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A new risk was born in the mid-1990s known as operational risk. Though its application varied by
institutions—Basel II for banks and Solvency II for insurance companies—the idea stays the same.
Firms are interested in operational risk because exposure can be fatal. Hence, it has become one
of the major risks of the financial sector. In this study, we are going to define operational risk in
addition to its applications regarding banks and insurance companies. Moreover, we will discuss
the different measurement criteria related to some examples and applications that explain how
things work in real life.

1. Introduction

Operational risk existed longer than we know, but its concept was not interpreted until after
the year 1995 when one of the oldest banks in London, Barings bank, collapsed because
of Nick Leeson, one of the traders, due to unauthorized speculations. A wide variety of
definitions are used to describe operational risk of which the following is just a sample (cf.
Moosa [1, pages 87-88]).

(i) All types of risk other than credit and market risk.

(ii) The risk of loss due to human error or deficiencies in systems or controls.

(iii) The risk that a firm’s internal practices, policies, and systems are not rigorous or
sophisticated enough to cope with unexpected market conditions or human or
technological errors.

(iv) The risk of loss resulting from errors in the processing of transactions, breakdown
in controls, and errors or failures in system support.

The Basel II Committee, however, defined operational risk as the risk of loss resulting
from inadequate or failed internal processes, people and systems, or from external events
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(cf. BCBS, Definition of Operational Risk [2]). For example, an operational risk could be losses
due to an IT failure; transactions errors; external events like a flood, an earthquake, or a fire
such as the one at Crédit Lyonnais in May 1996 which resulted in extreme losses. Currently,
the lack of operational risk loss data is amajor issue on hand but once the data sources become
available, a collection of methods will be progressively implemented.

In 2001, the Basel Committee started a series of surveys and statistics regarding
operational risks that most banks encounter. The idea was to develop and correct
measurements and calculationmethods. Additionally, the European Commission also started
preparing for the new Solvency II Accord, taking into consideration the operational risk for
insurance and reinsurance companies.

As so, and since Basel and Solvency accords set forth many calculation criteria, our
interest in this paper is to discuss the different measurement techniques for operational risk
in financial companies.

We will also present the associated mathematical and actuarial concepts as well
as a numerical application regarding the Advanced Measurement Approach, like Loss
Distribution, Extreme Value Theory and Bayesian updating techniques, and propose more
robust measurement models for operational risk.

At the end, we will point out the effects of the increased use of insurance against major
operational risk factors and incorporate these in the performance analyses.

2. Laws and Regulations

Basel II cites three ways of calculating the capital charges required in the first pillar of
operational risk. The three methods, in increasing order of sophistication, are as follows.

(i) The Basic Indicator Approach (BIA).

(ii) The Standardized Approach (SA).

(iii) The Advanced Measurement Approach (AMA).

Regardless of the method chosen for the measurement of the capital requirement for
operational risk, the bank must prove that its measures are highly solid and reliable. Each of
the three approaches have specific calculation criteria and requirements, as explained in the
following sections.

2.1. Basic Indicator and Standardized Approaches

Banks using the BIA method have a minimum operational risk capital requirement equal to
a fixed percentage of the average annual gross income over the past three years. Hence, the
risk capital under the BIA approach for operational risk is given by

KBIA =
α

Z

3∑

i=1

max
(
GIi, 0

)
, (2.1)

where Z =
∑3

i=1 I{GIi>0}, GIi stands for gross income in year i, and α = 15% is set by the Basel
Committee. The results of the first two Quantitative Impact Studies (QIS) conducted during
the creation of the Basel Accord showed that on average 15% of the annual gross income was
an appropriate fraction to hold as the regulatory capital.
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Table 1: Business lines and the Beta factors.

Business line (j) Beta factors (βj)
j = 1, corporate finance 18%
j = 2, trading and sales 18%
j = 3, retail banking 12%
j = 4, commercial banking 15%
j = 5, payment and settlement 18%
j = 6, agency services 15%
j = 7, asset management 12%
j = 8, retail brokerage 12%

Gross income is defined as the net interest income added to the net noninterest income.
This figure should be gross of any provisions (unpaid interest), should exclude realized
profits and losses from the sale of securities in the banking book, which is an accounting
book that includes all securities that are not actively traded by the institution, and exclude
extraordinary or irregular items.

No specific criteria for the use of the Basic Indicator Approach are set out in the Accord.

The Standardized Approach

In the Standardized Approach, banks’ activities are divided into 8 business lines: corporate
finance, trading and sales, retail banking, commercial banking, payment & settlements,
agency services, asset management, and retail brokerage. Within each business line, there
is a specified general indicator that reflects the size of the banks’ activities in that area. The
capital charge for each business line is calculated by multiplying gross income by a factor β
assigned to a particular business line, see Table 1.

As in the Basic Indicator Approach, the total capital charge is calculated as a three-year
average over all positive gross income (GI) as follows:

KSA =

∑3
i=1 max

(∑8
j=1 βjGIi, 0

)

3
. (2.2)

The second QIS issued by the Basel Committee, covering the same institutions surveyed in
the first study, resulted in 12%, 15%, and 18% as appropriate rates in calculating regulatory
capital as a percentage of gross income.

Before tackling the third Basel approach (AMA), we give a simple example to illustrate
the calculation for the first two approaches.

2.1.1. Example of the BIA and SA Calculations

In Table 2, we see the Basic and Standardized Approaches for the 8 business lines. The main
difference between the BIA and the SA is that the former does not distinguish its income
by business lines. As shown in the tables, we have the annual gross incomes related to year
3, year 2, and year 1. With the Basic Approach, we do not segregate the income by business
lines, and therefore, we have a summation at the bottom.We see that three years ago, the bank
had a gross income of around 132 million which then decreased to −2 million the following
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Table 2: Simple example related to the BIA and SA calculation criteria.

Basic Indicator Approach (BIA) Standardized Approach (SA)
Gross income (GI) per million of C

Business lines t − 3 t − 2 t − 1 Beta t − 3 t − 2 t − 1
Corporate finance 20.00C −14.00C −1.00C 18% 3.60C −2.52 −0.18C
Trading and sales 19.00C 3.00C 18.00C 18% 3.42C 0.54 3.24C
Retail banking 14.00C −15.00C 18.00C 12% 1.68C −1.80 2.16C
Commercial banking 16.00C 10.00C 11.00C 15% 2.40C 1.50 1.65C
Payments and settlements 17.00C −8.00C 10.00C 18% 3.06C −1.44 1.80C
Agency services 18.00C 13.00C 13.00C 15% 2.70C 1.95 1.95C
Asset management 16.00C 4.00C −4.00C 12% 1.92C 0.48 −0.48C
Retail brokerage 12.00C 5.00C 6.00C 12% 1.44C 0.60C 0.72C
Bank 132.00C −2.00C 71.00C 20.22C −0.69C 10.86C
Treat negatives 132.00C 71.00C 20.22C 0.00 10.86C
Average of the 3 years excluding negatives: 101.50C

Alpha (α): 15%
Capital requirement under BIA 15.23C Capital requirement under SA 10.36C

year and finally rose to 71 million. Moreover, the Basic Indicator Approach does not take
into consideration negative gross incomes. So in treating the negatives, the −2 million was
removed. To get our operational risk charge, we calculate the average gross income excluding
negatives and we multiply it by an alpha factor of 15% set by the Basel Committee. We obtain
a result of 15.23 million C.

Similarly to the BI Approach, the Standardized Approach has a Beta factor for each
of the business lines as some are considered riskier in terms of operational risk than others.
Hence, we have eight different factors ranging between 12 and 18 percent as determined by
the Basel Committee. For this approach, we calculate a weighted average of the gross income
using the business line betas. Any negative number over the past years is converted to zero
before an average is taken over the three years. In this case, we end up with a capital charge
of around 10.36 million C.

2.1.2. The Capital Requirement under the Basic Indicator and Standardized Approaches

As depicted in the previous example, the capital charge relating to the Standardized
Approach was lower than that of the Basic Approach. This, however, is not always the case,
thus causing some criticism and raising questions such as why would a bank use a more
sophisticated approach when the simpler one would cost them less?

In this section, we show that the capital charge could vary between different
approaches. To start with, let KBIA = αGI and KSA =

∑8
i=1 βiGIi, where α = 15%, GIi is the

gross income related to the business line i, and GI is the total gross income.
Compiling these equations, we have

KBIA > KSA ⇐⇒ αGI >
8∑

i=1

βiGIi (2.3)
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and, consequently

α >

∑8
i=1 βiGIi
GI

. (2.4)

Therefore, the BIA produces a higher capital charge than the SA under the condition that the
alpha factor under the former is greater than the weighted average of the individual betas
under the latter.

There is no guarantee that the condition will be satisfied, which means that moving
from the BIA to the SA may or may not produce a lower capital charge (cf. Moosa [1]).

2.2. Capital Requirement Review

Several Quantitative Impact Studies (QIS) have been conducted for a better understanding
of operational risk significance on banks and the potential effects of the Basel II capital
requirements. During 2001 and 2002, QIS 2, QIS 2.5, and QIS 3 were carried out by
the committee using data gathered across many countries. Furthermore, to account for
national impact, a joint decision of many participating countries resulted in the QIS 4 being
undertaken. In 2005, to review the Basel II framework, BCBS implemented QIS 5.

Some of these quantitative impact studies have been accompanied by operational Loss
Data Collection Exercises (LDCE). The first two exercises conducted by the RiskManagement
Group of BCBS on an international basis are referred to as the 2001 LDCE and 2002 LDCE.
These were followed by the national 2004 LDCE in USA and the 2007 LDCE in Japan.

Detailed information on these analyses can be found on the BCBS web site:
http://www.bis.org/bcbs/qis/.

Before analyzing the quantitative approaches, let us take a look at the minimum
regulatory capital formula and definition (cf. Basel Committee on Banking Supervision [4]).

Total risk-weighted assets are determined by multiplying capital requirements for
market risk and operational risk by 12.5, which is a scaling factor determined by the Basel
Committee, and adding the resulting figures to the sum of risk-weighted assets for credit
risk. The Basel II committee defines the minimum regulatory capital as 8% of the total risk-
weighted assets, as shown in the formula below:

Total regulatory capital
RWACredit +

[
MRCMarket +ORCOpr

] ∗ 12.5 ≥ 8%,

Minimim regulatory capital = 8%
[
RWACredit +

(
MRCMarket +ORCOpr

) ∗ 12.5].
(2.5)

The Committee applies a scaling factor in order to broadly maintain the aggregate level of
minimum capital requirements while also providing incentives to adopt the more advanced
risk-sensitive approaches of the framework.

The Total Regulatory Capital has its own set of rules according to 3 tiers.

(i) The first tier, also called the core tier, is the core capital including equity capital and
disclosed reserves.

(ii) The second tier is the supplementary capital which includes items such as general
loss reserves, undisclosed reserves, and subordinated term debt.

(iii) The third tier covers market risk, commodities risk, and foreign currency risk.
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Table 3: Ratio of operational risk economic capital to overall economic capital and to minimum regulatory
capital.

Median Mean Min 25th % 75th % Max N

Operational risk capital/
Overall economic capital

0.150 0.149 0.009 0.086 0.197 0.351 41

Operational risk capital/
Minimum regulatory capital

0.128 0.153 0.009 0.074 0.17 0.876 41

The Risk Management Group (RMG) has taken 12% of the current minimum
regulatory capital as its starting point for calculating the basic and standardized approach.

The Quantitative Impact Study (QIS) survey requested banks to provide information
on their minimum regulatory capital broken down by risk type (credit, market, and
operational risk) and by business line. Banks were also asked to exclude any insurance and
nonbanking activities from the figures. The survey covered the years 1998 to 2000.

Overall, more than 140 banks provided some information on the operational risk
section of the QIS. These banks included 57 large, internationally active banks (called type 1
banks in the survey) andmore than 80 smaller type 2 banks from 24 countries. The RMG used
the data provided in the QIS to gain an understanding of the role of operational risk capital
allocations in banks and their relationship tominimum regulatory capital for operational risk.
These results are summarized in Table 3.

The results suggest that on average, operational risk capital represents about 15
percent of overall economic capital, though there is some dispersion. Moreover, operational
risk capital appears to represent a rather smaller share of minimum regulatory capital over
12% for the median.

These results suggest that a reasonable level of the overall operational risk capital
charge would be about 12 percent of minimum regulatory capital. Therefore, a figure of 12%
chosen by the Basel Committee for this purpose is not out of line with the proportion of
internal capital allocated to operational risk for most banking institutions in the sample.

2.2.1. The Basic Indicator Approach

Under the BIA approach, regulatory capital for operational risk is calculated as a percentage
α of a bank’s gross income. The data reported in the QIS concerning banks’ minimum
regulatory capital and gross income were used to calculate individual alphas for each bank
for each year from 1998 to 2000 to validate the 12% level of minimum regulatory capital (cf.
BCBS [5]).

The calculation was

αj,t =
12% ∗MRCj,t

GIj,t
. (2.6)

Here, MRCj,t is the minimum regulatory capital for bank j in year t and GIj,t is the gross
income for bank j in year t. Given these calculations, the results of the survey are reported in
Table 4.

Table 4 presents the distribution in two ways—the statistics of all banks together and
the statistics according to the two types of banks by size. The first three columns of the table
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Table 4: Analysis of QIS data: BI Approach (based on 12% of minimum regulatory capital).

