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An inventory system for deteriorating products, with ramp-type demand rate, under two-level
trade credit policy is considered. Shortages are allowed and partially backlogged. Sufficient
conditions of the existence and uniqueness of the optimal replenishment policy are provided,
and an algorithm, for its determination, is proposed. Numerical examples highlight the obtained
results, and sensitivity analysis of the optimal solution with respect to major parameters of the
system is carried out.

1. Introduction

In the conventional economic order quantity (EOQ) model, it is assumed that the supplier
is paid for the items immediately after the items are received. In practice, the supplier may
provide to the retailer a permissible delay in payments. During this credit period, the retailer
can accumulate the revenue and earn interest on that revenue. However, beyond this period
the supplier charges interest on the unpaid balance. Hence, a permissible delay indirectly
reduces the cost of holding stock. On the other hand, trade credit offered by the supplier
encourages the retailer to buy more. Thus it is also a powerful promotional tool that attracts
new customers, who consider it as an alternative incentive policy to quantity discounts.
Hence, trade credit can play a major role in inventory control for both the supplier as well as
the retailer (see Jaggi et al. [1]). Three types of trade credit have been appeared, mainly, in
the literature:

(i) a fixed trade credit period, (Goyal [2] Aggarwal and Jaggi [3], Jamal et al. [4],
Chang and Dye [5], Teng [6], Jaber [7], Jaggi et al. [1], Ouyang and Cheng [8],
Chung and Huang [9]);
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(ii) a two-level trade credit known as r/M1/M2. More precisely, the supplier provides
r discount off the price if the payment is made within periodM1; otherwise, the full
payment is due within period M2. (Huang [10], Liao [11], Teng and Chang [12]);

(iii) a trade credit period linked to the ordering quantity (Chang et al. [13], Chung and
Liao [14], Ouyang et al. [15]).

For a comprehensive review for inventory lot-size models under trade credits, the
reader is referred to Chang et al. [16].

In the literature referring to models with permissible delay in payments, the demand
is, mostly, treated either as constant or as continuous differentiable function of time. However,
in the case of a new brand of consumer good coming to the market, its demand rate increases
in its growth stage (i.e., [0, μ]) and then remains stable in its maturity stage (i.e., [μ, T]). In
addition, the demand rate of a seasonable product increases at the beginning of the season up
to a certain moment (say, μ) and then remains constant for the rest of the planning horizon,
T . The term “ramp-type” is used to represent such demand pattern. Hill [17] proposed an
inventory model with variable branch being any power function of time. Research on this
field continues with Mandal and Pal [18], Wu and Ouyang [19], and Wu [20]. In the above-
cited papers, the optimal replenishment policy requires to determine the decision time (say,
t1) at which the inventory level falls to zero. Consequently, the following two cases should
be examined: (1) the inventory level fall to zero before the demand reaches constant (i.e.,
t1 < μ) and (2) the inventory level falls to zero after the demand reaches constant (i.e., t1 > μ).
Almost all of the researchers examined only the first case. Deng et al. [21] first reconsidered
the inventory models proposed by Mandal and Pal [18] and Wu and Ouyang [19] and
discussed both cases. Panda et al. [22] developed an inventory model for deteriorating items
(with three-parameter Weibull distributed deterioration rate) with generalized exponential
ramp-type demand rate and complete backlogging. Skouri et al. [23] extend the work of
Deng et al. [21] by introducing a general ramp-type demand rate and Weibull deterioration
rate. Panda et al. [24] presented a production-inventory model with generalized quadratic
ramp-type demand rate and constant deterioration rate when shortages are not allowed.
Skouri and Konstantaras [25] extended their previous work [23] studying an order level
inventory model for deteriorating items based on time-dependent three branches ramp-type
demand rate. Lin [26] studied an inventory model with general ramp-type demand rate,
constant deterioration rate, complete backlogging, and several replenishment cycles during
the finite time and used the hide-and-seek simulated annealing (SA) approach to determine
the optimal replenishment policy.

