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Nonlinear mixed-effects models are very useful in analyzing repeated-measures data and have
received a lot of attention in the field. It is of common interest to test for the correlation within
clusters and the heterogeneity across different clusters. In this paper, we address these problems
by proposing a class of score tests for the null hypothesis that all components of within- and
between-subject variance are zeros in a kind of nonlinear mixed-effects model, and the asymptotic
properties of the proposed tests are studied. The finite sample performance of this test is examined
through simulation studies, and an illustrative example is presented.

1. Introduction

Repeated-measures data are frequent observations in different areas of investigation, such as
economics and pharmacokinetics. For instance, in longitudinal studies, observations on the
same subject are usually made at different times. Analysis of such data requires accounting
for the within-cluster correlation and the between-subject heterogeneity of the data. Random-
effects models are commonly used for analyzing clustered and repeated-measures data. It
is of no doubt that the linear mixed-effects models play an important role in evaluating
and analyzing the repeated-measures and clustered data. For an example, see Laird and
Ware [1]. However, many repeated-measures data, such as growth data, dose-response and
pharmacokinetics data, are inherently nonlinear with respect to a given response regression
function. Several different nonlinear mixed-effects model and various inference procedures
have been proposed [2–5]. For models considered in these literatures, one of the interesting
issues is whether there exists correlation within clusters or/and heterogeneity between
subjects. It is well known that the misspecification of model can have serious impact



2 Advances in Decision Sciences

on statistical inference. In regression model, two of the common assumptions are that of
homogeneity and independence; the violation of these two assumptions can have adverse
consequence for the efficiency of the estimators. So it is important to check these two
assumptions whenever possible. For repeated-measures data and cluster data, if one can
identify that there are no heterogeneity and correlation, which are caused by random effects,
then a simple model can be used to fit the data and the efficient statistical inference can be
obtained. However, if there are heterogeneity and correlation among outcomes and one does
not identify their existence, then the overestimate or underestimate will be obtained for the
parameters in model, and the precision and confidence of statistical inference are affected and
even the mistaken conclusion is obtained. Therefore, It is an important and meaningful work
to test the heteroscedasticity and correlation among outcomes in nonlinear mixed-effects
model with repeated-measures data.

For testing explainable heterogeneity of variance, Cook andWeisberg [6] and Simonoff
and Tsai [7] investigated the score test in classical linear models. Cai et al. [8], Eubank
and Thomas [9], and Oyet and Sutradhar [10] considered some problems in nonparametric
regression models. A number of tests for the unexplainable heterogeneity of variance have
been proposed. Liang [11] applied the score test for homogeneity in different groups.
Jacqmin-Gadda and Commenges [12] extended Liang’s work to canonical generalized
linear models(GLMs) with random effects and GEEs with a single correlation parameter.
Lin [13] developed a unified theory for testing for correlation and heterogeneity in the
framework of GLMs with random effects, using the Laplace expansion of the integrated
log-quasilikelihood. Zhu and Fung [14] extended Lin’s work [13] to semiparametric mixed
models. Zhang andWeiss [15] divided the heterogeneity of the variance into explainable and
unexplainable and considered the test of explainable heterogeneity. However, for a nonlinear
mixed-effects model with repeated-measures data, such tests have not been developed. Our
aim here is to develop a class of score tests for correlation within clusters and heterogeneity
across different subjects in a nonlinear mixed-effects model.

Following Lin [13], we use the Laplace expansion to derive a class of score tests of
homogeneity and correlation for hierarchical nonlinear mixed-effects model. The advantage
of the score test is that it does not require the user to specify the joint distribution of the
random effects. Thus this test is rather easy to be carried out. We give the asymptotic
distribution of the test statistic under the null hypothesis and examine the finite-sample
performance of the test through a Monte Carlo simulation study. It is found that the
performance of this test is satisfactory in terms of both size and power even when the
samples are of medium size. The rest of this paper is organized as follows. In Section 2,
nonlinear mixed-effects model is introduced. In Section 3, we derive the score test statistic
for the testing of correlation within clusters and heterogeneity across different subjects and
give the asymptotic distribution of the test statistic under the null hypothesis. In Section 4,
we examine the finite-sample performance of these tests through a Monte Carlo simulation
study and a real example is analyzed.