Individual observations Median Mean WA Std WA Std Min Max 25th% 75th% N

All Banks 0.190 0.221 0.186 0.135 0.120 0.019 0.831 0.137 0.246 355
Type 1 Banks 0.168 0.218 0.183 0.136 0.121 0.048 0.659 0.136 0.225 151
Type 2 Banks 0.205 0.224 0.220 0.134 0.111 0.019 0.831 0.139 0.253 204

contain the median, mean, and the weighted average of the values of the alphas (using gross
income to weight the individual alphas). The median values range between 17% and 20%
with higher values for type 2 banks. The remaining columns of the table present information
about the dispersion of alphas across banks.

These results suggest that an alpha range of 17% to 20% would produce regulatory
capital figures approximately consistent with an overall capital standard of 12% of minimum
regulatory capital. However, after testing the application of this alpha range, the Basel
Committee decided to reduce the factor to 15% because an alpha of 17 to 20 percent resulted
in an excessive level of capital for many banks.

2.2.2. The Standardized Approach

As seen previously, the minimum capital requirement for operational risk under the
Standardised Approach is calculated by dividing a bank’s operations into eight business
lines. For each business line, the capital requirement will be calculated according to a certain
percentage of gross income attributed for that business line.

The QIS data concerning distribution of operational risk across business lines was
used and, as with the Basic Approach, the baseline assumption was that the overall level
of operational risk capital is at 12% of minimum regulatory capital. Then, the business line
capital was divided by business line gross income to arrive at a bank-specific β for that
business line, as shown in the following formula:

βj,i =
12% ∗MRCj ∗OpRiskSharej,i

GIj,i
, (2.7)

where βj,i is the beta for bank j in business line i, MRCj is the minimum regulatory capital for
the bank, OpRiskSharej,i is the share of bank j’s operational risk economic capital allocated
to business line i, and GIj,i is the gross income in business line i for bank j.

In the end, 30 banks reported data on both operational risk economic capital and gross
income by business line, but only the banks that had reported activity in a particular business
line were included in the line’s beta calculation (i.e., if a bank had activities related to six of
the eight business lines, then it was included in the analysis for those six business lines).

The results of this analysis are displayed in Table 5.
The first three columns of the table present the median, mean and weighted average

values of the betas for each business line, and the rest of the columns present the dispersion
across the sample used for the study. As with the Basic Approach, the mean values tend to
be greater than the median and the weighted average values, thus reflecting the presence of
some large individual beta estimates in some of the business lines.

Additionally, the QIS ranked the betas according to the business lines with “1”
representing the smallest beta and “8” the highest. Table 6 depicts this ranking, and we see
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Table 5: Analysis of QIS data: the Standardized Approach (based on 12% of minimum regulatory capital).

Median Mean WA Std WA Std Min Max 25th% 75th% N

Corporate finance 0.131 0.236 0.12 0.249 0.089 0.035 0.905 0.063 0.361 19
Trading and sales 0.171 0.241 0.202 0.183 0.129 0.023 0.775 0.123 0.391 26
Retail banking 0.125 0.127 0.110 0.127 0.006 0.008 0.342 0.087 0.168 24
Commercial banking 0.132 0.169 0.152 0.116 0.096 0.048 0.507 0.094 0.211 27
Payment and settlement 0.208 0.203 0.185 0.128 0.068 0.003 0.447 0.1 0.248 15
Agency services and custody 0.174 0.232 0.183 0.218 0.154 0.056 0.901 0.098 0.217 14
Retail brokerage 0.113 0.149 0.161 0.073 0.066 0.05 0.283 0.097 0.199 15
Asset management 0.133 0.185 0.152 0.167 0.141 0.033 0.659 0.079 0.210 22

Table 6: Size ranking across three measures of “typical” Beta by business lines.

Median Mean Weighted average
Corporate finance 3 7 2
Trading and sales 6 8 8
Retail banking 2 1 1
Commercial banking 4 3 7
Payment and settlement 8 5 7
Agency services and custody 7 6 6
Retail brokerage 1 2 5
Asset management 5 4 3

that retail banking tends to be ranked low while trading & sales with agency services &
custody tend to be ranked high.

Tables 5 and 6 show us the disparity that exists of “typical” beta by business line in
columns 4 to 9 and so we want to find out whether this dispersion allows us to separate the
different beta values across business lines. Through statistical testing of the equality of the
mean and the median, the results do not reject the null hypothesis that these figures are the
same across the eight business lines.

These diffusions observed in the beta estimate could be reflected in the calibration
difference of the internal economic capital measures of banks. Additionally, banks may also
be applying differing definitions of the constitution of operational risk loss and gross income
as these vary under different jurisdictions. Given additional statistics and data, the Basel
Committee decided to estimate the beta factors between 12% and 18% for each of the different
business lines.

2.3. The Advanced Measurement Approach

With the Advanced Measurement Approach (AMA), the regulatory capital is determined
by a bank’s own internal operational risk measurement system according to a number of
quantitative and qualitative criteria set forth by the Basel Committee. However, the use of
these approaches must be approved and verified by the national supervisor.

The AMA is based on the collection of loss data for each event type. Each bank is
to measure the required capital based on its own loss data using the holding period and
confidence interval determined by the regulators (1 year and 99.9%).
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Table 7: Basel II 8 Business lines × 7 event types.

Basel II business lines (BL) Basel II event types
Corporate finance (β1 = 0.18) Internal fraud
Trading and sales (β2 = 0.18) External fraud
Retail banking (β3 = 0.12) Employment practices and workplace safety
Commercial banking (β4 = 0.15) Clients, products, and business practices
Payment and Settlement (β5 = 0.18) Damage to physical assets
Agency services (β6 = 0.15) Business disruption and system failures
Asset management (β7 = 0.12) Execution, delivery, and process management
Retail brokerage (β8 = 0.12)

The capital charge calculated under the AMA is initially subjected to a floor set at 75%
of that under the Standardized Approach, at least until the development of measurement
methodologies is examined. In addition, the Basel II Committee decided to allow the use of
insurance coverage to reduce the capital required for operational risk, but this allowance does
not apply to the SA and the BIA.

A bank intending to use the AMA should demonstrate accuracy of the internal models
within the Basel II risk cells (eight business lines × seven risk types shown in Table 7), relevant
to the bank, and satisfy some criteria including the following.

(i) The use of the internal data, relevant external data, scenario analyses, and factors
reflecting the business environment and internal control systems.

(ii) Scenario analyses of expert opinion.

(iii) The risk measure used for capital charge should correspond to a 99.9% confidence
level for a one-year holding period.

(iv) Diversification benefits are allowed if dependence modelling is approved by a
regulator.

(v) Capital reduction due to insurance is fixed at 20%.

The relative weight of each source and the combination of sources are decided by the
banks themselves; Basel II does not provide a regulatory model.

The application of the AMA is, in principle, open to any proprietary model, but the
methodologies have converged over the years and thus specific standards have emerged. As
a result, most AMA models can now be classified into the following.

(i) Loss Distribution Approach (LDA).

(ii) Internal Measurement Approach (IMA).

(iii) Scenario-Based AMA (sbAMA).

(iv) Scorecard Approach (SCA).

2.3.1. The Loss Distribution Approach (LDA)

The Loss Distribution Approach (LDA) is a parametric technique primarily based on historic
observed internal loss data (potentially enriched with external data). Established on concepts
used in actuarial models, the LDA consists of separately estimating a frequency distribution
for the occurrence of operational losses and a severity distribution for the economic impact
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Figure 1: Illustration of the Loss Distribution Approach method (LDA) (cf. Maurer [7]).

of the individual losses. The implementation of this method can be summarized by the
following steps (see Figure 1).

(1) Estimate the loss severity distribution.

(2) Estimate the loss frequency distribution.

(3) Calculate the capital requirement.

(4) Incorporate the experts’ opinions.

For each business line and risk category, we establish two distributions (cf. Dahen
[6]): one related to the frequency of the loss events for the time interval of one year (the loss
frequency distribution), and the other related to the severity of the events (the loss severity
distribution).

To establish these distributions, we look for mathematical models that best describe
the two distributions according to the data and then we combine the two using Monte
Carlo simulation to obtain an aggregate loss distribution for each business line and risk
type. Finally, by summing all the individual VaRs calculated at 99.9%, we obtain the capital
required by Basel II.

We start with defining some technical aspects before demonstrating the LDA (cf.
Maurer [7]).

Definition 2.1 (Value at Risk OpVaR). The capital charge is the 99.9% quantile of the aggregate
loss distribution. So with N as the random number of events, the total loss is L =

∑N
i=0 ψi

where ψi is the ith loss amount. The capital charge would then be

P
(
L > OpVaR

)
= 0.1%. (2.8)
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Definition 2.2 (OpVaR unexpected loss). This is the same as the Value at Risk OpVaR while
adding the expected and the unexpected loss. Here, the capital charge would result in

P(L > UL + EL) = 0.1%. (2.9)

Definition 2.3 (OpVar beyond a threshold). The capital charge in this case would be a 99.9%
quantile of the total loss distribution defined with a thresholdH as

P

(
N∑

i=0

ψi × 1
{
ψi ≥ H

}
> OpVaR

)
= 0.1%. (2.10)

The three previous methods are calculated using a Monte Carlo simulation.

For the LDAmethodwhich expresses the aggregate loss regarding each business line ×
event type Lij as the sum of individual losses, the distribution function of the aggregate loss,
noted as Fij , would be a compound distribution (cf. Frachot et al. [8]).

So the capital-at-risk (CaR) for the business line i and event type j corresponds to the
α quantile of Fij as follows:

CaRij(α) = F−1ij (α) = inf
{
x | Fij(x) ≥ α

}
, (2.11)

and, as with the second definition explained previously, the CaR for the element ij is equal to
the sum of the expected loss (EL) and the unexpected Loss (UL):

CaRij(α) = ELij +ULij(α) = F−1ij (α). (2.12)

Finally, by summing all the the capital charges CaRij(α), we get the aggregate CaR across all
business lines and event types: (see Figure 2)

CaR(α) =
I∑

i=1

J∑

j=1

CaRij(α). (2.13)

The Basel committee fixed an α = 99.9% to obtain a realistic estimation of the capital required.
However, the problem of correlation remains an issue here as it is unrealistic to assume that
the losses are not correlated. For this purpose, Basel II authorised each bank to take correlation
into consideration when calculating operational risk capital using its own internal measures.

2.3.2. Internal Measurement Approach (IMA)

The IMA method (cf. BCBS [2]) provides carefulness to individual banks on the use of
internal loss data, while the method to calculate the required capital is uniformly set by
supervisors. In implementing this approach, supervisors would impose quantitative and
qualitative standards to ensure the integrity of the measurement approach, data quality, and
the adequacy of the internal control environment.
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Under the IM approach, capital charge for the operational risk of a bank would be
determined using the following.

(i) The bank’s activities are categorized into a number of business lines, and a broad
set of operational loss types is defined and applied across business lines.

(ii) Within each business line/event-type combination, the supervisor specifies an
exposure indicator (EI)which is a substitute for the amount of risk of each business
line’s operational risk exposure.

(iii) In addition to the exposure indicator, for each business line/loss type combination,
banks measure, based on their internal loss data, a parameter representing the
probability of loss event (PE) as well as a parameter representing the loss given
that event (LGE). The product of EI∗PE∗LGE is used to calculate the Expected Loss
(EL) for each business line/loss type combination.

(iv) The supervisor supplies a factor γ for each business line/event type combination,
which translates the expected loss (EL) into a capital charge. The overall capital
charge for a particular bank is the simple sum of all the resulting products.

Let us reformulate all the points mentioned above; calculating the expected loss for
each business line so that for a business line i and an event type j, the capital charge K is
defined as

Kij = ELij × γij × RPIij , (2.14)

where EL represents the expected loss, γ is the scaling factor, and RPI is the Risk Profile Index.
The Basel Committee on Banking Supervision proposes that the bank estimates the

expected loss as follows:

ELij = EIij ∗ PEij ∗ LGEij , (2.15)

where EI is the exposure indicator, PE is the probability of an operational risk event, and LGE
is the loss given event.

The committe proposes to use a risk profile index RPI as an adjustment factor to
capture the difference of the loss distribution tail of the bank compared to that of the industry
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wide loss distribution. The idea is to capture the leptokurtic properties of the bank loss
distribution and then to transform the exogeneous factor γ into an internal scaling factor
λ such that

Kij = ELij × γij × RPIij

= ELij × λij .
(2.16)

By definition, the RPI of the industry loss distribution is one. If the bank loss distribution has
a fatter tail than the industry loss distribution RPI would be larger than one. So two banks
which have the same expected loss may have different capital charge because they do not
have the same risk profile index.

2.3.3. Scorecard Approach (SCA)

The Scorecards approach (http://www.fimarkets.com/pages/risque operationnel.php)
incorporates the use of a questionnaire which consists of a series of weighted, risk-based
questions. The questions are designed to focus on the principal drivers and controls of
operational risk across a broad range of applicable operational risk categories, which
may vary across banks. The questionnaire is designed to reflect the organization’s unique
operational risk profile by the following.

(i) Designing organization-specific questions that search for information about the
level of risks and quality of controls.

(ii) Calibrating possible responses through a range of “unacceptable” to “effective” to
“leading practice.”

