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In the estimation of portfolios, it is natural to assume that the utility function depends on
exogenous variable. From this point of view, in this paper, we develop the estimation under the
utility function depending on exogenous variable. To estimate the optimal portfolio, we introduce
a function of moments of the return process and cumulant between the return processes and
exogenous variable, where the function means a generalized version of portfolio weight function.
First, assuming that exogenous variable is a random process, we derive the asymptotic distribution
of the sample version of portfolio weight function. Then, an influence of exogenous variable on the
return process is illuminated when exogenous variable has a shot noise in the frequency domain.
Second, assuming that exogenous variable is nonstochastic, we derive the asymptotic distribution
of the sample version of portfolio weight function. Then, an influence of exogenous variable on the
return process is illuminated when exogenous variable has a harmonic trend. We also evaluate the
influence of exogenous variable on the return process numerically.

1. Introduction

In the usual theory of portfolio analysis, optimal portfolios are determined by the mean μ and
the variance Σ of the portfolio returnX = {X(t)}. Several authors proposed estimators of opti-
mal portfolios as functions of the sample mean μ̂ and the sample variance ̂Σ for independ-
ent returns of assets. However, empirical studies show that financial return processes are
often dependent and non-Gaussian. Shiraishi and Taniguchi [1] showed that the above esti-
mators are not asymptotically efficient generally if the returns are dependent. Under the non-
Gaussianity, if we consider a general utility functionU(·), the expected utility should depend
on higher-order moments of the return. From this point of view, Shiraishi and Taniguchi [1]
proposed the portfolios including higher-order moments of the return.

However, empirical studies show that the utility function often depends on exogenous
variable Z = {Z(t)}. From this point of view, in this paper, we develop the estimation under
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the utility function depending on exogenous variable. Denote the optimal portfolio estimator
by a function ĝ = g(̂θ) = g(̂E(X), ĉov(X,X), ĉov(X,Z), ĉum(X,X,Z)) where hat ( ·̂ ) means
the sample version of (·). Although Shiraishi and Taniguchi’s [1] setting does not include the
exogenous variableZ(t) in ĝ, we can develop the asymptotic theory in the light of their work.

First, assuming that Z = {Z(t)} is a random process, we derive the asymptotic distri-
bution of ĝ. Then, an influence of Z on the return process is illuminated when Z has a shot
noise in the frequency domain. Second, assuming that Z is a nonrandom sequence of varia-
bles which satisfy Grenander’s conditions, we also derive the asymptotic distribution of ĝ.
Then an influence ofZ onX is evaluatedwhenZ is a sequence of harmonic functions. Numer-
ical studies will be given, and they show some interesting features.

The paper is organized as follows. Section 2 introduces the optimal portfolio of the
form ĝ and provides the asymptotic distribution of ĝ. Assuming thatZ is a stochastic process,
we derive the asymptotics of ĝ when Z has a shot noise in the frequency domain. The influ-
ence of Z on X is numerically evaluated in Section 2.2. Assuming that Z is a nonrandom
sequence satisfying Grenander’s conditions, we derive the asymptotic distribution of ĝ.
Section 3 provides numerical studies for the influence of Z onX when Z is a sequence of har-
monic functions. The appendix gives the proofs of all the theorems.

2. Optimal Portfolio with the Exogenous Variables

Suppose the existence of a finite number of assets indexed by i, (i = 1, . . . , p). Let
X(t) = (X1(t), . . . , Xp(t))

′ denote the random returns on p assets at time t, and let Z(t) =
(Z1(t), . . . , Zq(t))

′ denote the exogenous variables influencing on the utility function at time
t. We write Y (t) = (X(t)′, Z(t)′)′ = (X1(t), . . . , Xp(t), Z1(t), . . . , Zq(t))

′.
Since it is empirically observed that {X(t)} is non-Gaussian and dependent, wewill as-

sume that it is a non-Gaussian stationary process with the 3rd-order cumulants. Also, suppose

that there exists a risk-free asset whose return is denoted by Y0(t). Let α0 and α = (
p

︷ ︸︸ ︷

α1, . . . , αp

,

q
︷ ︸︸ ︷

0, . . . , 0 )′ be the portfolio weights at time t, and the portfolio isM(t) = Y (t)′α+Y0(t)α0 whose
higher-order cumulants are written as

cM1 (t) = cum{M(t)} = ca1αa1 + Y0(t)α0,

cM2 (t) = cum{M(t),M(t)} = ca2a3αa2αa3 ,

cM3 (t) = cum{M(t),M(t),M(t)} = ca4a5a6αa4αa5αa6 .