2. Nonlinear Mixed-Effects Model

In this paper, we consider the following nonlinear mixed-effects model as proposed by
Pinheiro and Bates [5]. In the first stage the jth observation on the ith subject is modeled
as

yij = f
(
φij , xij

)
+ εij , i = 1, . . . , m, j = 1, . . . , ni, (2.1)



Advances in Decision Sciences 3

where f(·, ·) is a twice-differentiable smooth nonlinear function of a subject-specific
parameter vector φij and the predictor xij , εij is a normally distributed noised term, m is
the total number of subjects, and ni is the number of observations on the ith subject, and
n =

∑m
i=1 ni is the total number of observations. In the second stage, the subject-specific vector

is modeled as

φij = Aijβ + Bijbi, (2.2)

where β is a p × 1 vector of unknown parameters, bi, i = 1, . . . , m, are independent qi × 1
of random effects associated with the ith subject, and Aij and Bij are design matrices for
fixed and random effects, respectively. The random effects bi account for the correlation
with the same cluster. Furthermore, we make the following distributional assumptions.
The εij , i = 1, . . . , m, j = 1, . . . , ni, are independently distributed as N(0, σ2mij), where
mij = m(zij , γ), m(·, ·) is a twice differentiable function, γ is a r × 1 vector of unknown
parameters, zij are the known design vectors, and m(zij , γ0) = 1 if and only if γ = γ0, and

they are independent of bi. Let b = (bT1 , . . . , b
T
m)

T denote the vector obtained from stacking up
the m cluster-specific entries and assume that b is generated from some distribution F with
mean zero and covariance matrix D(θ) with D(θ) = diag(D1(θ), . . . , Dm(θ)), where θ is a
s×1 vector of unknown variance component. The magnitude of θ can be used to measure the
degree of correlation and heterogeneity of the cluster-specific response vector within each
subject. We postulate that each component of Di(θ) = cov(bi) is a function of θ such that
Di(θ) = 0(i = 1, . . . , m) if θ = θ0. We further assume that the third- and higher-order moments
of the random effects bi are of order o(‖θ‖). These conditions are consistent with Lin [13], Hall
and Praestgaard [16], and Zhu and Fung [14]. This model can be regarded as a hierarchical
model that in some aspects generalized the linear mixed-effects model of Laird andWare [1],
the usual nonlinear model for independent data of Bates and Watts [17].

It should be pointed out that the distribution of the random error εij , i = 1, . . . , m, j =
1, . . . , ni, need not to be normal. In this paper, we still assume the εij , i = 1, . . . , m, j = 1, . . . , ni,
to be normal. The main reason is to have the computation and deduction in mathematics
become relatively simple. From the results presented in the below of this paper, it can be
found that the derivation of the score test statistics is on the basis of the complete-data log
likelihood, which requires making some specifications for the random error in model and
further the random error is directly related to the complexity and difficulty of computation
and deduction in mathematics. In nonlinear mixed-effects model, the random effects entering
nonlinearly in model make the likelihood analysis of nonlinear mixed-effects model more
difficult and complicated than that of their linear counterpart. It can be seen that even if the
error distribution is assumed to be normal, the computation and deduction of the test score
are cumbersome, let alone the error distribution is the others. In addition, the score test does
not depend on the normality of the random error, but some good properties of the normal
distribution help us obtain the test statistics. Therefore, we choose the normal distribution as
that of the random error.

For model (2.1) and (2.2), there is either the correlation within clusters or
heterogeneity among observations. First, we investigate whether there exists correlation
among observations in the same subject; it is equivalent to test D(θ) = 0 or not. Thus we
can use the hypothesis

H0 : θ = θ0, H1 : θ /= θ0 (2.3)



4 Advances in Decision Sciences

for the test of the correlation within clusters in nonlinear mixed model. Second, we
study whether there exists heterogeneity of between-subject variance and correlation within
clusters at the same time. To address this problem, we can use the composite hypothesis

H0 : θ = θ0, γ = γ0, H1 : θ /= θ0, or γ /= γ0. (2.4)

The testing of random effects in the nonlinear mixed-effects models has been discussed
in some literatures (e.g., Jacqmin-Gadda and Commenges [12], Hall and Praestgaard [16],
and Zhu and Fung [14]). However, the models they investigated are confined to the additive
nonlinear mixed-effects model; that is, the random effects added to a nonlinear function
or the rand noise is i.i.d random. Moreover, they generally studied the hypothesis (2.3),
which tested whether there exists the correlation within clusters. In our paper, we consider
the testing of random effects under some considerably general conditions for hierarchical
nonlinear mixed-effects models. We not only study the testing correlation within clusters, but
also investigate whether there exists heterogeneity of between-subject variance at the same
time.