This paper is an extension of the inventory system of Skouri et al. [23] assuming
constant deterioration rate, when the two-level trade credit scheme, r/M1/M2, which was
described above, is considered. The study of this system requires the examination of the
ordering relations between the time parameters M1,M2, μ, T , which, actually, lead to the
following different models:

(i) M1 ≤ μ < M2 < T , (ii) M1 < M2 ≤ μ < T , (iii) μ ≤ M1 < M2 < T , (iv) μ ≤ M1 < T <
M2, (v) μ < T ≤ M1 < M2, (vi) M1 ≤ μ < T ≤ M2.

Note that from the definition of demand rate μ < T and from credit scheme M1 < M2.
This study can be used: (1) for the determination of the optimal replenishment policy

under a specific trade credit settings (corresponding to one of the six models mentioned
above) and (2) for supplier’ selection, since it is obvious that the ordering of the parameters
μ, M1, M2, T leads to different trade credit offers. Although the analysis of all models is
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available upon request, in order to reduce the length of the paper, only the first model will be
presented.

The paper is organized as follows: the notation and assumptions used are given in
Section 2. In Section 3, the quantities and functions, which are common to each of the possible
models are derived. The mathematical formulation of the first model and the determination
of the optimal policy are provided in Section 4. In Section 5, numerical examples highlighting
the results obtained are given, and sensitivity analysis with respect to major parameters of the
system is carried out. The paper closes with concluding remarks in Section 6.

2. Notation and Assumptions

The following notation is used through the paper.

2.1. Notation

T is the constant scheduling period (cycle),

t1 the time when the inventory level falls to zero,

S the maximum inventory level at each scheduling period (cycle),

Cp the unit purchase cost,

c1 the inventory holding cost per unit per unit time,

c2 the shortage cost per unit per unit time,

c3 the cost incurred from the deterioration of one unit,

c4 the per unit opportunity cost due to the lost sales (c4 > Cp see Teng et al. [27]),

p the unit selling price,

Ie the interest rate earned,

Ic the interest rate charged,

r cash discount rate, 0 < r < 1,

M1 the period of cash discount in years,

M2 the period of permissible delay in payments in years, M1 < M2,

μ the parameter of the ramp-type demand function (time point), and

I(t) the inventory level at time t.

2.2. Assumptions

The inventory model is developed under the following assumptions.

(1) The ordering quantity brings the inventory level up to the order level S. Replenish-
ment rate is infinite.

(2) Shortages are backlogged at a rate β(x)which is a nonincreasing function of x with
0 < β(x) ≤ 1, β(0) = 1 and x is the waiting time up to the next replenishment.
Moreover, it is assumed that β(x) satisfies the relation C2β(x)+C2Tβ

′(x)+Cpβ
′(x) ≥

0, where β′(x) is the derivate of β(x). The case with β(x) = 1 corresponds to
complete backlogging model.
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(3) The supplier offers cash discount if payment is paid within M1; otherwise, the full
payment is paid withinM2, (see Huang [10]).

(4) The on-hand inventory deteriorates at a constant rate θ (0 < θ < 1) per time unit.
The deteriorated items are withdrawn immediately from the warehouse and there
is no provision for repair or replacement.

(5) The demand rate D(t) is a ramp-type function of time given by

D(t) =

⎧
⎨

⎩

f(t), t < μ,

f
(
μ
)
, t ≥ μ,

(2.1)

where f(t) is a positive, differentiable function of t ∈ (0, T].

3. Deriving the Common Quantities for the Inventory Models

In this section, common quantities entering to all models will be derived. Note that these
quantities are affected only by the ordering relations between t1 and μ. The inventory level
I(t), 0 ≤ t ≤ T satisfies the following differential equations:

dI(t)
dt

+ θI(t) = −D(t), 0 ≤ t ≤ t1 (3.1)

with boundary condition I(t1) = 0 and

dI(t)
dt

= −D(t)β(T − t), t1 ≤ t ≤ T (3.2)

with boundary condition I(t1) = 0.
From the two possible relations between parameters t1 and μ, (i) t1 ≤ μ and (ii) t1 >