(2.1)

We use Einstein’s summation convention here and throughout the paper. For a utility func-
tion U(·), the expected utility can be approximated as

E[U(M(t))] ≈ U
(

cM1 (t)
)

+
1
2!
D2U

(

cM1 (t)
)

cM2 (t) +
1
3!
D3U

(

cM1 (t)
)

cM3 (t), (2.2)
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by Taylor expansion of order 3. The approximate optimal portfolio may be described as

max
α0,α

{

the right hand side of (2.2)
}

,

subject to α0 +
p
∑

i=1

αi = 1.
(2.3)

Solving (2.4), Shiraishi and Taniguchi [1] introduced the optimal portfolio depending
on themean, variance, and the third-order cumulants, and then derived the asymptotic distri-
bution of a sample version estimator. Although our problem is different from that of Shiraishi
and Taniguchi [1], we develop the discussion with the methods inspired by them.

Introduce a portfolio estimator function based on observed higher-order cumulants,

ĝ ≡ g
(

̂θ
)

= g
(

̂E(X), ĉov(X,X), ĉov(X,Z), ĉum{X,X,Z}
)

, (2.4)

and assume that the function g(·) is p-dimensional and measurable, that is,

g(θ) : g(E(X), cov(X,X), cov(X,Z), cum{X,X,Z}) −→ Rp. (2.5)

Let the random process {Y(t) = (Y1(t), . . . , Yp+q(t))
′} be a (p + q)-vector linear process

generated by

Y(t) =
∞
∑

j=0

G
(

j
)

ε
(

t − j
)

+ µ, (2.6)

where {ε(t)} is a (p + q)-dimensional stationary process such that E{ε(t)} = 0 and
E{ε(s)ε(t)′} = δ(s, t)K, withK a nonsingular (p+q)×(p+q)-matrix,G(j)’s are (p+q)×(p+q)-
matrices, and μ = (μ1, . . . , μp+q) is themean vector of {Y(t)}. All the components of Y, ε, G, µ
are real. Assuming that {ε(t)} has all order cumulants, let Qe

a1,...,aj (t1, . . . , tj−1) be the joint jth-
order cumulant of εa1(t), εa2(t + t1), . . . , εaj (t + tj−1). In what follows we assume that, for each
j = 1, 2, 3, . . . ,

∞
∑

t1,...,tj=−∞

p+q
∑

a1,...,aj=1

∣

∣

∣Qe
a1,...,aj

(

t1, . . . , tj−1
)

∣

∣

∣ < ∞,

∞
∑

t=0
‖G(t)‖ < ∞.

(2.7)

Letting QY
a1,...,aj (t1, . . . , tj−1) be the joint jth-order cumulant of Ya1(t), Ya2(t +

t1), . . . , Yaj (t + tj−1), we define the jth-order cumulant spectral density by

fa1,...,aj
(

λ1, . . . , λj−1
)

=
(

1
2π

)j−1 ∞
∑

t1,...,tj−1=−∞
exp

{−i(λ1t1 + · · · + λj−1tj−1
)}

×QY
a1,...,aj

(

t1, . . . , tj−1
)

,

(2.8)
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which is expressed as

fa1,...,aj
(

λ1, . . . , λj−1
)

=
p+q
∑

b1,...,bj=1

ka1b1
(

λ1 + · · · + λj−1
)

ka2b2(−λ1) · · · kaj−1bj−1
(−λj−2

)

kajbj
(−λj−1

)

˜Qe
a1,...,aj

(

λ1, . . . , λj−1
)

,

(2.9)

where ˜Qe
a1,...,aj is the jth-order cumulant spectral density of εa1(t), . . . , εaj (t), kab(λ) =

∑∞
l=0Gab(l)eiλl andGab(l) is the (a, b)th element ofG(l). We introduce the following quantities:

ĉa1 =
1
n

n
∑

s=1

Ya1(s),

ĉa2a3 =
1
n

n
∑

s=1

(Ya2(s) − ĉa2)(Ya3(s) − ĉa3),

ĉa4a5 =
1
n

n
∑

s=1

(Ya4(s) − ĉa4)(Ya5(s) − ĉa5),

ĉa6a7a8 =
1
n

n
∑

s=1

(Ya6(s) − ĉa6)(Ya7(s) − ĉa7)(Ya8(s) − ĉa8),

(2.10)

where 1 ≤ a1, a2, a3, a4, a6, a7 ≤ p and p+ 1 ≤ a5, a8 ≤ p+ q. Write the quantities that appeared
in (2.4) by

̂θ = (ĉa1 , ĉa2a3 , ĉa4a5 , ĉa6a7a8),

θ = (ca1 , ca2a3 , ca4a5 , ca6a7a8),
(2.11)

where ca1,...,aj ≡ QY
a1,...,aj (0, . . . , 0). Then dim θ = dim ̂θ = a+b+c+d, where a = p, b = p(p+1)/2,

c = pq, d = p(p + 1)q/2.
First, we derive the asymptotics of the fundamental quantity ̂θ.

Theorem 2.1. Under the assumptions,

√
n
(

̂θ − θ
) D−→ N(0,Ω), (n −→ ∞), (2.12)

where

Ω =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Ω11 Ω12 Ω13 Ω14

Ω21 Ω22 Ω23 Ω24

Ω31 Ω32 Ω33 Ω34

Ω41 Ω42 Ω43 Ω44

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (2.13)



Advances in Decision Sciences 5

and the typical element of Ωij corresponding to the covariance between ĉΔ and ĉ∇ is denoted by
V {(Δ) (∇)}, and

V
{

(a1)
(

a′
1

)}

= Ω11 = 2πfa1a′1(0),

V
{

(a2a3)
(

a′
1

)}

= Ω12 = 2π
∫π

−π
fa2a3a′1(λ, 0)dλ(= Ω21),

V
{

(a4a5)
(

a′
1

)}

= Ω13 = 2π
∫π

−π
fa4a5a′1(λ, 0)dλ(= Ω31),

V
{

(a6a7a8)
(

a′
1

)}

= Ω14 = 2π
∫∫π

−π
fa6a7a8a′1(λ1, λ2, 0)dλ1dλ2(= Ω41),

V
{

(a2a3)
(

a′
2a

′
3
)}

= Ω22 = 2π
∫∫π

−π
fa2a3a′2a′3(λ1, λ2,−λ2)dλ1dλ2

+ 2π
∫π

−π

{

fa2a′2(λ)fa3a′3(−λ) + fa2a′3(λ)fa3a′2(−λ)
}

dλ,

V
{

(a2a3)
(

a′
4a

′
5
)}

= Ω23 = 2π
∫∫π

−π
fa2a3a′4a′5(λ1, λ2,−λ2)dλ1dλ2

+ 2π
∫π

−π

{

fa2a′4(λ)fa3a′5(−λ) + fa2a′5(λ)fa3a′4(−λ)
}

dλ(= Ω32),

V
{

(a2a3)
(

a′
6a

′
7a

′
8
)}

= Ω24 = 2π
∫∫∫π

−π
fa2a3a′6a′7a′8(λ1, λ2, λ3,−λ3)dλ1dλ2dλ3(= Ω42),

V
{

(a4a5)
(

a′
4a

′
5
)}

= Ω33 = 2π
∫∫π

−π
fa4a5a′4a′5(λ1, λ2,−λ2)dλ1dλ2

+ 2π
∫π

−π

{

fa4a′4(λ)fa5a′5(−λ) + fa4a′5(λ)fa5a′4(−λ)
}

dλ,

V
{

(a2a3)
(

a′
6a

′
7a

′
8
)}

= Ω34 = 2π
∫∫∫π

−π
fa4a5a′6a′7a′8(λ1, λ2, λ3,−λ3)dλ1dλ2dλ3(= Ω43),

V
{

(a6a7a8)
(

a′
6a

′
7a

′
8
)}

= Ω44 = 2π
∫ ∫∫∫π

−π
fa6a7a8a′6a′7a′8(λ1, λ2, λ3,−λ3 − λ4)dλ1 · · ·dλ4

+ 2π
∫∫∫π

−π

∑

ν1

fai1ai2ai3ai4 (λ1, λ2, λ3)fai5ai6

× (−λ2 − λ3)dλ1dλ2dλ3

+ 2π
∫∫∫π

−π

∑

ν2

fai1ai2ai3 (λ1, λ2)fai4ai5ai6

× (λ3,−λ2 − λ3)dλ1dλ2dλ3

+ 2π
∫∫∫π

−π

∑

ν3

fai1ai2 (λ1)fai3ai4 (λ2)fai5ai6 (−λ1 − λ2)dλ1dλ2.