Let Yi = (yi1, . . . , yini)
T , fi = (fi1, . . . , fini)

T , fij = f(φij , xij), εi = (εi1, . . . , εini)
T ,

and Mi = diag(mi1, . . . , mini). Denote the the vector obtained from stacking up the m

cluster-specific entries of the same symbol by Y = (YT
1 , . . . , Y

T
m)

T
, f = (fT

1 , . . . , f
T
m)

T
, M =

diag(M1, . . . ,Mm), and ε = (εTi , . . . , ε
T
m)

T . To derive score tests for null hypothesis in which
θ = θ0 and θ = θ0, γ = γ0. We firstly study the properties of the log likelihood in model (2.1)
and (2.2). For a given b, the conditional log-likelihood of nonlinear mixed-effects model and
its derivative are as follows:

l∗
(
y, β, σ2, γ, b

)
= − (Y − f)TM−1(Y − f)

2σ2
− n lnσ2

2
− 1
2

m∑

i=1

ln|Mi|,

∂l∗
(
y, β, σ2, γ, b

)

∂b

∣∣∣∣∣
b=0

= − 1
σ2

∂(Y − f)T

∂b
M−1(Y − f)

∣∣∣∣∣
b=0

,

∂(Y − f)T

∂b
=

(
∂
(
YT
1 − fT

1

)

∂b
, . . . ,

∂
(
YT
m − fT

m

)

∂b

)

,

∂
(
YT
i − fT

i

)

∂b
= −

(
∂f

(
φi1

)

∂b
, . . . ,

∂f
(
φini

)

∂b

)

= −

⎛

⎜⎜
⎝

0

Ωi

0

⎞

⎟⎟
⎠

q×ni

,

(2.5)

where Ωi = (BT
i1ḟi1, . . . , B

T
ini
ḟini)qi×ni

, q =
∑m

i=1 qi, ḟij is the first partial derivative of f(φij , xij)
with respect to φij , and

∂l∗
(
y, β, σ2, γ, b

)

∂b

∣∣∣∣∣
b=0

=
1
σ2

diag(Ω1, . . . ,Ωm)M−1 (Y − f)|b=0,

∂2l∗
(
y, β, σ2, γ, b

)

∂b∂bT
=

1
σ2

· ∂P

∂
(
bT1 , . . . , b

T
m

) ,
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P =
((

Y1 − f1
)T
M−1

1 ΩT
1 , . . . ,

(
Ym − fm

)T
M−1

m ΩT
m

)T
,

∂ΩiM
−1
i

(
Yi − fi

)

∂
(
bT1 , . . . , b

T
m

) =

(
∂ΩiM

−1
i

(
Yi − fi

)

∂bT1
, . . . ,

∂ΩiM
−1
i

(
Yi − fi

)

∂bTm

)

=

(

0, . . . ,
∂ΩiM

−1
i

(
Yi − fi

)

∂bTi
, . . . , 0

)

,

∂ΩiM
−1
i

(
Yi − fi

)

∂bTi

∣
∣
∣
∣
∣
b=0

=
∂
∑ni

j=1 B
T
ij ḟijm

−1
ij

(
yij − f

(
φij , xij

))

∂bTi
= Qi,

(2.6)

whereQi =
∑ni

j=1 B
T
ij[f̈ijm

−1
ij (yij − f(φij)) − ḟijm

−1
ij ḟ

T
ij ]Bij and f̈ij is the second partial derivative

of f(φij , xij) with respect to φij evaluated at b = 0, and then

∂2l∗
(
y, β, σ2, γ, b

)

∂b∂bT

∣∣∣∣∣
b=0

=
1
σ2

diag(Q1, . . . , Qm). (2.7)

3. Score Test for Correlation and Heterogeneity within Clusters

In this section, we firstly use the Laplace expansions to develop a score test for the null
hypothesis H0 : θ = 0 under model (2.1) and (2.2), which corresponds to having no
correlation within clusters. Then using the same approach, we obtain a score test statistic
for the null hypothesis H0 : θ = 0, γ = 0 under model (2.1) and (2.2), which corresponds
to having no correlation within clusters and heterogeneity of between-subject variance at the
same time.

Let ξ = (βT , σ2, γT )T , for an n × 1 data vector Y following model (2.1) and (2.2). The
likelihood function is

L(ξ, θ) =
∫
exp

{
l∗
(
y, ξ, θ, b

)}
dF(b). (3.1)

Using the moment assumptions on the random effects b and the Laplace expansion similar to
Lin [13] and Hall and Praestgaard [16], we expand the integrated likelihood (3.1) and obtain
the marginal log-likelihood for (ξ, θ) as follows:

l
(
y, ξ, θ

)
= l∗

(
y, ξ, 0

)
+
1
2
tr

[

D(θ)

(
∂l∗

(
y, ξ, 0

)

∂b

∂l∗
(
y, ξ, 0

)

∂bT
+
∂2l∗

(
y, ξ, 0

)

∂b∂bT

)]