μ, and following identical steps as in Skouri et al. [23], the sum of holding, deterioration,
shortages, and lost sales cost is obtained as

C(t1) =

⎧
⎨

⎩

C1(t1) if t1 ≤ μ,

C2(t1) if t1 > μ,
(3.3)

where

C1(t1) = c1

{∫ t1

0
e−θt
[∫ t1

t

f(x)eθxdx

]

dt

}

+ c2

{∫μ

t1

(
μ − t

)
f(t)β(T − t)dt + f

(
μ
)
∫T

μ

[∫ t

μ

β(T − x)dx

]

dt
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+
∫T

μ

[∫μ

t1

f(x)β(T − x)dx

]

dt

}

+ c3

{∫ t1

0
f(t)eθtdt −

∫ t1

0
f(t)dt

}

+ c4

{∫μ

t1

(
1 − β(T − t)

)
f(t)dt + f

(
μ
)
∫T

μ

(
1 − β(T − t)

)
dt

}

,

(3.4)

C2(t1) = c1

{∫μ

0
e−θt
[∫μ

t

f(x)eθxdx + f
(
μ
)
∫ t1

μ

eθxdx

]

dt

+f
(
μ
)
∫ t1

μ

e−θt
[∫ t1

t

eθxdx

]

dt

}

+ c3

{∫μ

0
f(t)eθtdt + f

(
μ
)
∫ t1

μ

eθtdt −
∫μ

0
f(t)dt − f

(
μ
)(
t1 − μ

)
}

+ c2

{

f
(
μ
)
∫T

t1

(T − x)β(T − x)dx

}

+ c4

{

f
(
μ
)
∫T

t1

(
1 − β(T − t)

)
dt

}

.

(3.5)

4. Model I—The Inventory Model When M1 ≤ μ < M2 < T

In order to obtain the total cost for this model, the purchasing cost, interest charges for the
items kept in stock, and the interest earned should be taken into account.

Since the supplier offers cash discount if payment is paid within M1, there are two
payment policies for the buyer. Either the payment is paid at time M1 to receive the cash
discount (Case 1) or the payment is paid at time M2 so as not to receive the cash discount
(Case 2). Then, these two cases will be discussed.

Case 1 (payment is made at time M1). In this case, the following subcases should be
considered.

Subcase 1.1 (t1 ≤ M1 ≤ μ < T). The purchasing cost is

CA1,1(t1) = Cp(1 − r)

[∫ t1

0
f(x)eθxdx + f

(
μ
)
∫T

μ

β(T − x)dx +
∫μ

t1

f(x)β(T − x)dx

]

. (4.1)

The interest earned during the period of positive inventory level is

IT1,1(t1) = pIe

∫ t1

0

∫ t

0
f(x)dx dt + pIe(M1 − t1)

∫ t1

0
f(x)dx. (4.2)
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Since t1 ≤ μ, the total cost in the time interval [0, T] is calculated using (3.4), (4.1), and (4.2)

TC11(t1) = C1(t1) + CA1,1(t1) − IT1,1(t1). (4.3)

Subcase 1.2 (M1 < t1 ≤ μ < T). The purchasing cost is CA1,1 (relation (4.1)).
The interest payable for the inventory not being sold after the due date M1 is

PT2,1(t1) = Cp(1 − r)Ic

∫ t1

M1

e−θt
[∫ t1

t

f(x)eθx
]

dx dt. (4.4)

The interest earned is

IT2,1(t1) = pIe

∫ t1

0

∫ t

0
f(x)dxdt. (4.5)

Since again t1 ≤ μ, the total cost over [0, T] is calculated using the relations (3.4), (4.1), (4.4),
and (4.6) and is

TC12(t1) = C1(t1) + CA1,1(t1) + PT2,1(t1) − IT2,1(t1). (4.6)

Subcase 1.3 (M1 ≤ μ ≤ t1 ≤ T). The purchasing cost is

CA2,1(t1) = Cp(1 − r)

[∫μ

0
f(x)eθxdx + f

(
μ
)
∫ t1

μ

eθxdx + f
(
μ
)
∫T

t1

β(T − x)dx

]