(2.14)
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Table 1: Standardized 3rd-order cumulants of the returns of five stocks from 2005/11/08 to 2011/11/08.

IBM Ford Merck HP EXXON
ŝ 0.05608 2.50879 0.79521 9.84777 0.34485

In what follows we place all the proofs of theorems in the appendix.
Next we discuss the estimation of portfolio g(θ). For this we assume that the portfolio

function g(θ) is continuously differentiable. Henceforth, we use a unified estimator g(̂θ) for
g(θ). The δ-method and Slutsky’s lemma imply the following.

Theorem 2.2. Under the assumptions

√
n
(

g
(

̂θ
)

− g(θ)
) D−→ N

(

0,
(

Dg
)

Ω
(

Dg
)′)

, (n −→ ∞), (2.15)

where, Dg = {∂igj ; i = 1, . . . ,dim θ, j = 1, . . . , p + q}.

The quantities ĉa6a7a8 ’s are the 3rd-order cumulants of the process, which show the
non-Gaussianity. For the returns of five financial stocks IBM, Ford, Merck, HP, and EXXON,
we calculated the standardized 3rd-order cumulants ŝ = ĉa6a7a8/(v̂2)3/2 where v̂2 is the
sample variance of the stock. Table 1 below shows their values.

From Table 1 we observe that the five returns are non-Gaussian. In view of
Theorem 2.1, it is possible to construct the (1 − α) confidence interval for c = ca6a7a8 in the
following form:

[

ĉ − zα√
n
̂Ω1/2
44 , ĉ +

zα√
n
̂Ω1/2
44

]

, (2.16)

where zα is the upper level-α point of N(0, 1) and ̂Ω44 is a consistent estimator of Ω44

calculated by the method of Keenan [2] and Taniguchi [3].

2.1. Influence of Exogenous Variable

In this subsection we investigate an influence of the exogenous variables Z(t) on the
asymptotics of the portfolio estimator g(̂θ).

Assume that the exogenous variables have “shot noise” in the frequency domain, that
is,

Zaj (λ) = δ
(

λaj − λ
)

, (2.17)

where δ(·) is the Dirac delta function with period 2π , and λaj /= 0, hence Zaj (λ) has one peak
at λ + λaj ≡ 0 (mod 2π).
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Theorem 2.3. For (2.17), denote Ωij and V {(Δ) (∇)} in Theorem 2.1 by Ω′
ij and V ′{(Δ) (∇)},

respectively. That is, Ω′
ij and V ′{(Δ) (∇)} represent the asymptotic variance when the exogenous

variables are shot noise. Then,

V ′{(a4a5)
(

a1
′)} = Ω′

13 = 0
(

= Ω′
31

)

,

V ′{(a6a7a8)
(

a1
′)} = Ω′

14 = 2πfa6a7a′1(λa8 , 0)
(

= Ω′
41

)

,

V ′{(a2a3)
(

a4
′a5

′)} = Ω′
23 = 2πfa2a3a′4

(

λa′5 , 0
)

+ 2πfa2a′4(λa5)fa3a′5
(

−λa′5
)

+ 2πfa2a′5
(

−λa′5
)

fa3a′4(λa5)
(

= Ω′
32
)

,

V ′{(a2a3)
(

a6
′a7

′a8
′)} = Ω′

24 = 2π
∫∫π

−π
fa2a3a′6a′7a′8

(

−λa′8 , λ1, λ2,−λ2
)

dλ1dλ2
(

= Ω′
42

)

,

V ′{(a4a5)
(

a4
′a5

′)} = Ω′
33 = 2πfa4a5a′4a′5

(

λa′5 , λa5 ,−λa5
)

+ 2πfa4a′4(λa5)fa5a′5(−λa5)

+ 2πfa4a′5(λa5)fa5a′4(−λa5),

V ′{(a4a5)
(

a1
′a1

′)} = Ω′
34 = 2π

∫π

−π
fa4a5a′6a′7a′8

(

−λa′8 , λa5 , λ,−λ
)

dλ
(

= Ω′
43

)

.