+ o(‖θ‖),

(3.2)

where l∗(y, ξ, 0) = l∗(y, ξ, θ, b)|θ=θ0 , ∂l∗(y, ξ, 0)/∂b = (∂l∗(y, ξ, θ, b)/∂b)|b=0 and ∂2l∗(y, ξ, 0)/
∂b∂bT = (∂2l∗(y, ξ, θ, b)/∂b∂bT )|b=0. Note that (3.2) mimics a Laplace expansion of l(y, ξ, θ)
[18]. Many authors extended this expansion to a variety of models; see Lin [13] for an
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example. It is worth pointing out that (3.2) is a second-order expansion of the marginal
distribution of Y about b = 0. For model (2.1) and (2.2), from the log-quasilikelihood
expansion (3.2), some calculations give the efficient score Uθ(ξ̂0) = (Uθ1(ξ̂0), . . . , Uθs(ξ̂0))
under the null hypothesis H0 : θ = θ0 as follows:

Uθk

(
ξ̂0
)
=

∂l(ξ, θ)
∂θk

∣
∣
∣
∣
ξ=ξ̂0,θ=θ0

=
1

2σ̂4
êTM−1 diag

(
ΩT

1 , . . . ,Ω
T
m

)
Ḋk(0)diag(Ω1, . . . ,Ωm)M−1ê

+
1

2σ2
tr
(
Ḋk(0)diag(Q1, . . . , Qm)

)
, k = 1, . . . , s,

(3.3)

where ê is the magnitude of e = Y − f evaluated at (ξ, θ) = (ξ̂0, θ0), Ḋk(0) = (∂D/∂θk)|θ=θ0 (k =
1, . . . , s) and ξ̂0 is the maximum likelihood estimator of ξ under θ = θ0.

To test forH0 : θ = θ0, we construct a score statistics as follows:

ST = Uθ

(
ξ̂0
)T

Iθ
(
ξ̂0
)−1

Uθ

(
ξ̂0
)
, (3.4)

where Iθ(ξ̂0) = Iθθ−IθξI−1ξξ Iξθ is the efficient information matrix of θ evaluated underH0. Here,

Iθθ = E

(
∂l

∂θ

∂l

∂θT

)
, Iξθ = E

(
∂l

∂ξ

∂l

∂θT

)
= ITθξ, Iξξ = E

(
∂l

∂ξ

∂l

∂ξT

)
, (3.5)

where l = l(ξ, θ), and the scores ∂l/∂ξ, ∂l/∂θ and the expectations are all calculated at θ = θ0.
Noting the properties of the normal distribution, after some computations, we obtain, for
h, k = 1, . . . , s, u, v = 1, . . . , r,

Iθhθk

(
ξ̂0
)
=

1
2σ̂4

tr
(
M−1GM−1H

)
+

1
4σ̂2

m∑

i=1

ni∑

j=1

tr
(
Ḋki(0)B

T
ij f̈ijBij

)
tr
(
Ḋhi(0)B

T
ij f̈ijBij

)
m−1

ij ,

(3.6)
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Iβθk

(
ξ̂0
)
=

1
2σ̂2 (Σ1, . . . ,Σm)M−1

⎛

⎜
⎜
⎜
⎝

tr
(
Ḋk1(0)B

T
11f̈11B11

)

...

tr
(
Ḋkm(0)B

T
mnm

f̈mnmBmnm

)

⎞

⎟
⎟
⎟
⎠

,

Iσ2θk

(
ξ̂0
)
=

1
2σ̂4

tr
(
HM−1

)
, Iββ

(
ξ̂0
)
=

1
σ̂2

m∑

i=1

ΣiM
−1
i ΣT

i ,

Iγhθk

(
ξ̂0
)
= − 1

2σ̂2
tr
(
M−1

(h) diag
(
Ω̂T

1 , . . . , Ω̂
T
m

)
Ḋk(0)diag

(
Ω̂1, . . . , Ω̂m

))
,

Iβσ2

(
ξ̂0
)
= 0, Iβγ

(
ξ̂0
)
= 0,

Iσ2σ2

(
ξ̂0
)
=

n

2σ̂4
, Iσ2γu

(
ξ̂0
)
= − 1

2σ̂2
tr
(
M−1

(u)M
)
,

Iγuγv

(
ξ̂0
)

=
1
2
tr
(
M−1

(u)MM−1
(v)M

)
+
1
4

(
tr
(
M−1

(u)M
)
tr
(
M−1

(v)M
)

+ tr
(
M−1

(u)M
)
tr
(
M(v)M

−1)

+ tr
(
M(u)M

−1) tr
(
M−1

(v)M
)

+ tr
(
M(u)M

−1) tr
(
M(v)M

−1)
)
,

(3.7)

where Σi = (AT
i1ḟi1, . . . , A

T
ini
ḟini), Ḋki(0) = ∂Di/∂θkθ=θ0 (i = 1, . . . , m, k = 1, . . . , s), G =

diag(Ω̂T
1 , . . . , Ω̂

T
m)Ḋh(0)diag(Ω̂1, . . . , Ω̂m), f̈ij = ∂2f(xij , φij)/(∂φij∂φ

T
ij)|b=0, H = diag(Ω̂T

1 ,

. . . , Ω̂T
m)Ḋk(0)diag(Ω̂1, . . . , Ω̂m), M−1

(k) = ∂M−1/∂γk, and m
(k)
ij = (∂m(zij , γ))/∂γk, M(k) =

diag(m(k)
ij ), i = 1, . . . , m, j = 1, . . . , ni. The detailed derivation of (3.6) is supplied in