. (4.7)

The interest earned, IT3,1, is:

IT3,1(t1) = pIe

(∫μ

0

∫ t

0
f(x)dx dt +

∫ t1

μ

∫μ

0
f(x)dx dt +

∫ t1

μ

∫ t

μ

f
(
μ
)
dx dt

)

. (4.8)

The interest payable for the inventory not being sold after the due date M1 is

PT3,1(t1) = Cp(1 − r)Ic

(∫μ

M1

e−θt
∫μ

t

eθxf(x)dx dt

+f
(
μ
)
∫μ

M1

e−θt
∫ t1

μ

eθxdx dt + f
(
μ
)
∫ t1

μ

e−θt
∫ t1

t

eθxdx dt

)

.

(4.9)

Since μ < t1, the total cost over [0, T] is again calculated from (3.5), (4.7)–(4.9) and is

TC13(t1) = C2(t1) + CA2,1(t1) + PT3,1(t1) − IT3,1(t1). (4.10)
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The results obtained lead to the following total cost function:

TC1(t1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

TC1,1(t1), t1 ≤ M1,

TC1,2(t1), M1 < t1 ≤ μ,

TC1,3(t1), μ ≤ t1.

(4.11)

So the problem is

min
t1

TC1(t1). (4.12)

Its solution requires, separately, studying each of three branches and then combining the
results to obtain the optimal policy. It is easy to check that TC1(t1) is continuous at the points
M1 and μ.

The first-order condition for a minimum of TC1,1(t1) is

dTC1,1(t1)
dt1

=
{
c1 + c3θ

θ

(
eθt1 − 1

)
− c2(T − t1)β(T − t1)

−c4
(
1 − β(T − t1)

) − pIe(M1 − t1) + Cp(1 − r)
(
eθt1 − β(T − t1)

)}

f(t1) = 0.

(4.13)

Since dTC1,1(0)/dt1 < 0 and dTC1,1(T)/dt1 > 0, (4.13) has at least one root. So if t1,1 is the root
of (4.13), this corresponds to minimum since

dTC2
1,1(t1)

dt21

∣
∣
∣
∣
∣
t1=t1,1

= f(t1,1)
{
(c1 + c3θ)eθt1,1 + c2β(T − t1,1) + c2(T − t1,1)β′(T − t1,1)

−c4β′(T − t1,1) + pIe + Cp(1 − r)
(
θeθt1,1 + β′(T − t1,1)

)}
> 0.

(4.14)

Consequently, t1,1 is the unique unconstrained minimum of TC1,1(t1).
The first-order condition for a minimum of TC1,2(t1) is

dTC1,2(t1)
dt1

=
c1 + c3θ

θ

(
eθt1 − 1

)
f(t1) − c2(T − t1)β(T − t1)f(t1) − c4

(
1 − β(T − t1)

)
f(t1)

+ Cp(1 − r)
(
eθt1 − β(T − t1)

)
+
Cp(1 − r)Ic

θ

(
eθ(t1−M1) − 1

)
f(t1)

− pIe

∫ t1

0
f(x)dx = 0.

(4.15)
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Let us set h(x) = c2xβ(x) + c4(1 − β(x)) − pIex. If t1,2 is the root of (4.15) (this may or may not
exist), f(x) is an increasing function and further if h′(x) > 0, then

d2TC1,2(t1)

dt21

∣
∣
∣
∣
∣
t1=t1,2

= pIef
′(t1,2)

∫ t1,2

0
f(x)dx

+ f(t1,2)
{
(c1 + c3θ)eθt1,2 + c2

[
β(T − t1,2) + (T − t1,2)β′(T − t1,2)

]

− c4β
′(T − t1,2) + Cp(1 − r)Iceθ(t1,2−M1)

+Cp(1 − r)
(
θeθt1,2 + β′(T − t1,2)

)
− pIe

}
> 0,

(4.16)

and this t1,2 corresponds to unconstrained minimum of TC1,2(t1).
The first-order condition for a minimum of TC1,3(t1) is

dTC1,3(t1)
dt1

= f
(
μ
)
{
c1 + c3θ

θ

(
eθt1 − 1

)
− c2(T − t1)β(T − t1) − c4

(
1 − β(T − t1)

)

−pIe
(
t1 − μ

)
+
Cp(1 − r)Ic

θ

(
eθ(t1−M1) − 1

)
+ Cp(1 − r)

(
eθt1 − β(T − t1)

)}

− pIe

∫μ

0
f(x)dx = 0.

