in doubt, then
we can estimate var(S2

1 − S2
2) using results given, for example, in [6]. For a random sample,

Y1, . . . , Yn with population and sample central moments μr and mr =
∑n

j=1(Yj − Y )r/n, r =
2, 3, . . ., [6] gives that

E[mr] = μr +O
(
n−1

)
, var(m2) =

(
μ4 − μ2

2

)

n +O(n−2)
. (2.2)

Applying [6, 10.5] to the numerator of var(m2), μ2
2 may be estimated to O(n−1) by m2

2, or,
equivalently, by nm2

2/(n − 1) = S4, where S2 is the unbiased sample variance. It follows
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that, to order O(n−2), var(m2) may be estimated by (m4 − m2
2)/n. We thus propose a robust

alternative to W , given by

(
S2
1 − S2

2

)2

(
m14 − S4

1

)
/n1 +

(
m24 − S4

2

)
/n2

= R, say, (2.3)

in which mi4 are the fourth central sample moments for the ith sample, i = 1, 2. We call the
test based on R the R test. As the sample sizes increase, the distributions of the standardised
sample variances approach standard normality, the denominator in R will approximate
var(S2

1 −S2
2), and Rwill have asymptotic distribution χ2

1. Thus, if cα is the point for which the
χ2
1 distribution has weight α in the right hand tail, then the R test rejects H at approximately

the 100α% level when R ≥ cα.
We emphasise that although the motivation for the derivation of R is under the

assumption of sampling from normal populations, it is a valid test statistic for testing equality
of variances no matter what the populations sampled.

If the sample variances are equal to or asymptotically equivalent to the maximum like-
lihood estimators of the population variances, as is the case when sampling from normal pop-
ulations, then the R test is a Wald test for equality of variances in the sense described above.
Since it does not depend on any distributional assumptions about the data, it can be thought
of as a nonparametric Wald test. As such, it can be expected to have good properties in large
samples.

We note that all the above test statistics are invariant under transformations a(Xij −bi),
for constants a, b1, and b2 and for j = 1, . . . , ni and i = 1, 2.

The next three sections report an empirical study when the distributions sampled are
assumed to be normal. As this is an indicative study, we fix the samples sizes to be equal,
n1 = n2 = n, say, and the significance level to be 5% throughout.

3. Test Size under Normality

Under the null hypothesis, the distribution of F is known exactly, the distribution of L is
known approximately, and, as mentioned above, the distribution of R is known asymp-
totically. In analysing data, these distributions are used to determine P values and critical
values. We now investigate their use in determining test size, the probability of rejecting the
null hypothesis when it is true.

Two empirical assessments of test size will now be undertaken. Since the test statistics
are scale invariant, it is sufficient under the null hypothesis to take both population variances
to be one.

In the first assessment, we assume normality. For various values of the common
sample size n, we estimate the 5% critical points for each test by generating 100,000 pairs of
random samples of size n, calculating the test statistics, ordering them, and hence identifying
the 0.95th percentile. The estimated critical points ofR approach the χ2

1 5% critical point 3.841.
These estimated critical points will subsequently be used in the power study to give tests with
test the size of exactly 5%.

To see the extent of the error caused by using the asymptotic critical point 3.841,
Figure 1 gives the proportion of rejections in 100,000 pairs of random samples for sample
sizes up to 100. For n = 10, the proportion of rejections is nearly 20% and although for n = 40
this has dropped to nearly 7%, most users would hope for observed test sizes closer to 5%.
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Figure 1: Proportion of rejections of the R test using the χ2
1 5% critical point 3.841 for sample sizes up to

100.

The application of the test is improved by the use a Bartlett-type correction. This was
found by plotting the estimated 5% critical points against n and using standard curve fitting
techniques to find that the exact critical points were well approximated between n = 10 and
100 by c(n, 0.05) = 3.84146(1.339−4.953/√n+24.171/n). For larger n, it is sufficient to use the
asymptotic 5% value 3.84146, the error being at most 0.8%. We checked the exact probabilities
of rejection under the null hypothesis when applying the test with critical value c(n, 0.05),
and all were between 4.6% and 5.3%.

For levels other than 5%, and when sample sizes are unequal, further empirical work
needs to be done to find critical values. However, as this study was intended to be indicative,
we leave extensive tabulation of critical values for another time.

4. Power under Normality

For the F, Levene, and R tests, we estimate the power as the proportion of rejections from
100,000 pairs of random samples of size nwhen the first sample is from anN(0, 1) population
and the second is from anN(0, σ2) population with σ2 ≥ 1. To compare like with like, we use
estimated critical values that give exact 5% level tests. It is apparent that for sample sizes less
than about 20 the Levene test is more powerful than the R test and that for a sample size
between approximately 20 and 30 the R test takes over from the Levene test; thereafter the R
test is always more powerful than the Levene test. This is shown in Figure 2.