Appendix 4.2, and the others are similar and omitted.
One important feature of the proposed score test statistic ST is that a detailed

specification of the distribution F(b, θ) of the random effects is not necessary. Therefore, the
test is robust against arbitrary mixed model alternation where only the first two moments
of the random effects are specified. The following gives the asymptotic properties of the
proposed score test statistic. The “asymptotic” in the theorem refers to the number of clusters
m → ∞with cluster sizes ni bounded in model (2.1) and (2.2).

Theorem 3.1. For model (2.1) and (2.2), under regularity conditions in Appendix 4.2, when H0 in
(2.3) is true, the asymptotic distribution of the score test statistic ST is a χ2-distribution with s degrees
of freedom.

Now, one considers testing the composite hypothesis

H0 : θ = θ0, γ = γ0, (3.8)

for detecting whether there exists heterogeneity of between-subject variance and correlation within
clusters at the same time. Let α = (βT , σ2)T , η = (θT , γT )T , η0 = (θT

0 , γ
T
0 )

T
, and φ = (αT , ηT )T , and
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let α̂0 be the maximizer of l(y, α, 0) under H0. The Fisher information matrix Iφ can be obtained by
differentiating (3.2) twice, taking the expectation under H0, and evaluating at φ = (α̂T

0 , η
T
0 ). If one

partitions the information matrix as

Iφ =

(
Iαα Iαη

Iηα Iηη

)

, (3.9)

here

Iαα = E

(
∂l

∂α

∂l

∂αT

)
, Iαη = E

(
∂l

∂α

∂l

∂ηT

)
= ITηα, Iηη = E

(
∂l

∂η

∂l

∂ηT

)
, (3.10)

where l = l(α, η) and the score ∂l/∂α, ∂l/∂η and the expectations are all evaluated at η = η0, then,
similar to (3.4), one constructs a score statistic as follows:

ST1 = Uη(α̂0)
T Îη(α̂0)

−1Uη(α̂0), (3.11)

where Uη(α̂0) = (∂l/∂θT , ∂l/∂γT )T |α=α̂0,η=η0 = (UT
θ ,U

T
γ )

T |
α=α̂0,η=η0

, Îη = Iηη − IηαI
−1
ααIαη is the

efficient information matrix of η. Similar to the derivation of ST , the expression form of the score
statistics ST1 can be obtained. Therefore, for the sake of space, the detailed derivation of ST1 is omitted.
The asymptotic properties of the score test statistic ST1 are given as follows.

Corollary 3.2. For model (2.1) and (2.2), under some regularity conditions, when H0 in (2.4) is
true, the asymptotic distribution of the score test statistic ST1 is a χ2-distribution with s + r degrees
of freedom.

Remark 3.3. It is obvious that obtaining MLEs of parameter under null hypothesis is very
crucial in the score test. To obtain the MLEs of the unknown parameters in the hierarchical
nonlinear mixed-effects models (2.1) and (2.2), we can take the Newton-Raphson method
or the method of score according to the score functions ∂l/∂β, ∂l/∂σ2 and ∂l/∂γk (see
Appendix 4.2).

Denote by ξ = (β, σ2, γ)T the unknown parameter vector, and let l(·) be the likelihood
function defined in (3.2) under the null hypothesis θ = θ0 and l̇(·), l̈(·) are the score function
and Hessian matrix, respectively. If ξ̃ is the value of parameter vector ξ at the previous
iteration, the New-Raphson methods gets the new estimates ξ̂ such that

ξ̂ = ξ̃ − l̈
(
ξ̃
)−1

l̇
(
ξ̃
)
, (3.12)

and the methods of score get

ξ̂ = ξ̃ − E

[
l̈
(
ξ̃
)−1]

l̇
(
ξ̃
)
. (3.13)



Advances in Decision Sciences 9

Applying (3.12) or (3.13) iteratively, we can obtain the MLEs ξ̂. For the asymptotic
distribution of the estimate ξ̂ of ξ, we can use the Taylor expansion to show that

ξ̂ − ξ0 = I−1ξξ (ξ0)Uξ(ξ0) +Op

(
n−1

)
, (3.14)

where ξ0 is the true value of ξ under the null hypothesis and I−1(·) is the Fisher information
matrix.