(4.17)

If t1,3 is the root of (4.17) (this may or may not exist) and h′(x) > 0, then

d2TC1,3(t1)
dt21

=
(
(c1 + c3θ)eθt1 + c2

[
β(T − t1) + (T − t1)β′(T − t1)

] − c4β
′(T − t1)

−pIe + Cp(1 − r)Iceθ(t1−M1) + Cp(1 − r)
(
θeθt1 + β′(T − t1)

))
f
(
μ
)
> 0,

(4.18)

this t1,3 corresponds to unconstrained minimum of TC1,3(t1).

Remark 4.1. The function TC1(t1) is not differentiable inM1.
Then, the following procedure summarizes the previous results for the determination

of the optimal replenishment policy, when payment is made at timeM1.

Step 1. Find the global minimum of TC1,1(t1), say t∗1,1,M1
, as follows.

Substep 1.1. Compute t1,1,M1 from (4.13); if t1,1,M1 < M1, then set t∗1,1,M1
= t1,1,M1 and compute

TC1,1(t∗1,1,M1
) else go to Substep 1.2.

Substep 1.2. Find the min{TC1,1(0), TC1,1(M1)} and accordingly set t∗1,1,M1
.

Step 2. Find the global minimum of TC1,2(t1), say t∗1,2,M1
, as follows.
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Substep 2.1. Compute t1,2,M1 from (4.15); if M1 < t1,2,M1 < μ, then set t∗1,2,M1
= t1,2,M1 and

compute TC2(t∗1,2,M1
) else go to Substep 2.2.

Substep 2.2. Find the min{TC1,2(M1), TC1,2(μ)} and accordingly set t∗1,2,M1
.

Step 3. Find the global minimum of TC1,3(t1), say t∗1,3,M1
, as follows.

Substep 3.1. Compute t1,3,M1 from (4.17); if μ < t1,3,M1 , then set t∗1,3,M1
= t1,3,M1and compute

TC1,3(t∗1,3,M1
) else go to Substep 3.2.

Substep 3.2. Find the min{TC1,3(μ), TC1,3(T)} and accordingly set t∗1,3,M1
.

Step 4. Find the min{TC1,1(t∗1,1,M1
), TC1,2(t∗1,2,M1

), TC1,3(t∗1,3,M1
)} and accordingly select the

optimal value for t1 say t1,M1 with optimal cost C1(t1,M1).

Case 2 (payment is made at time M2). When the payment is made at time M2 the following
cases should be considered.

Subcase 2.1 (t1 ≤ μ < M2 < T). The purchasing cost is.

CA1,2(t1) =
CA1,1(t1)
1 − r

. (4.19)

The interest earned during the period of positive inventory level is.

IT1,2(t1) = pIe

∫ t1

0

∫ t

0
f(x)dx dt + pIe(M2 − t1)

∫ t1

0
f(x)dx. (4.20)

Since t1 ≤ μ, the total cost in the time interval [0, T] is calculated using (3.4), (4.19), and (4.20)

TC2,1(t1) = C1(t1) + CA1,2(t1) − IT1,2(t1). (4.21)

Subcase 2.2 (μ < t1 ≤ M2 < T). The purchasing cost is

CA2,2 =
CA2,1(t1)
1 − r

. (4.22)

The interest earned is

IT2,2(t1) = pIe

[∫μ

0

∫ t

0
f(x)dx dt +

∫M2

μ

∫μ

0
f(x)dx dt +

∫ t1

μ

∫ t

μ

f
(
μ
)
dx dt

+
∫M2

t1

∫ t1

μ

f
(
μ
)
dx dt

]

.