(iii) Applying customized question weightings and response scores aligned with
the relative importance of individual risks to the organization. These can vary
significantly between banks (due to business mix differences) and may also be
customized along business lines within an organization. Note that scoring of
response options will often not be linear.

The Basel Committee did not put any kind of mathematical equation regarding this
method, but working with that method made banks propose a formula related which is

KSCA = EIij ∗ωij ∗ RSij , (2.17)

where EI is the exposure indicator, RS the risk score, and ω the scale factor.

2.3.4. Scenario-Based AMA (sbAMA)

Risk is defined as the combination of severity and frequency of potential loss over a given
time horizon and is linked to the evaluation of scenarios. Scenarios are potential future events.
Their evaluation involves answering two fundamental questions: firstly, what is the potential
frequency of a particular scenario occurring and secondly, what is its potential loss severity?

The scenario-based AMA (http://www.newyorkfed.org/newsevents/events/bank-
ing/2003/con0529c.pdf) (or sbAMA) shares with LDA the idea of combining two
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Figure 3: Overview of the sbAMA.

dimensions (frequency and severity) to calculate the aggregate loss distribution used to
obtain the OpVaR. Banks with their activities and their control environment should build
scenarios describing potential events of operational risks. Then experts are asked to give
opinions on probability of occurrence (i.e., frequency) and potential economic impact should
the events occur (i.e., severity); but Human judgment of probabilistic measures is often
biased and a major challenge with this approach is to obtain sufficiently reliable estimates
from experts. The relevant point in sbAMA is that information is only fed into a capital
computation model if it is essential to the operational risk profile to answer the “what-
if” questions in the scenario assessment. Furthermore, the overall sbAMA process must
be supported by a sound and structured organisational framework and by an adequate
IT infrastructure. The sbAMA comprises six main steps, which are illustrated in Figure 3.
Outcome from sbAMA will be statistically compatible with that arising from LDA so as to
enable a statistically combination technique. The most adequate technique to combine LDA
and sbAMA is Bayesian inference, which requires experts to set the parameters of the loss
distribution (see Figure 3 for illustration).

2.4. Solvency II Quantification Methods

Solvency II imposes a capital charge for the operational risk that is calculated regarding the
standard formula given by regulators or an internal model which is validated by the right
authorities.

For the enterprises that have difficulties running an internal model for operational
risk, the standard formula can be used for the calculation of this capital charge.

The European Insurance and Occupational Pensions Authority (EIOPA), previously
known as the Committee of European Insurance and Occupational Pensions Supervisors
(CEIOPS), tests the standard formulas in markets through the use of surveys and
questionnaires called Quantitative Impact Studies (QIS). The QIS allow the committee to
adjust and develop the formulas in response to the observations and difficulties encountered
by the enterprises.

2.4.1. Standard Formula Issued by QIS5

The Solvency Capital Requirement (SCR) concerns an organization’s ability to absorb
significant losses through their own basic funds of an insurance or reinsurance company.
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Table 8: Correlation matrix for the different risk modules in QIS5.

Corr Market Default Life Health Nonlife
Market 1
Default 0.25 1
Life 0.25 0.25 1
Health 0.25 0.25 0.25 1
Non-life 0.25 0.5 0 0 1

SCR
(solvency capital 

requirement)

Adjustment
BSCR

(basic SCR)

Market Default/ Life Nonlife Health Intangibles

Operational 
risk

counterparty

Figure 4: Solvency Capital Requirement (SCR).

This ability is depicted by the company’s Value-at-Risk at a 99.5% confidence level over a one-
year period and the objective is applied to each individual risk model to ensure that different
modules of the standard formula are quantified in a consistent approach. Additionally, the
correlation coefficients are set to reflect potential dependencies in the distributions’ tails (see
Table 8). The breakdown of the SCR is shown in Figure 4.

With the calculation of the BSCR,

BSCR =
√∑

ij

Corrij × SCRi × SCRj + SCRIntangibles. (2.18)

In relation to previous surveys, respondents suggested that the following.

(i) The operational risk charge should be calculated as a percentage of the BSCR or the
SCR.

(ii) The operational risk charge should be more sensitive to operational risk manage-
ment.

(iii) The operational risk charge should be based on entity-specific operational risk
sources, the quality of the operational risk management process, and the internal
control framework.

(iv) Diversification benefits and risk mitigation techniques should be taken into
consideration.

In view of the above, EIOPA has considered the following (cf. CEIOPS [9]).

(i) The calibration of operational risk factors for the standard formula has been revised
to be more consistent with the assessment obtained from internal models.
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Table 9: QIS5 factors.

QIS5 factors
TP life 0.45%
TP nonlife 3%
Premium life 4%
Premium nonlife 3%
UL factor 25%
BSCR cap life 30%
BSCR cap nonlife 30%

(ii) A zero floor for all technical provisions has been explicitly introduced to avoid an
undue reduction of the operational risk SCR.

(iii) The Basic SCR is not a sufficiently reliable aggregate measure of the operational
risk, and that a minimum level of granularity would be desirable in the design of
the formula.

And so after additional analysis and reports, EIOPA recommends the final factors to be as
shown in Table 9.

Before going into the formula let us define some notations (cf. CEIOPS [10]).

(i) TPlife is the life insurance obligations. For the purpose of this calculation, technical
provisions should not include the risk margin and should be without deduction of
recoverables from reinsurance contracts and special purpose vehicles.

(ii) TPnonlife is the total nonlife insurance obligations excluding obligations under
nonlife contracts which are similar to life obligations, including annuities. For the
purpose of this calculation, technical provisions should not include the risk margin
and should be without deduction of recoverables from reinsurance contracts and
special purpose vehicles.

(iii) TPlife ul is the life insurance obligations for life insurance obligations where the
investment risk is borne by the policyholders. For the purpose of this calculation,
technical provisions should not include the risk margin and should be without
deduction of recoverables from reinsurance contracts and special purpose vehicle.

(iv) pEarnlife is the earned premium during the 12 months prior to the previous
12 months for life insurance obligations, without deducting premium ceded to
reinsurance.

(v) pEarnlife ul is the earned premium during the 12 months prior to the previous 12
months for life insurance obligations where the investment risk is borne by the
policyholders, without deducting premium ceded to reinsurance.

(vi) Earnlife ul is the earned premium during the previous 12 months for life insurance
obligations where the investment risk is borne by the policyholders without
deducting premium ceded to reinsurance.

(vii) Earnlife is the earned premium during the previous 12 months for life insurance
obligations, without deducting premium ceded to reinsurance.

(viii) Earnnonlife is the earned premium during the previous 12 months for nonlife
insurance obligations, without deducting premiums ceded to reinsurance.
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(ix) Expul is the amount of annual expenses incurred during the previous 12 months in
respect to life insurance where the investment risk is borne by the policyholders.

(x) BSCR is the basic SCR.

Finally the standard formula resulted to be

SCRop = min
(
0.3BSCR,Opall none ul

)
+ 0.25Expul, (2.19)

where Opall none ul = max(Oppremiums,Opprovisions),

Oppremiums = 0.04 ∗ (Earnlife − Earnlife ul) + 0.03 ∗ (Earnnonlife)

+max
(
0, 0.04 ∗ (

Earnlife − 1.1pEarnlife −
(
Earnlife ul − 1.1pEarnlife ul

)))

+max
(
0, 0.03 ∗ (

Earnnonlife − 1.1pEarnnonlife
))
,

Opprovisions = 0.0045 ∗max(0,TPlife − TPlife ul) + 0.03 ∗max(0,TPnonlife).

(2.20)

3. Quantitative Methodologies

A wide variety of risks exist, thus necessitating their regrouping in order to categorize and
evaluate their threats for the functioning of any given business. The concept of a risk matrix,
coined by Richard Prouty (1960), allows us to highlight which risks can be modeled. Experts
have used this matrix to classify various risks according to their average frequency and
severity as seen in Figure 5.

There are in total four general categories of risk.

(i) Negligible risks: with low frequency and low severity, these risks are insignificant
as they do not impact the firm very strongly.
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(ii) Marginal risks: with high frequency and low severity, though the losses are not
substantial individually, they can create a setback in aggregation. These risks are
modeled by the Loss Distribution Approach (LDA) which we discussed earlier.

(iii) Catastrophic risks: with low frequency and high severity, the losses are rare but
have a strong negative impact on the firm and consequently, the reduction of these
risks is necessary for a business to continue its operations. Catastrophic risks are
modeled using the Extreme Value Theory and Bayesian techniques.

(iv) Impossible: with high frequency and high severity, the firm must ensure that these
risks fall outside possible business operations to ensure financial health of the
corporation.

Classifying the risks as per the matrix allows us to identify their severity and frequency and
to model them independently by using different techniques andmethods. We are going to see
in the following sections the different theoretical implementation and application of different
theories and models regarding operational risk.

3.1. Risk Measures

Some of the most frequent questions concerning risk management in finance involve extreme
quantile estimation. This corresponds to determining the value a given variable exceeds with
a given (low) probability. A typical example of such a measure is the Value-at-Risk (VaR).
Other less frequently used measures are the expected shortfall (ES) and the return level (cf.
Gilli and Kellezi [11]).

3.1.1. VaR Calculation

A riskmeasure of the risk of loss on a specific portfolio of financial assets, VaR is the threshold
value such that the probability that the mark-to-market loss on the portfolio over the given
time horizon exceeds this value is the given probability level. VaR can then be defined as the
qth quantile of the distribution F:

VaRq = F−1(q
)
, (3.1)

where F−1 is the quantile function which is defined as the inverse function of the distribution
function F. For internal risk control purposes, most of the financial firms compute a 5% VaR
over a one-day holding period.

3.1.2. Expected Shortfall

The expected shortfall is an alternative to VaR that is more sensitive to the shape of the loss
distribution’s tail. The expected shortfall at a q% level is the expected return on the portfolio
in the worst q% of the cases:

ESq = E
(
X | X > VaRq

)
. (3.2)
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3.1.3. Return Level

Let H be the distribution of the maxima observed over successive nonoverlapping periods
of equal length. The return level Rk

n is the expected level which will be exceeded, on average,
only once in a sequence of k periods of length n.

Thus, Rk
n is a quantile:

Rk
n = H−1(1 − p) (3.3)

of the distribution function H. As this event occurs only once every k periods, we can say
that p = 1/k:

Rk
n = H−1

(
1 − 1

k

)
. (3.4)

3.2. Illustration of the LDA Method

Even a cursory look at the operational risk literature reveals that measuring and modeling
aggregate loss distributions are central to operational risk management. Since the daily
business operations have considerable risk, quantification in terms of an aggregate loss
distribution is an important objective. A number of approaches have been developed to
calculate the aggregate loss distribution.

We begin this section by examining the severity distribution, the frequency distribu-
tion function, and finally the aggregate loss distribution.

3.2.1. Severity of Loss Distributions

Fitting a probability distribution to data on the severity of loss arising from an operational
risk event is an important task in any statistically based modeling of operational risk. The
observed data to be modeled may either consist of actual values recorded by business line or
may be the result of a simulation. In fitting a probability model to empirical data, the general
approach is to first select a basic class of probability distributions and then find values for the
distributional parameters that best match the observed data.

Following is an example of the Beta and Lognormal Distributions.
The standard Beta distribution is best used when the severity of loss is expressed as

a proportion. Given a continuous random variable x, such that 0 ≤ x ≤ 1, the probability
density function of the standard beta distribution is given by

f(x) =
xα−1(1 − x)β−1

B
(
α, β

) , (3.5)

where

B
(
α, β

)
=

∫1

0
uα−1(1 − u)β−1du, α > 0, β > 0. (3.6)

The parameters α and β control the shape of the distribution.
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Figure 6: Loss severity distribution of a lognormal distribution.

The mean of the beta distribution is given by

Mean =
α

(
α + β

) ,

standard deviation =

√√√√ αβ
(
α + β

)2(
α + β + 1

) .
(3.7)

In our example, we will be working with lognormal distributions (see Figure 6). A lognormal
distribution is a probability distribution of a random variable whose logarithm is normally
distributed. So if X is a random variable with a normal distribution, then Y = exp(X) has
a log-normal distribution. Likewise, if Y is lognormally distributed, then X = log(Y ) is
normally distributed.

The probability density function of a log-normal distribution is

fX
(
x, μ, σ

)
=

1
xσ

√
2πe−(lnx−μ)

2/2σ2
, (3.8)

where μ and σ are called the location and scale parameter, respectively. So for a lognormally
distributed variable X, E[X] = e−(1/2)σ

2
and Var[X] = (eσ

2 − 1)e2μ+σ
2
.

Statistical and Graphical Tests

There are numerous graphical and statistical tests for assessing the fit of a postulated severity
of a loss probability model to empirical data. In this section, we focus on four of the most
general tests: probability plots, Q-Q Plots, the Kolmogorov-Smirnov goodness of fit test, and
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the Anderson-Darling goodness of fit test. In discussing the statistic tests, we shall assume a
sample ofN observations on the severity of loss random variable X.

Furthermore, we will be testing:

(i) H0: samples come from the postulated probability distribution, against

(ii) H1: samples do not come from the postulated probability distribution.

(1) Probability Plot

A popular way of checking a model is by using probability plots (http://www.itl.nist.gov/
div898/handbook/eda/section3/probplot.htm/). To do so, the data are plotted against a
theoretical distribution in such a way that the points should form approximately a straight
line. Departures from this straight line indicate departures from the specified distribution.