It should be pointed out that the estimating parameters in the nonlinear model are
a challenge. In general, the iterating procedure of obtaining the estimates of unknown
parameters in a nonlinear model is a popular way. For example, Wong et al. [19] used the
Newton-Raphson iteration approach to get the maximum likelihood estimation of ARMA
model with error process for replicated observation. In this paper, we adopt a similar method
to obtain the MLEs of hierarchical nonlinear mixed-effects model. We do not show in detail
the convergence of the algorithm and only give the idea of proof, but we explore the
behavior of this algorithm both in the simulation study and the analysis of a real data set in
Section 4 and find that the convergence of this algorithm is guaranteed and the precision of
convergence is well. The practical results show that the algorithm is reasonable and feasible.

4. Empirical Investigations

4.1. Simulation Studies

We perform some simulation studies to evaluate the sizes and the powers of the score tests
proposed in Section 3. We first draw data for m subjects with ni = 10 measurements on each
unit from the model

yij =
β1xij

β2 + bi1 + xij
+
(
β3 + bi2

)
xij + εij

(
i = 1, . . . , m, j = 1, . . . , 10

)
, (4.1)

where xij are independent random variates from N(0, 1/4), the εij are random noise having
the N(0, σ2mij), and mij = exp(zijγ) with zij as independent random drawing from
N(0, 1/4), and the random effects bi (i = 1, . . . , m) are independent random from distribution
N2(0, θI2), where I2 is an 2 × 2 identity matrix. We vary θ from 0 to 0.2, to study the sizes and
powers of the score test ST and ST1.

We consider four different sample sizes,m = 10, 20, 40, 60. The experiment is replicated
2000 times for each parameter configuration. The nominal sizes of the tests are set to be 0.05.
The empirical sizes and powers of test statistics ST and ST1 are presented in Tables 1 and 2
respectively.

The results in Tables 1 and 2 show that the empirical sizes of the tests are very close
to 0.05. As the θ, γ , and m increase, the power of the test increases quickly and approaches
1. Furthermore, we notice that, for the score test ST1, when θ = 0 but γ /= 0, the test has lower
power. We speculate that the higher power is obtained because the discrepancy between the
model and the postulated model is larger when there exist the random effects in the model;
otherwise, the lower power is obtained. These findings are consistent with the theoretical
results and also show that random effects in the models may be main factors influencing the
inference performance.
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Table 1: Empirical sizes and powers of the score test statistics ST in 2000 replications.

θ sizes and powers
m 10 20 40 60

0.000 0.0571 0.0557 0.0539 0.0503
0.050 0.5832 0.6650 0.7655 0.8187
0.075 0.6894 0.7413 0.8358 0.8861
0.100 0.7302 0.8036 0.9027 0.9435
0.125 0.7621 0.8602 0.9587 0.9749
0.150 0.7836 0.8774 0.9695 0.9891
0.175 0.8449 0.9195 0.9785 0.9927
0.200 0.8575 0.9875 0.9947 1

Table 2: Empirical sizes and powers of the score test statistics ST1 in 2000 replications.

θ γ sizes and powers
m 10 20 40 60

0.00 0.00 0.0577 0.0556 0.0548 0.0533
0.00 0.20 0.4574 0.6175 0.6602 0.6798
0.00 0.30 0.5519 0.7993 0.8271 0.8636
0.00 0.50 0.6602 0.8127 0.8630 0.8784
0.05 0.00 0.9097 0.9679 0.9894 0.9910
0.05 0.20 0.9473 0.9795 0.9920 0.9963
0.05 0.30 0.9890 0.9951 0.9972 1
0.05 0.50 0.9983 0.9996 1 1
0.10 0.00 0.9320 0.9741 0.9875 0.9926
0.10 0.20 0.9548 0.9803 0.9915 0.9987
0.10 0.30 0.9855 0.9925 0.9997 1
0.10 0.50 0.9925 0.9995 1 1

To further confirm the performance of the test ST and ST1, we present the Q-Q plots
of ST and ST1 with m = 20, 40 in Figures 1 and 2, respectively. The others are omitted for the
sake of space. The Q-Q plots also confirm that the asymptotic distribution of the test ST and
ST1 is χ2-distribution, which is consistent with the theoretical results.

4.2. An Illustrative Example

We illustrate the use of the test in analysis of longitudinal study. The data of the example
are taken from the guinea pig data in Johansen [20]. In the experiment, 50 tissue samples
were taken from the intestine of each of eight guinea pigs. For each guinea pig, five tissue
samples were assigned randomly to each different concentration of B-methyl-glucoside and
the uptake volume was measured in micromoles per milligram of fresh tissue per 2min. Only
themeans of the five tissue samples at each concentration for each animal were used. The data
is previously analyzed by Lee and Xu [21], to investigate the diagnostic measures through
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Figure 1: Q-Q plots of ordered score statistics against χ2
1 quantiles based on 2000 replications generated

from nonlinear mixed-effects model (2.1) under H0 : θ = 0.
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Figure 2: Q-Q plots of ordered score statistics against χ2
2 quantiles based on 2000 replications generated

from nonlinear mixed-effects model (2.1) under H0 : θ = 0, γ = 0.