Both the Levene and R tests are always less powerful than the F test. This is explored
in Figure 3 that compares the Levene test to the F test in the left hand panel and the R test
to the F test in the right hand panel. What is given is a contour plot of the regions in which
the ratios of the power of the stated test to the F test are less than 95%, between 95% and
99.99%, and greater than 99.99%. Generally, for any given n and σ2, it is clear that the power
of the Levene test is at most that of the R test. For example, it appears that for n1 = n2 = 60
approximately the power of the R test is always at least 95% of that of the F test, whereas
there is a considerable region where the power of the Levene test are less than 95% of that of
the F test.
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Figure 2: Power of the 5% level L test (solid line) and R test (dashed line) for various sample sizes.
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Figure 3: Contour plots of the L test (a) and R test (b) relative to the F test showing regions in which the
power ratios are less than 95%, between 95% and 99.99%, and greater than 99.99%.

5. Robustness

Even if the R test has good power, the test is of little value unless it is robust in the sense that
when the distributions from which we are sampling are not from the nominated population
(here, the normal distribution), the P values are reasonably accurate. It is thus of interest
to estimate the proportion of rejections when the null hypothesis is true and both the pop-
ulations from which we sample are not normal. We have looked at variable kurtosis and
skewness. First, variable kurtosis was considered via t-distributions with varying degrees
of freedom ν, say. Second, variable skewness was considered through gamma distributions
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Figure 4: Test sizes for the F (dots), L (dashes), and R (solid line) tests for sample sizes of 10 and 20 for
(a), (b) t-distributions with varying degrees of freedom, ν, from 1 to 20, and (c), (d) gamma distributions
with scale parameter 1 and varying shape parameter, c, from 0.1 to 30.

with probability density functions bc−1 exp(−x)/Γ(c) for x > 0. Thus, the scale parameter
is set at one and the scale parameter c was varied. As ν and c increase, the distributions
become increasingly more normal, the distribution sampled will be close enough to normal
that we could expect the proportion of rejections to be close to the nominal.

In Figure 4, we plot the proportion of rejections for the Levene, F, and R tests when
sampling from tν distributions, for ν = 1, . . . , 20, and from gamma distributions with scale
parameter 1 and shape parameter c, for c = 0.1, . . . , 30. We show curves for each test with
common sample sizes n = 10 and 20. The critical values used for the R test are the c(n, 0.05)
from Section 3; the critical values used for the Levene test are those estimated by simulation
to give exactly the nominal level when normality holds. Thus, this comparison favours the
Levene test.

For these distributions, samples are increasingly nonnormal as ν and c decrease. It is
apparent that the F test performs increasingly poorly as these parameters decrease.

When sampling from the t-distribution, the Levene test generally has exact level closer
to the nominal level than the R test except for very nonnormal samples (small ν). However,
the level of the R test is almost always reasonable, and while for very small ν, the level is not
as close to the exact level as perhaps we may prefer, the same is the case for the Levene test.

When sampling from the gamma distribution when n = 10, the R test outperforms the
Levene test at small values of c and is slightly inferior for larger values of c, although both



8 Advances in Decision Sciences

tests have exact test sizes acceptably close to the nominal test size. When n = 20, the R test
is uniformly closer to the nominal test size than the Levene test. Although we only display
results for n = 10 and n = 20, sample sizes of more than 20 yield very similar conclusions.

6. Conclusion

First, we reflect on testing for equality of variances when it is assumed that the populations
sampled are normal. The F test is both the likelihood ratio test and a Wald test, and is
the appropriate test to apply. When normality does not hold, the F test is no longer an
asymptotically optimal test, and its well-known nonrobustness means that tests such as the
Levene are more appropriate for small to moderate sample sizes. However, for sample sizes
of about 25 or more, the R test is more powerful than the Levene, and with the small sample
corrected critical values, it holds its nominal significance level well. For these sample sizes, it
can be preferred to the Levene test.

Second, consider testing for equality of variances when both samples are drawn from
the same population. If that population is nominated, then the R test may be applied after
determining critical values or using P values calculated by Monte Carlo methods. When the
sample variances are asymptotically equivalent to the maximum likelihood estimators of the
population variances (as, e.g., is the case when sampling from normal populations but not
Poisson populations), theR test is a nonparametricWald test and hence will have good power
in sufficiently large samples. If the population is not specified, the R test can be confidently
applied when the sample sizes are large, using the asymptotic χ2

1 null distribution to calculate
P values or critical values.
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