The probability plot is used to answer the following questions.

(i) Does a given distribution provide a good fit to the data?

(ii) Which distribution best fits my data?

(iii) What are the best estimates for the location and scale parameters of the chosen
distribution?

(2) Q-Q Plots

Quantile-Quantile Plots (Q-Q Plots) (http://www.itl.nist.gov/div898/handbook/eda/sec-
tion3/qqplot.htm/) are used to determine whether two samples come from the same
distribution family. They are scatter plots of quantiles computed from each sample, with a
line drawn between the first and third quartiles. If the data falls near the line, it is reasonable
to assume that the two samples come from the same distribution. The method is quite robust,
regardless of changes in the location and scale parameters of either distribution.

The Quantile-Quantile Plots are used to answer the following questions.

(i) Do two data sets come from populations with a common distribution?

(ii) Do two data sets have common location and scale parameters?

(iii) Do two data sets have similar distributional shapes?

(iv) Do two data sets have similar tail behavior?

(3) Kolmogorov-Smirnov Goodness of Fit Test

The Kolmogorov-Smirnov test statistic is the largest absolute deviation between the
cumulative distribution function of the sample data and the cumulative probability
distribution function of the postulated probability density function, over the range of the
random variable:

T = max|FN(x) − F(x)| (3.9)

over all x, where the cumulative distribution function of the sample data is FN(x), and F(x) is
the cumulative probability distribution function of the fitted distribution. The Kolmogorov-
Smirnov test relies on the fact that the value of the sample cumulative density function is
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asymptotically normally distributed. Hence, the test is distribution-free in the sense that the
critical values do not depend on the specific probability distribution being tested.

(4) Anderson-Darling Goodness of Fit Test

The Anderson-Darling test statistic is given by

T̂ = −N − 1
N

N∑

i=1

2(i − 1){lnF(x̃i) + ln[1 − F(x̃N+1−i)]}, (3.10)

where x̃i are the sample data ordered by size. This test is a modification of the Kolmogorov-
Smirnov test which is more sensitive to deviations in the tails of the postulated probability
distribution. This added sensitivity is achieved by making use of the specific postulated
distribution in calculating critical values. Unfortunately, this extra sensitivity comes at the
cost of having to calculate critical values for each postulated distribution.

3.2.2. Loss Frequency Distribution

The important issue for the frequency of loss modeling is a discrete random variable that
represents the number of operational risk events observed. These events will occur with some
probability p.

Many frequency distributions exist, such as the binomial, negative binomial, and
geometric, but we are going to focus on the Poisson distribution in particular for our
illustration. To do so, we start by explaining this distribution.

The probability density function of the Poisson distribution is given by

P(X = k) =
exp−λλk

k!
, (3.11)

where k ≥ 0 and λ > 0 is the mean and
√
λ is the standard deviation (see Figure 7).

Estimation of the parameter can be carried out by maximum likelihood.
Much too often, a particular frequency of a loss distribution is chosen for no reason

other than the risk managers familiarity of it. A wide number of alternative distributions
are always available, each generating a different pattern of probabilities. It is important,
therefore, that the probability distribution is chosen with appropriate attention to the degree
to which it fits the empirical data. The choice as to which distribution to use can be based on
either a visual inspection of the fitted distribution against the actual data or a formal statistical
test such as the Chi-squared goodness of fit test. For the Chi-squared goodness of fit test, the
null hypothesis is

H0 = The data follow a specified distribution,

H1 = The data do not follow the specified distribution.
(3.12)

The test statistic is calculated by dividing the data into n sets and is defined as

T̃ =
n∑

i=1

(Ei −Oi)2

Ei
, (3.13)
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Figure 7: Loss frequency distribution.

where Ei is the expected number of events determined by the frequency of loss probability
distribution, Oi is the observed number of events, and n is the number of categories.

The test statistic is a measure of how different the observed frequencies are from the
expected frequencies. It has a Chi-squared distribution with n − (k − 1) degrees of freedom,
where k is the number of parameters that needs to be estimated.

3.2.3. Aggregate Loss Distribution

Even though in practice we may not have access to a historical sample of aggregate
losses, it is possible to create sample values that represent aggregate operational risk
losses given the severity and frequency of a loss probability model. In our example, we
took the Poisson(2) and Lognormal(1.42,2.38) distributions as the frequency and severity
distributions, respectively. Using the frequency and severity of loss data, we can simulate
aggregate operational risk losses and then use these simulated losses for the calculation of
the operational risk capital charge.

The simplest way to obtain the aggregate loss distribution is to collect data on
frequency and severity of losses for a particular operational risk type and then fit frequency
and severity of loss models to the data. The aggregate loss distribution then can be found
by combining the distributions for severity and frequency of operational losses over a fixed
period such as a year.

Let us try and explain this in a more theoretical way. SupposeN is a random variable
representing the number of OR events between time t and t + δ, (δ is usually taken as one
year)with associated probability mass function p(N)which is defined as the probability that
exactly N losses are encountered during the time limit t and t + δ and let us define X as
a random variable representing the amount of loss arising from a single type of OR event
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with associated severity of loss probability density function fX(x); assuming the frequency
of events N is independent of the severity of events, the total loss from the specific type of
OR event between the time interval is

S = X1 +X2 + · · · +XN−1 +XN. (3.14)

The probability distribution function of S is a compound probability distribution:

G(x) =

⎧
⎪⎨

⎪⎩

∞∑

i=1

p(i) × Fi∗(x), if x > 0,

p(i), if x = 0,
(3.15)

where F(x) is the probability that the aggregate amount of i losses is x, ∗ is the convolution
operator on the functions F, and Fi

∗
(x) is the i-fold convolution of F with itself.

The problem is that for most distributions, G(x) cannot be evaluated exactly and it
must be evaluated numerically using methods such as Panjer’s recursive algorithm or Monte
Carlo simulation.

(a) Panjer’s Recursive Algorithm

If the frequency of loss probability mass function can be written in the form (cf. McNeil et al.
[12, page 480])

p(k) = p(k − 1)
(
a +

b

k

)
, k = 1, 2, . . . , (3.16)

where a and b are constants, Panjer’s recursive algorithm can be used.
The recursion is given by

g(x) = p(1)f(x) +
∫x

0

(
a + b

y

x

)
f
(
y
)
g
(
x − y)

dy, x > 0, (3.17)

where g(x) is the probability density function of G(x).
Usually, Poisson distribution, binomial distribution, negative binomial distribution,

and geometric distribution satisfy the form. For example, if our severity of loss is the Poisson
distribution seen above,

p(k) =
exp−λλk

k!
(3.18)

then a = 0 and b = λ.
A limitation of Panjer’s algorithm is that only discrete probability distributions are

valid. This shows that our severity of loss distribution, which is generally continuous, must be
made discrete before it can be used. Another much larger drawback to the practical use of this
method is that the calculation of convolutions is extremely long and it becomes impossible as
the number of losses in the time interval under consideration becomes large.
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Table 10: The VaR and mean VaR calculations.

VaR (99.9%) 0.1% 118, 162.57C
Mean VaR 207, 885.58C

(b) Monte Carlo Method

The Monte Carlo simulation is the simplest and often most direct approach. It involves the
following steps (cf. Dahen [6]).

(1) Choose a severity of loss and frequency of loss probability model.

(2) Generate n number of loss daily or weekly regarding the frequency of loss
distribution.

(3) Generate n losses Xi, (i = 1, . . . , n) regarding the loss severity distribution.

(4) Repeat steps 2 and 3 forN = 365 (for daily losses) orN = 52 (for weekly). Summing
all the generated Xi to obtain Swhich is the annual loss.

(5) Repeat the steps 2 to 4 many times (at least 5000) to obtain the annual aggregate
loss distribution.

(6) The VaR is calculated taking the Xth percentile of the aggregate loss distribution.

Now focusing on our example taking as Lognormal(1.42, 2.38) as the severity loss
distribution and Poisson(2) as the frequency distribution and by applying Monte Carlo we
arrive to calculate the VaR corresponding to the operational risk for a specific risk type (let
us say internal fraud).

To explain a bit the example given, we took into consideration the Poisson and
Lognormal as the weekly loss frequency and severity distributions, respectively. For the
aggregate loss distribution we generate n number of loss each time regarding the Poisson
distribution and n losses according the Lognormal distribution and so by summing the losses
Xi, i = 1, . . . , n and repeating the same steps 52 times we obtain S which would be the one
annual total loss.

At the end, we repeat the same steps over and over again 100,000 times; we obtain the
aggregate loss distribution (see Figure 8) on which we calculate the Value at Risk at 99.9%.

The programming was done using Matlab software and it resulted in the output and
calculations as shown in Table 10.

3.3. Treatment of Truncated Data

Generally, not all operational losses are declared. Databases are recorded starting from a
threshold of a specific amount (e.g., 5,000C). This phenomenon, if not properly addressed,
may create unwanted biases of the aggregate loss since the parameter estimation regarding
the fitted distributions would be far from reality.

In this section, we will discuss the various approaches used in dealing with truncated
data.

Data are said to be truncated when observations that fall within a given set are
excluded. Left-truncated data is when the numbers of a set are less than a specific value,
which means that neither the frequency nor the severity of such observations has been
recorded (cf. Chernobai et al. [13, 14]).
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Figure 8: Annual aggregate loss distribution.

In general, there are four different kinds of approaches that operational risk managers
apply to estimate the parameters of the frequency and severity distributions in the absence
of data due to truncation.

Approach 1. For this first approach, the missing observations are ignored and the observed
data are treated as a complete data set in fitting the frequency and severity distributions. This
approach leads to the highest biases in parameter estimation. Unfortunately, this is also the
approach used by most practitioners.

Approach 2. The second approach is divided into two steps (see Figure 9).

(i) Similar to the first approach, unconditional distributions are fitted to the severity
and frequency distribution.

(ii) The frequency parameter is adjusted according to the estimated fraction of the data
over the threshold u.

In the end, the adjusted frequency distribution parameter is expressed by

λ̂adj =
λ̂obs

1 − F̂cond(u)
, (3.19)

where λ̂adj represents the adjusted (complete data) parameter estimate, λ̂obs is the observed
frequency parameter estimate, and F̂cond(u) depicts the estimated conditional severity
computed at threshold u.
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A = P(X≤u) = F(u)

B = P(X>u) = F(1 − u)
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Figure 9: Fraction of missing data A and observed data B (cf. Chernobai et al. [13, 14]).
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Figure 10: Unconditional and conditional severity densities (cf. Chernobai et al. [13, 14]).

Approach 3. This approach is different from the previous approaches since the truncated data
is explicitly taken into account in the estimation of the severity distribution to fit conditional
severity and unconditional frequency (see Figure 10).

The density of the truncated severity distribution would result in

fcond(x) =

⎧
⎪⎨

⎪⎩

f(x)
(1 − F(u)) , for x > 0,

0, for x ≤ 0.
(3.20)

Approach 4. The fourth approach is deemed the best in application as it combines the second
and third procedures by taking into account the estimated severity distribution and, as in
Approach 2, the frequency parameter adjustment formula λ̂adj.
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In modelling operational risk, this is the only relevant approach out of the four
proposed as it addresses both the severity and the frequency of a given distribution.

3.3.1. Estimating Parameters Using MLE

The MLE method can then be applied to estimate our parameters. To demonstrate, let
us define (x1, . . . , xn) as losses exceeding the threshold u so the conditional Maximum
Likelihood can be written as follows:

n∏

i=1

f(xi)
P(Xi ≥ u) =

n∏

i=1

f(xi)
1 − FXi(u)

, (3.21)

and the log-likelihood would be

n∑

i=1

ln
(

f(xi)
1 − FXi(u)

)
=

n∑

i=1

ln
(
f(xi)

) − n ln(1 − FXi(u)). (3.22)

When losses are truncated, the frequency distribution observed has to be adjusted to consider
the particular nondeclared losses. For each period i, let us define ni as the number of losses
which have to be added to mi, which is the number of estimated losses below the threshold,
so that the adjusted number of losses is nai = ni +mi.

To reiterate, the ratio between the number of losses below the threshold, mi, and the
observed loss number, ni, is equal to the ratio between the left and right severity functions:

mi

ni
=

F̂(u)

1 − F̂(u)
, (3.23)

where F̂ is the truncated cumulative distribution function with parameters estimated using
MLE. Finally, we have

nai = ni +mi = ni +
ni × F̂(u)
1 − F̂(u)

=
ni

1 − F̂(u)
. (3.24)

3.3.2. Kolmogorov-Smirnov Test Adapted for Left Truncated Data

The Kolmogorov-Smirnov (KS) test measures the absolute value of the maximum distance
between empirical and fitted distribution function and puts equal weight on each
observation. So regarding the truncation criteria KS test has to be adapted (cf. Chernobai
et al. [13, 14]).

For that, let us assume the random variables (X1, . . . , Xn) iid following the unknown
probability distribution PX .

The null hypothesis related would be

H0 : PX has a cumulative distribution F∗
0 , where F∗

0 = (F0(x) − F0(u))/(1 − F0(u)).
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Let us note yj = F0(xj) and yu = F0(u) so that KSobs is

KS∗obs = max
{
KS+∗,KS−∗

}
, (3.25)

where,

KS+∗ =
√
n

1 − yu supj

(
yu +

j

n

(
1 − yu

) − yj
)
,

KS−∗ =
√
n

1 − yu supj

(
yj −

(
yu +

j − 1
n

(
1 − yu

)))
.