(4.23)
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Since again μ ≤ t1, the total cost over [0, T] is calculated using the relations (3.5), (4.22), and
(4.23) and is

TC2,2(t1) = C2(t1) + CA2,2(t1) − IT2,2(t1). (4.24)

Subcase 2.3 (μ ≤ M2 ≤ t1 ≤ T). The purchasing cost is CA2,2(t1).
The interest earned, IT3,2, is

IT3,2(t1) = pIe

(∫μ

0

∫ t

0
f(x)dx dt +

∫ t1

μ

∫μ

0
f(x)dx dt +

∫ t1

μ

∫ t

μ

f
(
μ
)
dx dt

)

. (4.25)

The interest payable for the inventory not being sold after the due date M2 is

PT3,2(t1) = CpIcf
(
μ
)
∫ t1

M2

e−θt
∫ t1

t

eθxdx dt. (4.26)

Since μ < t1, the total cost over [0, T] is again calculated from (3.5), (4.22), (4.25), and (4.26)
and is

TC2,3(t1) = C2(t1) + CA2,2(t1) + PT3,2(t1) − IT3,2(t1). (4.27)

The results obtained lead to the following total cost function:

TC2(t1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

TC2,1(t1), t1 ≤ μ,

TC2,2(t1), μ < t1 ≤ M2,

TC2,3(t1), M2 ≤ t1.

(4.28)

So the problem is

min
t1

TC2(t1). (4.29)

Its solution, as in the previous case, requires, separately, studying each of three branches and
then combining the results to obtain the optimal policy. It is easy to check that TC2(t1) is
continuous at the points M2 and μ.

The first-order condition for the minimum for TC2,1(t1) is

dTC2,1(t1)
dt1

=
{
c1 + c3θ

θ

(
eθt1 − 1

)
− c2(T − t1)β(T − t1) − c4

(
1 − β(T − t1)

)

−pIe(M2 − t1) + Cp

(
eθt1 − β(T − t1)

)}

f(t1) = 0.

(4.30)
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Since dTC2,1(0)/dt1 < 0 and dTC2,1(T)/dt1 > 0, (4.30) has at least one root. So if t1,1 is the root
of (4.30), this corresponds to minimum as

dTC2
2,1(t1)

dt21

∣
∣
∣
∣
∣
t1=t1,1

= f(t1,1)
{
(c1 + c3θ)eθt1,1 + c2β(T − t1,1) + c2(T − t1,1)β′(T − t1,1)

−c4β′(T − t1,1) + pIe + Cp

(
θeθt1,1 + β′(T − t1,1)

)}
> 0.

(4.31)

So t1,1 is the unconstrained minimum of TC2,1(t1).
The first-order condition for a minimum of TC2,2(t1) is

dTC2,2(t1)
dt1

= f
(
μ
)
{
c1 + c3θ

θ

(
eθt1 − 1

)
− c2(T − t1)β(T − t1) − c4

(
1 − β(T − t1)

)

−pIe(M2 − t1) + Cp

(
eθt1 − β(T − t1)

)}

= 0.

(4.32)

If t1,2 is the root of (4.32) (this may or may not exist), this corresponds to unconstrained
minimum of TC2,2(t1) as

dTC2
2,2(t1)

dt21

∣
∣
∣
∣
∣
t1=t1,2

= f
(
μ
){

(c1 + c3θ)eθt1,2 + c2β(T − t1,2) + c2(T − t1,2)β′(T − t1,2)

−c4β′(T − t1,2) + pIe + Cp

(
θeθt1,2 + β′(T − t1,2)

)}
> 0.

(4.33)

The first-order condition for a minimum of TC2,3(t1) is

dTC2,3(t1)
dt1

= f
(
μ
)
{
c1 + c3θ

θ

(
eθt1 − 1

)
− c2(T − t1)β(T − t1) − c4

(
1 − β(T − t1)

) − pIe
(
t1 − μ

)

+
CpIc

θ

(
eθ(t1−M2) − 1

)
+ Cp

(
eθt1 − β(T − t1)

)}

− pIe

∫μ

0
f(x)dx = 0.