local influence analysis. They proposed nonlinear mixed-effects model for uptake volume as
function of concentration is

yij = log

[
β1xij

β2 + bi1 + xij
+
(
β3 + bi2

)
xij

]

+ εij , (4.2)

where yij is the jth uptake volume for individual i, xij is the jth concentration level for
individual i, εij ∼ N(0, σ2), and bi = (bi1, bi2)

T is a vector of individual random effects with

bi ∼ N(0, σ2D), where D =
(

θ1 θ2
θ2 θ3

)
. In this paper, we assume that εij ∼ N(0, σ2 exp(zijγ))

and zij = xij/100. According to the algorithm proposed in Section 3, under the null
hypothesis θ = (θ1, θ2, θ3) = 0; that is, there exist no random effects in the model, we obtain
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β1 = 0.2002 (0.0042), β2 = 2.3844 (0.0671), β3 = 0.0044 (0.0086), σ2 = 0.0012, γ = 2.4004,
and ST = 104.1653 (P = 0.0000). The degree of freedom of ST is 3. We also calculate the
test statistic ST1 and obtain β1 = 0.2023 (0.0041), β2 = 2.4175 (0.0795), β3 = 0.0043 (0.0002),
σ2 = 0.0017, and ST1 = 91.4559 (P = 0.0000) under θ = 0, γ = 0. The degree of freedom of ST1
is 4. The small P -values of the test statistics suggest strongly rejecting the null hypothesis of
independence and homogeneity θ = 0 and γ = 0. These results demonstrate that there exists
heterogeneity of the between-subject variance and correlation within clusters at the same
time for the guinea pig data. It should be pointed out that our results are consistent with
those of Lee and Xu [21]. They also illustrated the dependence and heterogeneity for the
guinea pig data. These results may suggest that the original model having both correlation
within clusters and the heterogeneity across different clusters for the guinea pig data should
be taken.The illustrative example also demonstrates that the score test can efficiently detect
the random effects among the outcomes in practice.

It is worth noticing that the estimate of the random effects is an interesting topic when
the existence of random effects is proved. However, in this paper, our interests focus on
testing whether the random effects exist. So the estimate of random effects is out of our study
scope. Lee and Xu [21] gave an estimate of (θ1, θ2, θ3) through SA-MCMC algorithm.

Appendices

Appendix A

In what follows, we assume that the expectations are taken under θ = θ0. According to (3.3),
the (h, k)th component (h, k = 1, . . . ., s) of Iθθ is,

Iθhθk = E(UθhUθk) =
1
4
E

[
1
σ8

eTM−1GM−1eeTM−1HM−1e +
1
σ6

eTM−1GM−1e

· tr(Ḋk(0)diag(Q1, . . . , Qm)
)

+
1
σ6

eTM−1HM−1e tr
(
Ḋh(0)diag(Q1, . . . , Qm)

)

+
1
σ4

tr
(
Ḋh(0)diag(Q1, . . . , Qm)

)
tr
(
Ḋk(0)diag(Q1, . . . , Qm)

)
]

= I1 + I2 + I3 + I4,

(A.1)

where G,H, Ḋi(0), Qj ,Ωj , i = 1, . . . , s, j = 1, . . . , m, all being the same as that of in Section 3,
respectively.

Note the following properties of the normal distribution: if ε ∼ N(0,Σ), then

E
(
εTGεεTHε

)
= 2 tr(ΣGΣH) + tr(ΣG) tr(ΣH), E

(
εTGε

)
= tr(GΣ), (A.2)
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for any nonnegative definite matrices G and H. After some calculations, we obtain

I1 =
1

4σ4

[
2 tr

(
M−1GM−1H

)
+ tr

(
M−1G

)
tr
(
M−1H

)]
,

I2 = I3 = − 1
4σ4

tr
(
M−1G

)
tr
(
M−1H

)
,

I4 =
1

4σ4
tr
(
M−1G

)
tr
(
M−1H

)
+

1
4σ̂2

m∑

i=1

ni∑

j=1

tr
(
Ḋki(0)B

T
ij f̈ijBij

)
tr
(
Ḋhi(0)B

T
ij f̈ijBij

)
m−1

ij .

(A.3)

Therefore, (3.6) holds immediately.