(3.26)

The p value associated is then calculated using Monte Carlo simulation.

3.4. Working with Extremes for Catastrophic Risks

“If things go wrong, how wrong can they go?” is a particular question which one would like
to answer (cf. Gilli and Kellezi [11]).

Extreme Value Theory (EVT) is a branch of statistics that characterises the lower tail
behavior of the distribution without tying the analysis down to a single parametric family
fitted to the whole distribution. This theory was pioneered by Leonard Henry Caleb Tippett
who was an English physicist and statistician and was codified by Emil Julis Gumbel, a
German mathematician in 1958. We use it to model the rare phenomena that lie outside the
range of available observations.

The theory’s importance has been heightened by a number of publicised catastrophic
incidents related to operational risk.

(i) In February 1995, the Singapore subsidiary of Barings, a long-established British
bank, lost about $1.3 billion because of the illegal activity of a single trader, Nick
Leeson. As a result, the bank collapsed and was subsequently sold for one pound.

(ii) At Daiwa Bank, a single trader, Toshihide Igushi, lost $1.1 billion in trading over
a period of 11 years. These losses only became known when Iguchi confessed his
activities to his managers in July 1995.

In all areas of risk management, we should put into account the extreme event risk
which is specified by low frequency and high severity.

In financial risk, we calculate the daily Value-at-Risk for market risk and we determine
the required risk capital for credit and operational risks. As with insurance risks, we build
reserves for products which offer protection against catastrophic losses.

Extreme Value Theory can also be used in hydrology and structural engineering,
where failure to take proper account of extreme values can have devastating consequences.

Now, back to our study, operational risk data appear to be characterized by two
attributes: the first one, driven by high-frequency low impact events, constitutes the body
of the distribution and refers to expected losses; the second one, driven by low-frequency
high-impact events, constitutes the tail of the distribution and refers to unexpected losses.
In practice, the body and the tail of data do not necessarily belong to the same underlying
distribution or even to distributions belonging to the same family.
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Extreme Value Theory appears to be a useful approach to investigate large losses,
mainly because of its double property of focusing its analysis only on the tail area (hence
reducing the disturbance on small- and medium-sized data) as well as treating the large
losses by a scientific approach such as the one driven by the Central Limit Theorem for the
analysis of the high-frequency low-impact losses.

We start by briefly exploring the theory.
EVT is applied to real data in two related ways. The first approach deals with the

maximum (or minimum) values that the variable takes in successive periods, for example,
months or years. These observations constitute of the extreme events, also called block
(or per-period) maxima. At the heart of this approach is the “three-type theorem” (Fisher
and Tippet, 1928), which states that only three types of distributions can arise as limiting
distributions of extreme values in random samples: the Weibull, the Gumbel, and the Frechet
distributions. This result is important as the asymptotic distribution of the maxima always
belongs to one of these three distributions, regardless of the original distribution.

Therefore, the majority of the distributions used in finance and actuarial sciences can
be divided into these three categories as follows, according to the weight of their tails (cf.
Smith [15]).

(i) Light-tail distributions with finite moments and tails, converging to the Weibull
curve (Beta, Weibull).

(ii) Medium-tail distributions for which all moments are finite and whose cumulative
distribution functions decline exponentially in the tails, like the Gumbel curve
(Normal, Gamma, Log-Normal).

(iii) Heavy-tail distributions, whose cumulative distribution functions decline with a
power in the tails, like the Frechet curve (T -Student, Pareto, Log-Gamma, Cauchy).

The second approach to EVT is the Peaks Over Threshold (POT) method, tailored for
the analysis of data bigger than the preset high thresholds. The severity component of the
POT method is based on the Generalised Pareto Distribution (GPD). We discuss the details
of these two approaches in the following segments.

3.4.1. Generalized Extreme Value Distribution: Basic Concepts

Suppose X1, X2, . . . , Xn are independent random variables, identically distributed with
common distribution F(x) = P(X ≤ x) and let Sn = X1 + X2 + · · · + Xn and Mn =
Max(X1, X2, . . . , Xn).

We have the following two theorems (cf. Smith [15]).

Theorem 3.1. Consider

lim
n→+∞

P

(
Sn − an
bn

≤ x
)

= Φ(x), (3.27)

where Φ(x) is the distribution function of the normal distribution,

an = nE(X1), bn =
√
Var(X1). (3.28)
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Theorem 3.2. If there exists suitable normalising constants cn > 0, dn ∈ R and some nondegenerate
distribution functionH such that

P

(
Mn − dn

cn
≤ x

)
= FMn(anx + bn)

d�−→ H(x). (3.29)

ThenH belongs to one of the three standard extreme value distributions (see Figure 11) (cf. Gilli and
Kellezi [11]):

(i) Gumbel:

Λ(x) = e−e
−x

if x ∈ R, (3.30)

(ii) Fréchet:

Φα(x) =

{
0, if x ≤ 0,
e−x

−α
, if x > 0, α > 0,

(3.31)

(iii) Weibull:

Ψα(x) =

{
e−(−x)

−α
, if x ≤ 0, α > 0,

1, if x > 0.
(3.32)

Jenkinson and Von Mises generalize the three functions by the following distribution function:

Hξ(x) =

{
e−(1+ξx)

−1/ξ
, if ξ /= 0,

e−e
−x
, if ξ = 0,

(3.33)

where 1 + ξx > 0, a three-parameter family is obtained by definingHξ,μ,σ(x) = Hξ((x − μ)/σ) for a
location parameter μ ∈ R and a scale parameter σ > 0.

The case ξ > 0 corresponds to Fréchet with α = 1/ξ, ξ < 0 to Weibull with α = −1/ξ, and the
limit ξ → 0 to Gumbel.

3.5. Block Maxima Method

As we have seen previously, observations in the block maxima method are grouped into
successive blocks and the maxima within each block are selected. The theory states that the
limit law of the blockmaxima belongs to one of the three standard extreme value distributions
mentioned before.

To use the block-maxima method, a succession of steps need to be followed. First,
the sample must be divided into blocks of equal length. Next, the maximum value in each
block (maxima or minima) should be collected. Then, we fit the generalized extreme value
distribution, and finally, we compute the point and interval estimates for the return level Rk

n.
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Figure 11: Densities for the Fréchet (α = 1.5), Weibull (α = 1.5), and Gumbel (α = 0) functions.

Determining the Return Level

The standard generalized extreme value is the limiting distribution of normalized extrema.
Given that in practice we do not know the true distribution of the returns and, as a result, we
do not have any idea about the norming constants Cn and Dn; we use the three parameter
specification of the generalized extreme value:

Hξ,σ,μ = Hξ

(
x − μ
σ

)
x ∈ D, (3.34)

where

D =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

]
−∞,

μ − σ
ξ

[
if ξ < 0,

]−∞,+∞[ if ξ = 0,]
μ − σ
ξ

,+∞
[

if ξ > 0.

(3.35)

The two additional parameters μ and σ are the location and the scale parameters representing
the unknown norming constants. The log-likelihood function that we maximize with respect
to the three known parameters is

L
(
ξ, μ, σ;x

)
=

∑

i

lnh(xi) xi ∈M, (3.36)

where

h
(
ξ, μ, σ;x

)
=

1
σ

(
1 + ξ

x − μ
σ

)−(1/ξ)−1
e−(1+ξ((x−μ)/σ))

−(1/ξ)−1
(3.37)

is the probability density function if ξ /= 0 and 1 + ξ((x − μ)/σ) > 0. If ξ = 0, the function h is

h
(
ξ, μ, σ;x

)
=

1
σ
e−(x−μ)/σee

−(x−μ)/σ
. (3.38)



Advances in Decision Sciences 33

As defined before, the return level Rk is the level we expect to be exceeded only once every k
years:

Rk = H−1
ξ,σ,μ

(
1 − 1

k

)
. (3.39)

Substituting the parameters ξ, σ, and μ by their estimates, we get

R̂k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ̂ − σ̂

ξ̂

(
1 −

(
− ln

(
1 − 1

k

))−ξ̂)
, if ξ̂ /= 0,

μ̂ − σ̂ ln
(
− ln

(
1 − 1

k

))
, if ξ̂ = 0.

(3.40)

3.5.1. Generalized Pareto Distribution

The Generalized Pareto (GP) Distribution has a distribution function with two parameters:

Gξ,σ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 −
(
1 +

ξx

σ

)−1/ξ
, if ξ /= 0,

1 − e−x/σ, if ξ = 0,

(3.41)

where σ > 0, and where x ≤ 0 when ξ ≤ 0 and 0 ≤ x ≤ −σ/ξ when ξ < 0.
The value of ξ determines the type of distribution: for ξ < 0, the model gives the type

II Pareto distribution; for ξ = 0, we get the exponential distribution; for ξ > 0, we get a
reparameterised Pareto distribution.

For X > 0, we have the following formula:

E(Xp) = p
∫+∞

0
yp−1P

(
X > y

)
dy. (3.42)

We use this formula to calculate the mean.
For σ > 0, 0 < ξ < 1 and x ≤ 0:

E(X) =
σ

1 − ξ , (3.43)

and we calculate the variance for ξ < 1/2:

V (X) =
σ2

(ξ − 1)2(1 − 2ξ)
. (3.44)

3.5.2. Excess Loss Distribution

Excess losses are defined as those losses that exceed a threshold. So given a threshold
value for large losses, the excess loss technique can be applied to determine the amount of
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provisions needed to provide a reserve for large losses. We consider a distribution function F
of a random variable X which describes the behavior of the operational risk data in a certain
business line (BL). We are interested in estimating the distribution function Fu of a value x
above a certain threshold u (cf. Medova and Kyriacou [16]). The distribution Fu is called the
conditional excess distribution function and is formally defined as

Fu
(
y
)
= P

(
X − u ≤ y | X > u

)
for y = x − u > 0. (3.45)

We verify that Fu can be written in terms of F as

Fu
(
y
)
= P

(
X − u ≤ y | X > u

)

=
P
(
X − u ≤ y;X > u

)

P(X > u)

=
P
(
u ≤ X ≤ y + u

)

1 − P(X ≤ u)

=
FX

(
y + u

) − FX(u)
1 − FX(u)

=
FX(x) − FX(u)

1 − FX(u) .

(3.46)

For a large class of underlying distribution function F the conditional excess distribution
function Fu(y) for a large u is approximated by

Fu
(
y
) ≈ Gξ,σ

(
y
)
, u −→ +∞, (3.47)

where

Gξ,σ

(
y
)
=

⎧
⎪⎨

⎪⎩
1 −

(
1 +

ξ

σ
y

)−1/ξ
, if ξ /= 0,

1 − e−y/σ, if ξ = 0
(3.48)

is the Generalized Pareto Distribution.
We will now derive an analytical expression for VaRq and ESq. First, we define F(x) as

F(x) = (1 − F(u))Gξ,σ(x) + F(u), for x > u. (3.49)

Then, we estimate F(u) by (n −Nu)/n where n is the total number of observations and Nu

the number of observations above the threshold u. So we have

F(x) =
Nu

n

(
1 −

(
1 +

ξ

σ
(x − u)

)−1/ξ)
+

(
1 − Nu

n

)
(3.50)
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which simplifies to

F(x) = 1 − Nu

n

(
1 +

ξ

σ
(x − u)

)−1/ξ
. (3.51)

Inverting the last equation, we have

1 − q = 1 − Nu

n

(
1 +

ξ

σ

(
VaRq − u

))−1/ξ
,

(
nq

Nu

)−ξ
= 1 +

ξ

σ

(
VaRq − u

)
,

VaRq = u +
σ

ξ

((
n

Nu
q

)−ξ
− 1

)
.

(3.52)

For the calculation of the expected shortfall, we notice that

P
(
X − VaRq | X > VaRq

)
= FVaRq

(
y
)
= Gξ,σ+ξ(VaRq−u)

(
y
)
. (3.53)

Since we have Fu(y) ≈ Gξ,σ(y) and as ξ is the shape parameter, we can immediately conclude
that

E
(
X − VaRq | X > VaRq

)
=
σ + ξ

(
VaRq − u

)

1 − ξ (3.54)

and now, we estimate the expected shortfall:

ESq = VaRq + E
(
X − VaRq | X > VaRq

)

= VaRq +
σ + ξ

(
VaRq − u

)

1 − ξ

=
VaRq
1 − ξ +

σ − ξu
1 − ξ .

(3.55)

3.5.3. The Peak over Threshold

The POT method considers observations exceeding a given high threshold. As an approach,
it has increased in popularity as it uses data more efficiently than the block maxima method.
However, the choice of a threshold can pose a problem.

To use the peak over threshold methods, we first select the threshold. Then, we fit the
Generalised Pareto Distribution function to any exceedances above u. Next, we compute the
point and interval estimates for the Value-at-Risk and the expected shortfall (cf. Medova and
Kyriacou [16]).
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Selection of the Threshold

While the threshold should be high, we need to keep in mind that with a higher threshold,
fewer observations are left for the estimation of the parameters of the tail distribution
function.

So it is better to select the threshold manually, using a graphical tool to help us with
the selection. We define the sample mean excess plot by the points:

(u, en(u)), xn1 < u < x
n
n, (3.56)

where en(u) is the sample mean excess function defined as

en(u) =
∑n

i=k
(
xni − u

)
∑n

i=1 1{xni >u}
, (3.57)

and where xn1 , x
n
2 , . . . , x

n
n represent the increasing order of the n observations.