(2.18)

2.2. Numerical Studies for Stochastic Exogenous Variables

This subsection provides some numerical examples which show the influence of Z(t) on Ωij .

Example 2.4. For a risk-free asset X0(t) and risky asset X(t), we consider construction of
optimal portfolios αX(t) + α0X0(t). Here {X(t)} is the return process of the risky asset, which
is generated by

X(t) = θX(t − 1) + ε(t) + μ1, (2.19)

where E{ε(t)} = 0, Var{ε(t)} = σ2. We assume thatX0(t) = μ, and that the exogenous variable
in the frequency domain is given by Z(λ) = δ(λ). Write,

Y (t) =
(

X(t)X0(t)Z(t)′
)

, (2.20)

then

Ω′
13 = Ω′

31 = V ′{(a4a5)
(

a′
1

)}

= 0,

Ω′
23 = Ω′

32 = V ′{(a2a3)
(

a′
4a

′
5
)}

= 0,

Ω′
33 = V

{

(a4a5)
(

a′
4a

′
5
)}

= cum
(

a1, a
′
1

)

cum
(

a3, a
′
3
)

= σ2 1
(

1 − θeiλa3
) ,

(2.21)
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Figure 1: Values of Ω′
33 for θ = −0.9(0.018)0.9, λa3 = −π(0.06)π .

which are covarances between Z(t) and X(t), and show an influence Z(t) on X(t). From
Figure 1, it is seen that as θ tends to 1, and λa3 tends to 0, then Ω′

33 increases. If θ tends to
−1 and λa3 tends to −π , π , thenΩ′

33 also increases, which entails that the exogenous variables
have big influence on the asymptotics of estimators when θ is close to the unit root of AR(2.2).

Remark 2.5. Ω′
13 is robust for the shot noise in Z(t) at λ = λa3 .

3. Portfolio Estimation for Nonstochastic Exogenous Variables

So far we assumed that the sequence of exogenous variables {Z(t)} is a random stochastic
process. In this section, assuming that {Z(t)} is a nonrandom sequence, we will propose a
portfolio estimator, and elucidate the asymptotics. We introduce the following quantities,

̂Aj,k =

∑n
t=1Xj(t)Zk(t)
√

n
∑n

t=1Z
2
k(t)

,

̂Bj,m,k =

∑n
t=1Xj(t)Xm(t)Zk(t)
√

n
∑n

t=1Z
2
k(t)

.

(3.1)

We assume that Z(t)’s satisfy Grenander’s conditions (G1)–(G4)with

a
(n)
j,k (h) =

n−h
∑

t=1

Zj(t + h)Zk(t). (3.2)

(G1) limn→∞a
(n)
j,j (0) = ∞, (j = 1, . . . , q).

(G2) limn→∞Zj(n + 1)2/a(n)
j,j (0) = 0, (j = 1, . . . , q).
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(G3) a(n)
j,k

(h)/
√

a
(n)
j,j (h)a

(n)
k,k

(h) = ρj,k(h) + o(1/
√
n) for j, k = 1, . . . , q, h ∈ Z.

(G4) the (p, p)-matrix Φ(0) ≡ {ρj,k(0) : j, k = 1, . . . , q} is regular.
Under Grenander’s conditions, there exists a Hermitian matrix function M(λ) =

{Mj,k(λ) : j, k = 1, . . . , q}with positive semidefinite increments such that

Φ(h) =
∫π

−π
eihλdM(λ). (3.3)

M(λ) is the regression spectral measure of {Z(t)}. Next we discuss the asymptotics for sample
versions of cov(X,Z) and cov{XX,Z}. For this we need the following assumption, There
exists constant b > 0 such that

det
{

fX(λ)
} ≥ b, (3.4)

where fX(λ) is the spectral density matrix of {X(t)}.