(4.34)

If t1,3 is a root of (4.34) (this may or may not exist) and c1 + c3θ + CpIc ≥ pIe this corresponds
to unconstrained minimum of TC2,3(t1) as

dTC2
2,3(t1)

dt21
=
{(

c1 + c3θ + CpIc
)
eθt1 + c2β(T − t1) + c2(T − t1)β′(T − t1)

−c4β′(T − t1) − pIe + Cp

(
θeθt1 + β′(T − t1)

)}
f
(
μ
)
.

(4.35)

Remark 4.2. The function TC2(t1) is not differentiable inM2.
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The procedure for the determination of the optimal replenishment policy when
payment is made at timeM2 is as follows.

Step 1. Find the global minimum of TC2,1(t1), say t∗1,1,M2
, as follows.

Substep 1.1. Compute t1,1,M2 from (4.30); if t1,1,M2 < μ, then set t∗1,1,M2
= t1,1,M2 and compute

TC2,1(t∗1,1,M2
) else go to Substep 1.2.

Substep 1.2. Find the min{TC2,1(0), TC2,1(μ)} and accordingly set t∗1,1,M2
.

Step 2. Find the global minimum of TC2,2(t1), say t∗1,2,M2
, as follows.

Substep 2.1. Compute t1,2,M2 from (4.32); if μ < t1,2,M2 < M2, then set t∗1,2,M2
= t1,2,M2 and

compute TC2,2(t∗1,2,M2
) else go to Substep 2.2.

Substep 2.2. Find the min{TC2,2(μ), TC2,2(M2)} and accordingly set t∗1,2,M2
.

Step 3. Find the global minimum of TC2,3(t1), say t∗1,3,M2
, as follows.

Substep 3.1. Compute t1,3,M2 from (4.34); if M2 < t1,3,M2 < T , then set t∗1,3,M2
= t1,3,M2 and

compute TC2,3(t∗1,3,M2
) else go to Substep 3.2.

Substep 3.2. Find the min{TC2,3(M2), TC2,3(T)} and accordingly set t∗1,3,M2
.

Step 4. Find the min{TC2,1(t∗1,1,M2
), TC2,2(t∗1,2,M2

), TC2,3(t∗1,3,M2
)} and accordingly select the

optimal value for t1 say t1,M2 with optimal cost TC2(t1,M2).
Finally to find the overall optimum t1 for the problem under consideration, the results

obtained for the two presented cases (i.e., payment is made at M1 and payment is made
at M2) are combined, that is, find min{TC1(t1,M1), TC2(t1,M2)} and accordingly select the
optimal value t∗1.

5. Numerical Examples and Sensitivity Analysis

In this section, a numerical example is provided to illustrate the results obtained in
previous sections. In addition, a sensitivity analysis, with respect to some important model’s
parameters, is carried out.

The input parameters are c1 = 3 C per unit per unit time, c2 = 15 C per unit per unit
time, c3 = 5 C per unit, c4 = 20 C per unit per unit time, r = 0.005, μ = 0.3 years, θ = 0.001,
T = 0.5 years, f(t) = 3e4.5t and β(x) = e−0.2x,M1 = 0.13 years,M2 = 0.43 years, p = 15,Cp = 10,
Ie = 0.12, Ic = 0.15.

5.1. The Payment Is Made at M1

From (4.13), t1,1,M1 = 0.399, which is not feasible as t1,1,M1 > M1. Since TC1,1(0) = 55.469 and
TC1,1(M1) = 51.9633, it follows that t∗1,1,M1

= M1. From (4.15), t1,2,M1 = 0.426, which is not
valid again as t1,2,M1 > μ. Since TC1,1(M1) = TC1,2(M1) = 51.9633 and TC1,2(μ) = 46.6669, the
optimal value for t∗

1,2,M1
= μ. From (4.17) t1,3,M1 = 0.423; this value for t1 is valid as μ < t1,3,M1 <

T so t∗1,3,M1
= t1,3,M1 and TC1,3(t∗1,3,M1

) = 44.8287.
Finally TC1,3(t∗1,3,M1

) = min{TC1,1(M1), TC1,2(μ), TC1,3(t∗1,3,M1
)} = 44.8287 and con-

sequently t∗1,M1
= 0.423.
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Table 1: Sensitivity analysis: the effect of changing the parameter (i) keeping all other parameters
unchanged.