Fitting the GPD Function to the Exceedances over u

As defined in the previous sections, the distribution of the observations above the threshold
in the right tail and below the threshold in the left tail should be a generalized Pared
distribution. The best method to estimate the distribution’s parameters is the Maximum
Likelihood estimation method, explained below.

For a sample y = {y1, . . . , yn} the log-likelihood function L(ξ, σ | y) for the GPD is the
logarithm of the joint density of the n observations:

L
(
ξ, σ | y)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−n lnσ −
(
1
ξ
+ 1

) n∑

i=1

ln
(
1 + yi

ξ

σ

)
, if ξ /= 0,

−n lnσ − 1
σ

n∑

i=1

yi, if ξ = 0.
(3.58)

3.6. Bayesian Techniques in Operational Risk

The ideas behind Bayesian theory are easily applicable to operational risk, especially in
the early days of measurement when data was not available. While Bayes (1763), an
English clergyman and statistician, developed his theory long ago, it has recently enjoyed
a renaissance amongst academics due to advances in computational techniques to solve
complex problems and formulas.

Under the new regulations of Basel II and Solvency II, many financial institutions
have adopted a Loss Distribution Approach (LDA) to estimate their operational risk capital
charge. A Bayesian inference approach gives a methodic approach to combine internal data,
expert opinions, and relevant external data. Themain idea is as follows.We start with external
market data which determines a prior estimate. This estimate is then modified by integrating
internal observations and expert opinions leading to a posterior estimate. Risk measures are
then calculated from this posterior knowledge.
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3.6.1. The Bayesian Approach: Internal Data, External Data, and Expert Opinion

The Basel Committee has mentioned explicitly that (cf. BCBS [17], paragraph 675): “A bank
must use scenario analysis of expert opinion in conjunction with external data to evaluate its exposure
to high-severity events. This approach draws on the knowledge of experienced business managers and
risk management experts to derive reasoned assessments of plausible severe losses. For instance, these
expert assessment could be expressed as parameters of an assumed statistical loss distribution.”

As mentioned earlier, the Basel Committee has authenticated an operational risk
matrix of 8 × 7 risk cells. Each of these 56 risk cells leads to the modelling of loss frequency
and loss severity distribution by financial institutions. Let us focus on a one risk cell at a time.

After choosing a corresponding frequency and severity distribution, the managers
estimate the necessary parameters. Let γ refer to the company’s risk profile which could
accord to the location, scale, or shape of the severity distribution. While γ needs to be
estimated from available internal information, the problem is that a small amount of internal
data does not lead to a robust estimation of γ . Therefore, the estimate needs to include other
considerations in addition to external data and expert opinions.

For that, the risk profile γ is treated as the adjustment of a random vector Γ which
is calibrated by the use of external data from market information. Γ is therefore a random
vector with a known distribution, and the best prediction of our company-specific risk profile
γ would be based on a transformation of the external knowledge represented by the random
Γ vector. The distribution of Γ is called a prior distribution.

To explore this aspect further, before assessing any expert opinion and any internal
data study, all companies have the same prior distribution Γ generated from market
information only. Company-specific operational risk events X = (X1, . . . , XN) and expert
opinions ζ = (ζ(1), . . . , ζ(M)) are gathered over time. As a result, these observations influence
our judgment of the prior distribution Γ and therefore an adjustment has to be made to our
company-specific parameter vector γ (see Table 11). Clearly, the more data we have onX and
ζ, the better the prediction of our vector γ and the less credibility we give to the market. So
in a way, the observations X and the expert opinion ζ transform the market prior risk profile
Γ into a conditional distribution of Γ given X and ζ denoted by Γ | X, ζ (cf. Lambrigger et al.
[18]).

We Denote

πΓ(γ), the unconditional parameter density,

π̂Γ|X,ζ(γ), the conditional parameter density also called posterior density,

and let us assume that observations and expert opinions are conditionally independent and
identically distributed (i.i.d.) given γ , so that

h1
(
X | γ) =

N∏

i=1

f1
(
Xi | γ

)
,

h2
(
X | γ) =

M∏

m=1

f2
(
ζ(m) | γ

)
,

(3.59)

where f1 and f2 are the marginal densities of a single observation and a single expert opinion,
respectively.
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Table 11: Internal data and expert opinion (X, ζ) transform the prior risk profile of the whole industry Γ
into an individual company specific γ (cf. [3]).

Γ γ

Parameter representing the whole industry Company specific parameter
Considers external market data only Considers internal data X and expert opinion ζ
Random variable Realization of Γ, hence deterministic
With known distribution Unknown, estimated by E[Γ | X, ζ]

Bayes theorem gives for the posterior density of Γ | X, ζ:

π̂Γ|X,ζ
(
γ
)
= cπΓ

(
γ
)
h1

(
X | γ)h2

(
X | γ), (3.60)

where c is the normalizing constant not depending on γ . At the end, the company specific
parameter γ can be estimated by the posterior mean E[Γ | X, ζ] = ∫

γπ̂Γ|X,ζ(γ)dγ .

3.6.2. A Simple Model

Let loss severities be distributed according to a lognormal-normal-normal model for example.
Given this model, we hold the following assumptions to be true (cf. Lambrigger et al. [3]).

(i) Market profile: let Δ be normally distributed with parameters of mean μext and
standard deviation σext, estimated from external sources, that is, market data.

(ii) Internal data: consider the losses of a given institution i = 1, . . . ,N, conditional on
(Δ), to be i.i.d. lognormal distributed: X1, . . . , XN | Δ ↪→ LN(Δ, σint) where σint is
assumed as known. That is, f1(· | Δ) corresponds to the density of a LN(Δ, σint)
distribution.

(iii) Expert opinion: suppose we haveM experts with opinion ζm around the parameter
Δ, where 1 ≤ m ≤ M. We let ζ(1), . . . , ζ(M) | Δ i.i.d. ↪→ N(δ, σexp) where σexp is the
standard deviation denoting expert uncertainty. That is, f2(· | Δ) corresponds to the
density of aN(Δ, σexp) distribution.

Moreover, we assume expert opinion ζ and internal data X to be conditionally
independent given a risk profile Δ.

We adjust the market profile Δ to the individual company’s profile by taking into
consideration internal data and expert opinion to transform the distribution to be company
specific. The mean and standard deviation of the market are determined from external data
(e.g., using maximum likelihood or the method of moments) as well as by expert opinion.

μext and σext for the market profile distribution are estimated from external data
(maximum likelihood or the method of moments).
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Table 12: Sampled losses from a LN(4, 4).

Loss i 1 2 3 4 5 6 7 8 9 10 · · ·
Severity Xi 20.45 360.52 1.00 7,649.77 1.92 11.60 1,109.01 24.85 0.05 209.48 · · ·

Table 13: Parameters assumption.

M 1
μext 2
μexp 6
μint 4
σint 4
σext 1
σexp 1.50

Under the model assumption, we have the credibility weighted average theorem.With
logX = (1/N)

∑N
i=1 logXi, the posterior distribution Δ | X, ζ is a normal distribution N(μ̂, σ̂)

with parameters

σ̂2 =

(
1
σ2
ext

+
N

σ2
int

+
M

σ2
exp

)−1
,

μ̂ = E[Δ | X, ζ] = ω1μext +ω2logX +ω3ζ,

(3.61)

where the credibility weights are given by ω1 = σ̂2/σ2
ext, ω2 = σ̂2N/σ2

int, and ω3 = σ̂2M/σ2
ext.

The theoremprovides a consistent and unifiedmethod to combine the threementioned
sources of information by weighting the internal observations, the relevant external data, and
the expert opinion according to their credibility. If a source of information is not believed to
be very plausible, it is given a smaller corresponding weight, and vice versa. As expected, the
weights ω1, ω2, and ω3 add up to 1.

This theorem not only gives us the company’s expected risk profile, represented by μ̂,
but also the distribution of the risk, which is Δ | X, ζ ↪→ N(μ̂, σ̂) allowing us to quantify the
risk and its corresponding uncertainty.

3.6.3. Illustration of the Bayesian Approach

Assuming that a bank models its risk according to the lognormal-normal-normal model and
the three assumptions mentioned above, with scale parameter σint = 4, external parameters
μext = 2, σext = 1, and the expert opinion of the company given by ζ = 6 with σexp = 3/2.
The observations of the internal operational risk losses sampled from a LN(μint = 4, σint = 4)
distribution are given in Table 12.

So to reiterate, we have the parameters that are shown in Table 13.
Now we can calculate the estimation and the credibility weights using the formulas

given previously (as shown in Table 14).
In the end, we compare the classical maximum likelihood estimator to the estimator

without expert opinion corresponding to M = 0 and the Bayes estimator, as shown in
Figure 12.
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Table 14: Parameter calculation output.

logX 4.20
σ̂2 0.17
μ̂ 3.96
ω1 0.1718
ω2 0.7518
ω3 0.07637
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Bayes with expert opinion
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Figure 12: Comparison of the MLE estimator μ̂MLE
k

, to the Bayesian estimator μ̂k and the no expert opinion
Bayes estimator given by Shevchenko and Wüthrich μ̂SW

k
.

Figure 12 shows that the Bayesian approach has a more stable behavior around the
true value of μint = 4 even when just a few data points are available, which is not the case
with the MLE and the SW estimators.

In this example, we see that in combining external data with the expert opinions,
we stabilize and smooth our estimators, in a way that works better than the MLE and
the no expert opinion estimators. This shows the importance of the Bayesian approach for
estimating the parameters and calculating the capital requirement under Basel II or Solvency
II for Operational Risk.

3.7. Application to a Legal Events Database

To check and understand the concepts, let’s apply them to an exercise using the four
distributions: Exponential, Lognormal, Weibull, and Pareto.

Table 15 shows a legal event database depicting four years’ of losses. The units are C.
All the tables and figures were generated using Matlab and R softwares.
An initial analysis calculates the average, standard deviation, skewness, and kurtosis

of the database and shows that the database is leptokurtic as the skewness is greater than 3
(see Table 16). So given the heavy tail, it would be a good idea to start testing the database
with exponential distributions.
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Table 15: Database of legal loss events.

14/04/2004 323.15 12/04/2006 42.59 15/06/2007 71.02
04/06/2004 305.8 20/04/2006 4,746.8 22/06/2007 3,030
06/09/2004 66,000 04/05/2006 2,437.98 06/07/2007 50,000
10/11/2004 5,476.53 04/05/2006 92.84 10/08/2007 673.12
25/01/2005 798.82 05/07/2006 55,500 28/08/2007 132.56
17/02/2005 4.34 18/07/2006 1,000,000 17/10/2007 2.4
22/02/2005 91.38 10/08/2006 103.66 17/10/2007 31.11
07/04/2005 1,924.78 21/09/2006 193.16 29/10/2007 21,001.82
10/11/2005 2.23 13/12/2006 5,795.84 30/11/2007 4.54
10/11/2005 3.3 31/12/2006 1,035.62 06/12/2007 31.74
29/11/2005 93.66 27/02/2007 1,001 19/12/2007 32.39
30/12/2005 176.64 13/03/2007 1,428.45 28/12/2007 2.12
07/01/2006 3.5 11/05/2007 1,738 28/12/2007 15,000
28/02/2006 412.82 22/05/2007 3,455 31/12/2007 1,283.04

Table 16: First four moments of the sample.

Average 29, 630.57
Standard deviation 154, 118.645
Skewness 6.16
Kurtosis 39.27

3.7.1. Some Probability Distributions

We will be applying the four distributions—Exponential, Lognormal, Weibull, and Pareto—
to the database in an attempt to fit and estimate the parameter of the distributions. But before
doing that, let us take a quick look at the four types of distributions.

(a) Exponential Distribution

We say that X has an exponential distribution with parameter λ if it has a PDF of the form:

f(x) = λe−λx for x ≥ 0. (3.62)

The expected value and variance of an exponentially distributed random variableX with rate
parameter λ is given by

E[X] =
1
λ
,

Var[X] =
1
λ2
.

(3.63)

The cumulative distribution function is

F(x) = 1 − e−x/λ (3.64)
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and the moment estimation for the one-parameter case is simply calculated by

λ̂ =
1

∑n
i=1(Xi/n)

. (3.65)

(b) Lognormal Distribution

If X is a random variable with a normal distribution, then Y = exp(X) has a log-
normal distribution. Likewise, if Y is lognormally distributed, then X = log(Y ) is normally
distributed.

The probability density function (PDF) of a log-normal distribution is

fX
(
x, μ, σ

)
=

1
xσ

√
2πe−(lnx−μ)

2/2σ2
, (3.66)

where μ and σ are called the location and scale parameter, respectively. So if X is a
lognormally distributed variable, then E[X] = e−(1/2)σ

2
and Var[X] = (eσ

2 − 1)e2μ+σ
2
.

(c) Weibull Distribution

The Weibull distribution is a continuous probability distribution. It is named after Waloddi
Weibull who described it in detail in 1951, although it was first identified by Fréchet in 1927
and first applied by Rosin and Rammler in 1933 to describe the size distribution of particles.
This is the distribution that has received the most attention from researchers in the past
quarter century.