Appendix B

Proof of the Asymptotic Distribution of ST.
Here we study the asymptotic distribution of ST under H0 : θ = θ0. Let

U =

(
Uξ

Uθ

)

, I =

(
Iξξ Iξθ

IT
ξθ

Iθθ

)

, (B.1)

where

Uξ =

((
∂l

∂β

)T

,
∂l

∂σ2
,

(
∂l

∂γ

)T
)T

,

∂l

∂β
= − 1

σ2 (Σ1, . . . ,Σm)M−1(Y − f),

∂l

∂σ2
=

1
2σ4

(Y − f)TM−1(Y − f) − n

2σ2
,

∂l

∂γk
=

1
2σ2 (Y − f)TM−1

(k)(Y − f) − 1
2

m∑

i=1

ni∑

j=1

m
(k)
ij

mij
,

(B.2)

and Uθ is given in (3.6). Assume ξ0 is the true value of ξ. For obtaining the asymptotic
properties of the score test statistic ST. We assume the following regularity conditions under
θ = θ0. These assumptions are similar to those given in [13] by Lin.

Condition 1. The size of cluster is a finite sequence of positive integers, the first- and second-
order partial derivatives of f(·, ·)with respect to parameter are bounded. The components of
Ḋk(0), k = 1, . . . , s, are uniformly bounded.

Condition 2. There exists a neighborhoodO(ξ0). The components of ∂l/∂β, ∂l/∂γ and ∂l/∂σ2

are bounded in O(ξ0).



14 Advances in Decision Sciences

Condition 3. The log-quasilikelihood l(ξ, θ0) of ξ = (βT , σ2, γT )T has the usual asymptotic
properties, including consistency of ξ̂ and the linear expansion

n1/2
(
ξ̂0 − ξ0

)
=

{
nI−1ξξ (ξ0)

}{
n−1/2Uξ(ξ0)

}
+ op(1). (B.3)

Condition 4. There exists a positive definite matrix I0 =
(

I0
ξξ

I0
ξθ

I0T
ξθ

I0
θθ

)
, such that

lim
n→∞

n−1I= I0. (B.4)

Proof. For any given ((p + 1 + r) + s) × 1 constant vector λ = (λT1 , λ2, λ
T
3 , λ

T
4 )

T , where λ1 is an
p × 1 vector, λ2 is a constant, λ3 is an r × 1 vector, and λ4 is an s × 1 vector, we have

λTU =
(
λT1 , λ2, λ

T
3

)
Uξ + λT4Uθ = − 1

σ2

m∑

i=1

λT1ΣiMi

(
yi − fi

)

+
1

2σ4

m∑

i=1

(
Yi − fi

)T
λ2Mi

(
Yi − fi

) − 1
2σ2

m∑

i=1

r∑

k=1

λ3k
(
Yi − fi

)T
M

−1(k)
i

(
Yi − fi

)

+
1

2σ4

m∑

i=1

s∑

k=1

λ4k
(
Yi − fi

)T
M−1

i ΩT
i Ḋki(0)ΩiM

−1
i

(
Yi − fi

)

+
s∑

k=1

λ4k tr
(
Ḋk(0)diag(Q1, . . . , Qm)

) − nλ2
2σ2

− 1
2

m∑

i=1

ni∑

j=1

r∑

k=1

λ3k
m

(k)
ij

mij
.

(B.5)

Because Ḋk(0) is a block diagonal matrix, according to the definition of m-dependent
sequence, then λTU is the summation of a sequence of m-dependent random variables; that
is, λTU can be written as

λTU =
m∑

i=1

Uλ,i, (B.6)

where {Uλ,i} is an m-dependent sequence. From Conditions 1 and 2, we have that {Uλ,i} are
uniformly bounded in O(ξ0) for any given λ. It can be shown that E(Uλ,i) = 0. By applying
Theorem 7.3.1 of Chung [22] and applying the Condition 4 to λTU, we have

n−1/2λTU(ξ0) −→ N
(
0, λT I0(ξ0)λ

)
(B.7)

in distribution as n → ∞. Using the Cramer-Wald device, we conclude that n−1/2U(ξ0) →
N(0, I0(ξ0)) in distribution.

Note the linear expansion of the efficient score statistic Uθ(ξ̂0) about ξ = ξ0 and use
Condition 3. It follows that n−1/2Uθ(ξ̂0) = n−1/2Uθ(ξ0)−{n−1Iξθ(ξ0)}T{nI−1ξξ (ξ0)}{n−1/2Uξ(ξ0)}+
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op(1).This implies that n−1/2Uθ(ξ̂0) → N(0, I0θ(ξ0)) in distribution, where I0θ = I0θθ −
I0Tξθ (I

0
ξξ)

−1I0ξθ. According to the consistency of ξ̂0 and Slutsky’s theorem, we have that

ST = Uθ

(
ξ̂0
)T

Iθ
(
ξ̂0
)−1

Uθ

(
ξ̂0
)
=

[
n−1/2Uθ

(
ξ̂0
)]T[

n−1Iθ
(
ξ̂0
)]−1[

n−1/2Uθ

(
ξ̂0
)]

(B.8)

converges in distribution to a chi-square distribution with s degrees of freedom as n → ∞,
that is, m → ∞.
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