Theorem 3.1. Under Grenander’s conditions and the assumption

√
n
{

̂Aj,k −Aj,k

} D−→ N
(

0,Ωj,k

)

, (3.5)

where the (j ′, k′)-th element of Ωj,k is given by

V
(

j, k : j ′, k′) = 2π
∫π

−π
fjj ′(λ)dMk,k′(λ). (3.6)

Theorem 3.2. Under Grenander’s conditions and the assumption

√
n
{

̂Bj,m,k − Bj,m,k

} D−→ N
(

0,Ωj,m,k

)

, (3.7)

where Ωj,m,k = {V (j,m, k : j ′, m′, k′)} with

V
(

j,m, k : j ′, m′, k′) = 2π
∫π

−π

[∫π

−π

{

fjm′(λ − λ1)fmj ′(λ1) + fjj ′(λ − λ1)fmm′(λ1)
}

dλ1

+
∫∫π

−π
fjmj ′m′(λ1, λ2 − λ, λ2)dλ1λ2

]

dMk,k′(λ).

(3.8)

3.1. Numerical Studies for Nonstochastic Exogenous Variables

Letting {X(t)} and {Z(t)} be scalar processes, we investigate an influence of non-stochastic
process {Z(t)} on {X(t)}. The figures below show influence of harmonic trends {Z(t)} on
V (j,m, k : j ′, m′, k′) in Ωj,m,k. In these cases V (j,m, k : j ′, m′, k′) measures the amount of
covariance between XX and Z.
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Figure 2: Values of V (j,m, k : j ′,m′, k′) in Theorem 3.2 for η = −0.9(0.1)0.9, μ = −3.14(0.33)3.14.
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Figure 3: Values of V (j,m, k : j ′,m′, k′) for η = −0.9(0.1)0.9, μ = −3.14(0.33)3.14.

Example 3.3. Let the return process {X(t)} and the exogenous process {Z(t)} be generated by

X(t) = ε(t) − ηε(t − 1),

Z(t) = cos
(

μt
)

+ cos
(

0.25μt
)

,
(3.9)

where ε(t)’s are i. i. d.N(0,1) variables. Next, suppose that {Z(t)} consists of harmonic trends
with period μ and the quarter period. We plotted the graph of V (j,m, k : j ′, m′, k′) in Figure 2.

Example 3.4. Assume that {X(t)} and {Z(t)} are generated by

X(t) − ηX(t − 1) = ε(t),

Z(t) = cos
(

μt
)

+ cos
(

0.25μt
)

.
(3.10)
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We observe that there exist two peaks in Figure 3. If μ ≈ 0 and |η| ≈ 1, V (j,m, k : j ′, m′, k′)
increases rapidly. For further study it may be noted that Cheng et al. [4] discussed statistical
estimation of generalized multiparameter likelihood models. Although these models are for
independent samples, there is some possibility to apply them to our portfolio problem.

Appendix

This section provides the proofs of theorems.

Proof of Theorem 2.1. Our setting includes the exogenous variables. Although Shiraishi and
Taniguchi’s [1] setting does not include them, we can prove the theorem in line with Shiraishi
and Taniguchi [1].

Let

c̃a2a3 =
1
n

n
∑

s=1

(

Ya2 − μa2

)(

Ya3 − μa3

)

,

c̃a6a7a8 =
1
n

n
∑

s=1

(

Ya6 − μa6

)(

Ya7 − μa7

)(

Ya8 − μa8

)

.

(A.1)

From Fuller [5], it is easy to see that

(

ĉa6 − μa6

)(

ĉa7 − μa7

)(

ĉa8 − μa8

)

= op

(

1√
n

)

,

c̃a6a7
(

ĉa8 − μa8

)

= ca6a7
(

ĉa8 − μa8

)

+ op

(

1√
n

)

,

(A.2)

where

1 ≤ a6, a7 ≤ p, p + 1 ≤ a8 + p + q. (A.3)

Then we can see that

ĉa6a7a8 = c̃a6a7a8 −
8∗
∑

k=6

cajk aik
(

ĉak − μak

)

+ op

(

1√
n

)

, (A.4)

where
∑8∗

k=6 is the sum over k = 6, 7, 8 with ik and jk ∈ {6, 7, 8} satisfying ik < jk; k /= ik, jk.
Hence it follows that

n Cov(ĉa6a7a8 − ca6a7a8)(ĉa6′a7′a8′ − ca6′a7′a8′ )

= n cum{ĉa6a7a8 − ĉa6′a7′a8′ }

− n
8∗
∑

k=6

cum
{

caik ajk
(

ĉak − μak

)

, c̃a6′a7′a8′
} − n

8∗
∑

k′=6

cum
{

c̃a6a7a8 , caik′ ajk′
(

ĉak′ − μak′
)}

+ n
8∗
∑

k=6

8∗
∑

k′=6

cum
{

caik ajk
(

cak − μak

)

caik′ ajk′
(

cak′ − μak′
)}

+ o(1).