The probability density function (PDF) of a Weibull random variable x is

f(x) =
b

ab
xb−1e(−x/a)

b

, for x ≥ 0. (3.67)

The cumulative distribution function (CDF) is given by

F(x) = 1 − e−(x/a)b . (3.68)

The mean and variance of a Weibull random variable can be expressed as

E[X] = aΓ
(
1 +

1
b

)
, Var[X] = a2

[
Γ
(
1 + 2

1
b

)
− Γ

(
1 +

1
b

)2
]
. (3.69)

(d) Pareto Distribution

The Pareto distribution was named after the economist Vilfredo Pareto, who formulated an
economic law (Pareto’s Law) dealing with the distribution of income over a population. The
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Table 17: Estimation of the parameters for the exponential, lognormal, and Weibull distributions.

Distribution Parameter(s)
Exponential λ = 0.00003375
Lognormal μ = 5.9461, σ = 3.1642
Weibull a = 1860.8, b = 0.3167
Pareto k = 3.10, α = 88.01

Pareto distribution is defined by the following functions:

CDF: F(x) = 1 − (k/x)α; k ≤ x <∞; α, k > 0,

PDF: f(x) = αkα/xα+1; k ≤ x <∞; α, k > 0.

Few well-known properties are

E[X] =
αk

(α − 1)
, α > 1,

Var[X] =
αk2

(α − 1)2(α − 2)
, α > 2.

(3.70)

3.7.2. Output Analysis

The four distributions have been fitted to the database and the parameters were estimated
according to the Maximum Likelihood Estimation. Also, a QQ-plot has been graphed to see
how well the distributions fit the data. The Kolmogorov-Smirnov test was also carried out to
see how well the distributions compare to the actual data.

As we will see in the outputs generated in Table 17, the best model is the Lognormal as
it does not differ much from the data set. However, we also observe that none of these models
deal very well with the largest of events, which confirms that we need to apply extreme value
theory.

Aswe have seen before, a Q-Q plot is a plot of the quantiles of two distributions against
each other. The pattern of points in the plot is used to compare the two distributions.

Now, while graphing the Q-Q plots to see how the distributions fit the data, the results
show that the Lognormal, Weibull, and Pareto distributions are the the best models since the
points of those three distributions in the plot approximately lie on the straight line of y = x,
as seen in Figure 13.

Nevertheless, Kolmogorov-Smirnov test clearly depicts that the Lognormal distribu-
tion is better in accepting the null hypothesis that the data comes from the same continuous
distribution (see Table 18).

3.8. LDA and Application of Extreme Value Theory

As seen in previous sections, the Loss Distribution Approach has many appealing features
since it is expected to be much more risk sensitive. It is necessary to remember that VaR
is calculated for a specific level of confidence and a given period of time, assuming normal
conditions, whichmeans that VaR does not include all aspects of risks. So one cannot estimate
or predict losses due to extreme movements, such as losses encountered in major companies
throughout the years (see Table 19). For that, Extreme Value Theory is applied to characterize
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Figure 13: QQ-plots for fitted distributions.

Table 18: KS formal test result.

Kolmogorov-Smirnov
Exponential 2.6654e − 007
Lognormal 0.9095
Weibull 0.5642
Pareto 0.7520

the tail behavior and model the rare phenomena that lie outside the range of available
observations.

In this section, we are going to take an internal loss database related to external fraud
for a particular business line of retail banking and apply to it the Loss Distribution Approach
and calculate the VaR by using the Extreme Value Theory.

3.8.1. Application to an Internal Loss Data

Our internal database was provided by a local Lebanese bank; the bank defines a reportable
incident as any unusual event, operational in nature, which caused or had the potential to
cause damage to the bank, whether tangibly or not, in readilymeasurable form (with financial
impact, even in the bank’s favor), or as an estimate (in economic or opportunity cost terms).
In simple terms, operational risk events are anything that went wrong or that could gowrong.

Hence, given our data we were able to compute the Severity and Frequency
Distributions related to retail banking business line and external fraud event type (see
Figure 14).

As so, and by using Monte Carlo method treated in Section 3.2.3(b), for PoissonP(0.8)
and LN(7.5, 1.12) as our Lognormal Severity Distribution, we obtained our aggregated
annual loss with the density function shown in Figure 15.

Our Value at Risk calculated is shown in Table 20.

(a) Application of the Extreme Value Theory

Now, by applying the Extreme Value Theory explained in Section 3.4 for the excess loss
distribution and by setting our upper threshold as the 99.9% quantile, we could obtain a
more robust Value-at-risk calculation that could mitigate our risk in a more precise manner.
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Table 19: Highly publicised loss events.

Loss report Event description
Enron Corporation
Start: January 1 1998
End: December 31 2001
Settlement: July 15 2005
Loss amount: 1, 595 million USD
Event type: clients, products, and
business practices
Business line: trading and sales

On 15 July 2005, it was announced that Enron reached $1,595
million settlements with authorities in California, Washington, and
Oregon to settle allegations that the company was involved in
market manipulation and price gouging during the energy crisis
on the West Coast in 2000-2001. On October 17 2005, an energy
trader working for Enron pled guilty to one count of fraud, when
he admitted to manipulating California’s energy market through a
fraudulent scheme during the period 1998–2001.

Barings Bank
Start: February 1 1995
End: February 27 1995
Settlement: February 27 1995
Loss amount: 1.3 billion
Event type: internal fraud
Business line: trading and sales

Barings Bank, a 233-year-old British bank, suffered a 1.3 billion loss
as a result of the unauthorised trading activity of Nick Leeson who
was based in Singapore. The loss was greater than the bank’s entire
capital base and reserves, which created an extreme liquidity
shortage. As a result, Barings declared bankruptcy and
subsequently got acquired by the Dutch bank ING.

Société Générale
Start: January 1 2005
End: January 18 2008
Settlement: January 24 2008
Loss amount: $7.2 billion
EVENT type: internal fraud
Business line: trading and sales

On 24 January 2008, the French bank, Société Générale, announced
a EUR4.9 billion loss as a result of the unauthorised activities of a
rogue trader on positions in stock index futures worth EUR50
billion. The rogue trader, Jerome Kerviel, managed to breach five
levels of controls, having gained knowledge of how to circumvent
the banks control systems from his position in the back office. The
fraud was discovered after he made a mistake in his attempt to
cover up fictitious trades.

Table 20: The VaR and mean VaR calculations.

VaR (99.9%) 0.1% 150,100$
Mean VaR 189,084.3$

Fitting the Generalized Pareto Distribution:

Gξ,σ

(
y
)
=

⎧
⎪⎨

⎪⎩
1 −

(
1 +

ξ

σ
y

)−1/ξ
, if ξ /= 0,

1 − e−y/σ, if ξ = 0,
(3.71)

and calculating the VaR and Expected Shortfall related:

VaRq = u +
σ

ξ

((
n

Nu
q

)−ξ
− 1

)
,

ESq =
VaRq

1 − ξ +
σ − ξu
1 − ξ ,

(3.72)

we obtain the results shown in Table 21.
Yet, if the calibration of severity parameters ignores external data, then the severity

distribution will likely be biased towards low-severity losses, since internal losses are
typically lower than those recorded in industry-wide databases. As so, LDA would be more
accurate if both internal and external data are merged together in the calibration process;
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Table 21: The VaR and expected shortfall with the use of extreme value theory.

VaR 399,334.6$
Expected shortfall 445,683.753$
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Figure 14: Frequency distribution of Poisson(0.8) and Severity Distributions of a LognormalLN(7.5,1.12).

this point is illustrated in Frachot and Roncalli [19] for mixing internal and external data
for managing operational risk and Dahen and Dionne [20] for Scaling for the Severity and
frequency of External Operational Loss Data.

4. Insurance Covering Operational Risks

The role that insurance plays in diminishing the financial impact of operational losses
of a bank is highly important. The transfer of a risk to an insurer can contribute to a
better performance preventing critical situation and covering a variety of losses. The Basel
Committee approved that insurance can be used as a tool to reduce the financial impact of
operational risks for banks, meaning that a specific type of insurance against operational risks
can lead to a lower level of minimal capital allocated to a particular risk category.

While the purchase of insurance covering operational risks is still in its early stages of
development, it would allow banks to replace operational risk by counterparty risk.

All the insurance policies, clauses, and types were given by a Lebanese bank.

4.1. Insurance Policies and Coverage

Many types and categories of insurance can be purchased, each with a specific clause and
price regarding the demand of the insured customer. Following, we explain the different
types of insurance policies with their respective coverages and exclusions.
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Figure 15: Aggregate loss distribution for retail banking business line and external fraud event type.

4.1.1. Bankers Blanket Bond Insurance

Intended for banks and other institutions that are engaged in providing financial services,
the policy indemnifies the assured for direct monetary losses due to loss, damage, and
misplacement during the policy period (which is usually one year).

Scope of Cover

(i) Clause 1 (Infidelity of Employees) covers loss of property due to dishonest or
fraudulent acts of one or more employees of the insured resulting in unethical
financial gains.

(ii) Clause 2 (On Premises) covers loss of the insured or the customers’ property on the
insured’s premises due to theft, burglary, damage, destruction, or misplacement.

(iii) Clause 3 (In Transit) covers loss or damage to property from any cause while
in transit either in the custody of the assured’s employees or the custody of any
security company or its vehicles but excluding property in mail and property
subject to amounts recoverable from a security company under the latter’s own
insurance.

(iv) Clause 4 (Forged Cheques et al.) covers loss due to forgery or fraudulent alteration
of any financial instrument or payment on the above basis.

(v) Clause 5 (Counterfeit Currency) covers the insured’s loss due to acceptance in good
faith of any counterfeit or fraudulently altered currency or coins.

(vi) Clause 6 (Damage to Offices and Contents) covers loss or damage suffered to all
contents owned by the assured in their offices (excluding electronic equipment)
due to theft, robbery, hold-up vandalism, and so forth.

Limit of Indemnity

As per sums agreed by both parties according to nature, size, and volume of business handled
by the insured in all their offices and branches. Usually specifies amounts for every loss under
the insuring clauses and sometimes on an aggregate or overall annual basis.

(i) XXX US$ any one loss in respect of Infidelity of Employees.

(ii) XXX US$ any one loss in respect of On Premises.
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(iii) XXX US$ any one loss in respect of In Transit.

(iv) XXX US$ any one loss in respect of Forgery or Alteration.

(v) XXX US$ any one loss in respect of Counterfeited Currency.

(vi) XXX US$ any one loss in respect of Offices and Contents.

(vii) XXX US$ any one loss in respect of Securities or Written Instruments.

(viii) XXX US$ any one loss in respect of Books of Accounts and Records.

(ix) XXX US$ any one loss in respect of Legal Fees.

All in excess of:
XXX US$ each loss, however, reducing to:

(i) XXX US$ every loss in respect of insuring In transit, Offices and Contents, and
Legal Fees.

(ii) XXX US$ on aggregate in respect of insuring Counterfeited Currency.

Premium Rating

A sum rated on the basis of amounts and limits of indemnity agreed, deductibles, claims
history and insured, and so forth.

Exclusions

Loss or damage due to war risks, and so forth.

Loss not discovered during the policy period.

Acts of directors’ defaults.

Shortage, cashier’s error, or omissions.

4.1.2. Directors and Officers Liability Insurance

The following insurance covers are applied solely for claims first made against an insured
during the period and reported to the insurer as required by the policy.

Management Liability

(i) Individuals: the insurer shall pay the loss of each insured person due to anywrongful
act.

(ii) Outside Entity Directors: the insurer shall pay the loss of each outside entity director
due to any wrongful act.

(iii) Company Reimbursement: if a company pays the loss of an insured person due to
any wrongful act of the insured person, the insurer will reimburse the company for
such loss.
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Special Excess Protection for Nonexecutive Directors

The insurer will pay the nonindemnifiable loss of each and every nonexecutive director due
to any wrongful act when the limit of liability, all other applicable insurance, and all other
indemnification for loss have all been exhausted.

Exclusions

The insurer shall not be liable to make any payment under any extension or in connection
with any claim of the following.

(i) A wrongful act intended to secure profit gains or advantages to which the insured
was not legally entitled.

(ii) The intentional administration of fraud.

(iii) Bodily injury, sickness, disease, death or emotional distress, or damage to
destruction, and loss of use of any property provided.

Limit of Liability

XXX US$—Aggregate

(i) Per nonexecutive director special excess limit: separate excess aggregate limit for
each nonexecutive director of the policyholder XXX US$ each.

(ii) Investigation: 100% of the limit of liability under the insurance covers of Company
Reimbursement, Management Liability, and 10% of the per nonexecutive director
special excess limit.

4.1.3. Political Violence Insurance

This kind of policy indemnifies the insured with the net loss of any one occurrence up to but
not exceeding the policy limit against the following.

(i) Physical loss or damage to the insured’s buildings and contents directly caused by
one or more of the following perils occurring during the policy period:

(1) Act of Terrorism;
(2) Sabotage;
(3) Riots, Strikes, and/or Civil Commotion;
(4) Malicious Damage;
(5) Insurrection, Revolution, or Rebellion;
(6) War and/or Civil War.

(ii) Expenses incurred by the insured in the removal of debris directly caused by any
one or more of the Covered Causes of Loss.

Exclusions

(i) Loss or damage arising directly or indirectly from nuclear detonation, nuclear
reaction, radiation, or radioactive contamination.
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(ii) Loss or damage directly or indirectly caused by seizure, confiscation, nationaliza-
tion, requisition, detention, and legal or illegal occupation of any property insured.