Parameter (i) Percentage of changes (%) t∗1 Time of payment TC(t∗1)

μ

−50 0.46 M2 27.0538
−25 0.44 M2 44.4206
+25 0.45 M2 52.8972
+50 0.45 M2 58.8673

M1

−50 0.451 M2 44.3039
−25 0.451 M2 44.3039
+25 0.451 M2 44.3039
+50 0.451 M2 44.3039

M2

−50 0.434 M2 44.4075
−25 0.443 M2 44.4206
+25 0.43 M2 43.6966
+50 0.43 M2 43.5449

r

−50 0.451 M2 44.3039
−25 0.451 M2 44.3039
+25 0.451 M2 44.3039
+50 0.451 M2 44.3039

5.2. The Payment Is Made at M2

From (4.30), t1,1,M2 = 0.424 which is not feasible as t1,1,M2 > μ. Since TC2,1(0) =
55.6719και TC2,1(μ) = 46.2334, it follows that t∗1,1,M2

= μ. From (4.32), t1,2,M2 = 0.424 which
is valid again as μ < t1,2 < M2 so t∗1,2,M2

= 0.424 and TC2,2(t∗1,2,M2
) = 44.3497. From (4.34),

t1,3,M2 = 0.451; this value for t1 is also valid as μ < M2 < t1,3 < T so t∗1,3,M1
= t1,3,M1 and

TC2,3(t∗1,3,M1
) = 44.3039.

Finally TC2,3(t∗1,3,M2
) = min{TC2,1(μ), TC2,2(t∗1,3,M2

), TC2,3(t∗1,3,M2
)} = 44.3039, and con-

sequently t∗1,M2
= 0.451.

So, as TC2(t1,M2) = min{TC1(t1,M1), TC2(t1,M2)}, the optimal t1 is t∗1 = t∗1,M2
= 0.451,

which leads to a payment at M2.
Using the data of the previous example, a sensitivity analysis is carried out to explore

the effect of change on some, of the basic, model’s parameters (μ,M1,M2, T, r) to the optimal
policy (i.e., t1 time of payment and optimal total cost). The results are presented in Table 1
and some interesting findings are summarized as follows.

(1) The changes of parameters M1, M2 and r have no impact on the optimal t1, the
time of payment and the optimal cost.

(2) The error on the parameters’ estimation of μ has no impact on the time of payment,
small impact on the optimal t1, but high impact on the total optimal cost. This last
observation is in line with the relative findings in Deng et al. [21].

6. Conclusions

In this paper, the following interrelated factors, which have appeared in the literature of
inventory control, are incorporated: (i) the product’s life cycle, which implies that its demand
can be described as a ramp-type function of time, (ii) the effect of deterioration, (iii) the
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r/M1/M2 credit scheme, which can be offered by supplier to the retailer for stimulating the
demand, and (iv) the diminished, with the waiting time, backlogging rate, which is described
as a decreasing function of time. As a result, this paper is a modification of the inventory
system presented by Skouri et al. [23] when the r/M1/M2 credit scheme is considered. The
study of this system requires the examination of the ordering relations between the time
parameters M1, M2, μ, T , which, actually, lead to the six different models. This inventory
system, setting f(t) = D0t, β(x) = 1, M1 = M2 = 0, Ip = 0, and Ic = 0, can give as special
cases the ones presented by Mandal and Pal [18], Wu and Ouyang [19], and Deng et al. [21].
This model could be extended assuming several replenishment cycles during the planning
horizon. For this extension, the application of some popular heuristic optimization algorithm
(like Particle Swarm Optimization or Differential Evolution) may be useful, [28–30].
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