(A.5)
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In what follows we assume that (ai1 , . . . , ai6) is an arbitrary permutation of
(a6, a7, a8, a6′ , a7′ , a8′),

1 ≤ a6, a7, a6′ , a7′ ≤ p, p + 1 ≤ a8, a8′ ≤ p + q. (A.6)

Then we get

−→
∞
∑

t=−∞

{

QY
a6a7a8a6′a7′a8′ (0, 0, t, t, t) +

∑

ν1

QY
ai1ai2ai3ai4

(0, t, t)QY
ai5ai6

(t)

+
∑

ν2

QY
ai1ai2ai3

(0, t)QY
ai4ai5ai6

(t, t) +
∑

ν3

QY
ai1ai2

(t)QY
ai5ai4

(t) +QY
ai5ai6

(t)

}

.

(A.7)

By use of Fourier transform, we see that

(A1) = 2π
∫ ∫∫∫π

−π
fa6a7a8a6 ′a7 ′a8 ′(λ1, λ2, λ3, λ4,−λ3,−λ4)dλ1 · · ·dλ4

+ 2π
∫∫∫π

−π

∑

ν1

fai1ai2ai3ai4 (λ1, λ2, λ3)fai5ai6 (−λ2 − λ3)dλ1dλ2dλ3

+ 2π
∫∫∫π

−π

∑

ν2

fai1ai2ai3 (λ1, λ2)fai4ai5ai6 (λ3,−λ2 − λ3)dλ1dλ2dλ3

+ 2π
∫∫∫π

−π

∑

ν3

fai1ai2 (λ1)fai3ai4 (λ2)fai5ai6 (−λ1 − λ2)dλ1dλ2.

(A.8)

The other asymptotic covariances are similarly evaluated. Finally, it suffices to prove the
asymptotic normality of

√
n(̂θ − θ). For this we prove

cum
{√

n
(

̂θa1 − θa1
)

, . . . ,
√
n
(

̂θaj − θaj
)}

−→ 0, j ≥ 3, (A.9)

where ̂θaj and θaj are the ith component of ̂θ and θ, respectively. Let

̂θaj − θaj =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ĉb1 − cb1 if i = 1, . . . , j1

ĉb2b3 − cb2b3 if i = j1 + 1, . . . , j1 + j2

ĉb4b5 − cb4b5 if i = j1 + j2 + 1, . . . , j1 + j2 + j3

ĉb6b7b8 − cb6b7b8 if i = j1 + j2 + j3 . . . , j1 + j2 + j3 + j4
(

= j
)

.

(A.10)



Advances in Decision Sciences 13

Then, similarly as in Shiraishi and Taniguchi [1]we can see that

cum
{√

n
(

̂θa1 − θa1
)

, . . . ,
√
n
(

̂θaj − θaj
)}

= nn/2 cum
{

̂θa1 , . . . , ̂θa1+1, . . . , ̂θaj1+j2+j3+j4

}

= O
(

n1−j/2
)

for j ≥ 3,
(A.11)

which implies the asymptotic normality of
√
n(̂θ − θ).

Proof of Theorem 3.1. We write
√

∑n
t=1Z

2
k
(t) by dt,k(n). Then,

E

[

̂Aj,k

]

=
μj
∑n

t=11 · Zk(t)√
ndt,k(n)

(

by (G3)
)

= μj

∫π

−π
dM0,k(λ) + o

(

1√
n

)

say
= Aj,k,

(A.12)

which leads to

E

[

̂Aj,k

]

= Aj,k + o

(

1√
n

)

. (A.13)

Next we evaluate the covariance:

Cov
(√

n
{

̂Aj,k −Aj,k

}

,
√
n
{

̂Aj ′,k′ −Aj ′,k′
})

= n E

[{(

̂Aj,k −Aj,k

)

− E

[

̂Aj,k −Aj,k

]}{(

̂Aj ′,k′ −Aj ′,k′
)