(iii) Any loss arising fromwar between any two ormore of the following: China, France,
Russia, United States of America, and the United Kingdom.

(iv) Loss or damage arising directly or indirectly through electronic means including
computer hacking or viruses.

(v) Loss or damage arising directly or indirectly from theft, robbery, house-breaking,
and mysterious or unexplained disappearance of property insured.

Limitations

(i) In respect of loss or damage suffered under this extension, the underwriters’
maximum liability shall never be more than the Business Interruption Policy Limit
(if applicable), or the Policy Limit (if applicable) where this Policy Limit is a
combined amount for losses arising from both physical loss or physical damage
and Business Interruption, for any one occurrence.

(ii) To clarify, when a business interruption policy limit applies to losses suffered under
this extension, it shall apply to the aggregate of all claims by all insureds and in
respect of all insured locations hereunder, and underwriters will have no liability in
excess of the business interruption policy limit whether insured losses are sustained
by all of the insureds or any one or more of them, or whether insured losses are
sustained at any one or more of the insured locations.

(iii) With respect to loss under this extension resulting from damage to or destruction
of film, tape, disc, drum, cell and other magnetic recording or storage media for
electronic data processing, the length of time for which underwriters will be liable
hereunder will not exceed.

Thirty (30) consecutive calendar days or the time required with exercised due
diligence and dispatch to reproduce the data thereon from duplicates or from
originals of the previous generation, whichever is less; or the length of time
that would be required to rebuild, repair or reinstate such property but not
exceeding twelve (12) calendar months, whichever is greater.

4.2. Electronic and Computer Crime Policy

This kind of policy covers electronic and computer crimes related to the following.

Computer Systems

Loss due to the fraudulent preparation, modification or input of electronic data into computer
systems, a service bureau’s computer system, an electronic find transfer system, or a customer
communication system.

Electronic Data, Electronic Media, and Electronic Instruction

(i) Losses due to the fraudulent modification of electronic data or software programs
within computer systems.
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(ii) Losses due to robbery, burglary, larceny, or theft of electronic data or software
programs.

(iii) Losses due to the acts of a hacker causing damage or destruction to electronic data
or software programs.

(iv) Losses due to damage or destruction of electronic data or software programs using
computer virus.

Electronic Communications

Loss due to the transfer of funds as a result of unauthorized and fraudulent electronic
communications from customers, a clearing house, custodians, or financial institutions.

Insured’s Service Bureau Operations

Loss due to a customer transferring funds as a result of fraudulent entries of data whilst the
insured is acting as a service bureau for customers.

Electronic Transmissions

Loss due to the transfer of funds on the faith of any unauthorized and fraudulent customer
voice-initiated funds transfer instructions.

Customer Voice-Initiated Transfers

Loss due to the transfer of funds on the faith of any unauthorized and fraudulent customer
voice-initiated finds transfer instructions.

Extortion

Loss by a third party who has gained unauthorized access into the insured’s computer
systems threatening to cause the transfer of funds, disclosure of confidential security codes
to third parties, or damage to electronic data or software programs.

Limit of Indemnity

XXX US$ any one loss and in the aggregate for all clauses.

The amount of the deductible under this policy for each and every loss is in excess
of XXX US$.

4.2.1. Plastic Card Insurance Policy

These kinds of policies will indemnify the insured against losses sustained through alteration,
modification, or forgery in any Visa Electron Card, Bankernet, Visa, and Master Card issued
by the insured or issued on his behalf and resulting from cards that have been lost, stolen, or
misused by an unauthorized person.
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Exclusions

The policy does not cover the following.

(i) Loss for which the assured obtained reimbursement from its cardholder, any
financial institution, plastic card association, or clearing house representing the
assured.

(ii) Loss not discovered during the policy period.

(iii) Loss which arises directly or indirectly by reason of or in connection with war,
invasion, act of foreign enemy, hostilities, or civil war.

(iv) Loss resulting from the issue of any plastic card to guarantee the cashing of any
cheque.

(v) Loss resulting wholly or partially, directly or indirectly from any fraudulent or
dishonest act performed alone or with others, by an officer, director, or employee of
the assured or by any organization that authorizes, clears, manages, or interchanges
transactions for the assured.

Limit of Indemnity

XXX US$—per card per year.

XXX US$—in the annual aggregate for all cards.

Deductible

XXX US$ in the annual aggregate.

4.3. Advantages of Insuring Operational Risks

In general, the role of insurance is to transfer the financial impact of a risk from one entity
to another. However, transferring risk is not the same as controlling it as we do not avoid,
prevent, or reduce the actual risk itself. Nevertheless, insurance as a risk reduction tool helps
the bank to avoid or optimize the loss by buying a policy related to operational risk for which
the bank pays an insurance premium in exchange for a guarantee of compensation in the
event of the materialization of a certain risk. This means that insuring against operational
risks enables a bank to eliminate or reduce large fluctuations of cash flow caused by high
and unpredictable operational losses. By doing so, the bank benefits by improving income
and increasing its market value, allowing it to avoid severe situations that would lead to
insolvability.

(i) A variety of factors influence banks to purchase insurance to cover operational
risks: the size of a bank matters as smaller banks have lower equity and free
cash flows, thus making them more vulnerable to losses from operational risks.
Consequently, large banks have the resources to manage their operational risks,
though they also purchase insurance policies to protect themselves from any type
of major loss, especially when it affects investors’ confidence or would result in
extreme negative effects.
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Table 22: Agencies equivalent ratings.

Agency CPA rating Descriptive Ratings category Definition

S and P A Strong Insurer financial
strength rating

Denotes strong financial
security characteristics

Moody’s A Good
Long-term insurance
financial strength
rating

Denotes ability to meet senior
policyholder obligations

Fitch A High credit quality Investment grade Denotes low expectation of
credit risk

AM best A Excellent Secure best ratings
Denotes strong ability to meet
ongoing policyholder
obligations

(ii) The time horizon also has its effect: the extent to which a bank can cover the
immediate expense of an insurance premium in exchange for a benefit that may
materialize only in the long run depends on the time horizon over which the bank
is willing to pay premiums to cover a risk that may or may not happen in the long
term.

(iii) The better the rating, the higher the cost of refinancing: banks with very good rating
can opt to finance losses by contracting credits rather than insurance. However, the
bank might suffer high losses when it incurs considerable deficits that were not
subject to insurance causing restrictions in its access to financing.

4.4. Basel II Views

The Basel II Committee (cf. BCBS [21]) stated that any effort to improve risk management
should be viewed independently from the request of capital and hence insurance should
not affect the required minimum capital. However, many bankers and insurers believe that
insurance should be treated as an instrument of reducing the required minimum capital for
operational risk. The problem here arises in determining how much of the insured amount
needs to be deducted from the level of required capital.

Moreover, the Basel Committee is against the use of insurance to optimize the capital
required for operational risk for banks that use either the Basic Indicator Approach or the
Standardized Approach, but a bank using the AMA is allowed to consider the risk mitigating
impact of insurance in the measuring of operational risk used for regulatory minimum
capital requirements. The recognition of insurance mitigation is limited to 20% of the total
operational risk capital charge.

In addition to this, the insurance policy must have an initial term of at least one year.
For policies with a residual term of less than one year, the bank must make appropriate
haircuts reflecting the declining term of the policy, up to a full 100% haircut for policies with a
residual term of 90 days or less. Additionally, the insurance policy should not have exclusions
or limitations based upon regulatory action or for the receiver or liquidator of a failed bank.

The insurance coverage must be explicitly mapped to the actual operational risk
exposure of the bank and have a minimum claims paying ability rating of A as shown in
Table 22 (cf. BCBS [22]).
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4.5. Capital Assessment under Insurance on Operational Losses

In this section, we discuss insurance coverage and its effects on operational losses. Individual
operational losses are insured with an external insurer under an excess of loss (XL) contract.
So to include insurance contracts in the operational risk model, we take into consideration
many other factors such as deductibles d and policy limitm (cf. Bazzarello et al. [23]).

Let’s consider xij as the ith loss drawn from the severity distribution in the year j,
and nj as the number of losses in year j drawn from the frequency distribution. Then the
insurance recovery for the individual loss xij would be

Rd,m

(
xij

)
= min

(
max

(
xij − d, 0

)
, m

)
, ∀i = 1, . . . , nj , j = 1, . . . , J, (4.1)

where J is the number of simulated annual losses.
On annual basis, if we set the aggregated deductibles asD, the aggregated policy limit

as M, and we let Xj =
∑

i xij be the jth annual loss, then the annual recovery loss can be
rewritten as

Rd,m,D,M

(
Xj

)
= min

(
max

( nj∑

i=1

Rd,m

(
xij −D, 0

)
,M

))
, ∀j = 1, . . . , J. (4.2)

Hence, the net annual loss would result in

Yj = Xj − Rd,m,D,M

(
Xj

)
, ∀j = 1, . . . , J. (4.3)

Adhering to the Basel II standards for AMA, we take into consideration the following (cf.
BCBS [22]):

(i) Appropriate haircuts.

(ii) Payment uncertainty.

(iii) Counterparty risk.

4.5.1. Appropriate Haircuts

For policies with a residual term of less than one year, the bank must make appropriate
haircuts reflecting the declining residual term of the policy, up to a full 100% haircut for
policies with a residual term of 90 days or less. Accounting for the haircuts, the recovered
annual loss can be written as

Rd,m,D,M

(
Xj

)
= αmin

(
max

( nj∑

i=1

Rd,m

(
xij

) −D, 0
)
,M

)
, ∀j = 1, . . . , J, (4.4)

where

α =

⎧
⎪⎨

⎪⎩
min

(
Number of lasting days

365
, 1

)
, if Number of lasting days > 90,

0, if Number of lastingdays ≤ 90.
(4.5)
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4.5.2. Payment Uncertainty

Payment uncertainty occurs when the insuring party cannot commit to its contractual
obligations on a timely basis. To account for such deviations from full recovery, we use
β (0 ≤ β ≤ 1) as the average recovery rate to discount the insurance payments. Beta can
be estimated from internal data as

β =
Actual recovered loss amount in one year

Potential recovered loss amount
. (4.6)

We then integrate this factor into our calculation for the recovery on annual loss:

Rd,m,D,M

(
Xj

)
= βαmin

(
max

( nj∑

i=1

Rd,m

(
xij −D, 0

)
)
,M

)
, ∀j = 1, . . . , J. (4.7)

4.5.3. Counterparty Risk

Counterparty risk occurs when the insurance company fails to fulfill its payment obligations.
To model this particular risk, let us consider pd as the probability of default and γ as

the recovered loss given default. So if J is the number of years containing annual losses, then
the full insurance recoveries can be obtained for only (1− pd)J years as we expect a coverage
only when the insurer is in good financial health. Now, for the remaining pdJ years, insurance
recoveries must be discounted using the factor γ according to the formula:

Rd,m,D,M

(
Xj

)
=

⎧
⎪⎪⎨

⎪⎪⎩

γβαmin
(
max

( nj∑
i=1
Rd,m

(
xij

) −D, 0
)
,M

)
, if j ∈ YD, ∀j = 1, . . . , J,

βαmin
(
max

( nj∑
i=1
Rd,m

(
xij

) −D, 0
)
,M

)
, if j ∈ YND, ∀j = 1, . . . , J,

(4.8)

where YD is the set of simulated years where the insurer has defaulted and YND is the set of
simulated years where the insurer has not defaulted.

5. Conclusion

Until recently, credit risk and market risk were perceived as the two biggest sources of risk
for financial institutions. However, as seen in this paper, the weight of operational risk has
risen to the point that operational risk is not just another type of risk but holds a significant
position in risk assessment, as seen by the fact that many banking failures in the last 20 years
have demonstrated the serious dangers of operational risk.

Operational risk quantification is a challenging task both in terms of its calculation as
well as in its organization. Regulatory requirements (Basel II for banks and Solvency II for
insurance companies) are put in place to ensure that financial institutions mitigate this risk
and many calculation criteria have been developed, ranging from the Basic to Standardized
to the Advanced Measurement Approach.

This paper has defined operational risk by presenting the different theories and
approaches for financial institutions wishing to model operational risk. While a standardized
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formula is widely applied by banks and insurance companies, applying more complex
approaches and theories such as the Loss Distribution, Extreme Value Theory, or Bayesian
techniques may present more robust analyses and framework to model this risk.

Additionally, with the use of insurance, a percentage of the risk carried by a bank or
a financial institution can be transferred to the insurance company. Thus, we can say that
an insurance policy plays an important role in decreasing the financial impact of operational
losses and can therefore contribute to a better performance by covering a variety of potential
operational losses. The Basel Committee recognizes this potential and has accordingly
allowed a reduction in the required minimum capital for a particular risk category for any
institution possessing an insurance policy. In the long run, this regulation would allow banks
to replace operational risk with counterparty risk.
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solvency 2: operational risk goes Bayesian,” Français d’Actuariat, vol. 8, no. 16, pp. 4–13, 2008.

[4] Basel Committee on Banking Supervision, Quantitative impact study 3 technical guidance, 2002,
http://www.bis.org/bcbs/qis/qis3tech.pdf.

[5] Basel Committee on Banking Supervision, Working paper on the regulatory treatment of operational
risk, 2001, http://www.bis.org/publ/bcbs wp8.pdf.

[6] H. Dahen, La Quantification du Risque Opérationnel des Instituts Bancaires [Thèse de doctorat], HEC,
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