− E

[

̂Aj ′,k′ −Aj ′,k′
]}]

= n E

[{

(

̂Aj,k −Aj,k

)

+ o

(

1√
n

)}{

(

̂Aj ′,k′ −Aj ′,k′
)

+ o

(

1√
n

)}]

= n E

[(

̂Aj,k −Aj,k

)(

̂Aj ′,k′ −Aj ′,k′
)]

+ o(1)

=
n
∑

t=1

n
∑

s=1

Rj,j ′(s − t)
Zk(t)Zk′(s)
dt,k(n)ds·k′(n)

=
n−1
∑

l=−n+1
Rj,j ′(l)

n
∑

s=1 1≤s−l≤n

Zk(s − l)Zk′(s)
ds−l,k(n)ds·k′(n)

−→ 2π
∫π

−π
fjj ′(λ)dMk,k′(λ) = V

(

j, k : j ′, k′),

(A.14)

where Rj,j ′(s − t) is the covariance function of Xj(t) and Xj ′(s).
The asymptotic normality of

√
n( ̂Aj,k −Aj,k) can be shown if we prove

cum
{√

n
(

̂Aj1,k1 −Aj1,k1

)

, . . . ,
√
n
(

̂Ajl,kl −Ajl,kl

)}

−→ 0, l ≥ 3. (A.15)
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Similarly as in Theorem 5.11.1 of Brillinger [6], we can see that

cum
{√

n
(

̂Aj1,k1 −Aj1,k1

)

, . . . ,
√
n
(

̂Ajl,kl −Ajl,kl

)}

= nl/2 cum
{

̂Aj1,k1 , . . . , ̂Ajl,kl

}

= O
(

n1−l/2
)

, for l ≥ 3.

(A.16)

Proof of Theorem 3.2. First, it is seen that

lim
n→∞

E

[

̂Bj,m,k

]

= lim
n→∞

Rj,m(0)
∑n

t=1Zk(t)√
ndt,k(n)

−→ Rj,m(0)
∫π

−π
dM0,k(λ)

say
= Bj,m,k

(

by (G3)
)

.

(A.17)

We can evaluate the covariance as follows:

Cov
(√

n
{

̂Bj,k,m − Bj,k,m

}

,
√
n
{

̂Bj ′,k′,m′ − Bj ′,k′,m′
})

= n E

[(

̂Bj,k,m − Bj,k,m

)(

̂Bj ′,k′,m′ − Bj ′,k′,m′
)]

= n E

[

̂Bj,k,m
̂Bj ′,k′,m′ − Bj,k,mBj ′,k′,m′

]

=
n
∑

t=1

n
∑

s=1

Cov
(

Xj(t)Xm(t), Xj ′(s)Xm′(s)
)

∫π

−π
dMk,k′(λ) + o(1)

=
∫π

−π

∞
∑

l=−∞

{

cumj,m,j ′,m′(0, l, l) + Rj,m′(l)Rm,j ′(l) + Rj,j ′(l)Rm,m′(l)
}

e−ilλdMk,k′(λ)

−→ 2π
∫π

−π

[∫π

−π

{

fjm′(λ − λ1)fmj ′(λ1) + fjj ′(λ − λ1)fmm′(λ1)
}

dλ1

+2π
∫∫π

−π
fjmj ′m′(λ1, λ2 + λ,−λ2)dλ1dλ2

]

dMk,k′(λ)

= V
(

j,m, k : j ′, m′, k′).

(A.18)

Next we derive the asymptotic normality of
√
n( ̂Bj,m,k − Bj,m,k). For this we prove

cum
{√

n
(

̂Bj1,k1,m1 − Bj1,k1,m1

)

, . . . ,
√
n
(

̂Bjl,kl,ml − Bjl,kl,ml

)}

−→ 0, l ≥ 3. (A.19)
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Similarly as in Theorem 5.11.1 of Brillinger [6], it is shown that

cum
{√

n
(

̂Bj1,m1,k1 − Bj1,m1,k1

)

, . . . ,
√
n
(

̂Bjl,ml,kl − Bjl,ml,kl

)}

= nl/2 cum
{

̂Bj1,m1,k1 , . . . , ̂Bjl,ml,kl

}

= O
(

n1−l/2
)

,

(A.20)

which proves the asymptotic normality.
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