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Possibility intuitionistic fuzzy soft set and its operations are introduced, and a few of their
properties are studied. An application of possibility intuitionistic fuzzy soft sets in decisionmaking
is investigated. A similarity measure of two possibility intuitionistic fuzzy soft sets has been
discussed. An application of this similarity measure in medical diagnosis has been shown.

1. Introduction

In most real-life problems in social sciences, engineering, medical sciences, and economics
the data involved are imprecise in nature. The solutions of such problems involve the use
of mathematical principles based on uncertainty and imprecision. A number of theories
have been proposed for dealing with uncertainties in an efficient way. Fuzzy set was
introduced by Zadeh in [1] as a mathematical way to represent and deal with vagueness
in everyday life. Then Atanassov [2] defined the concept of intuitionistic fuzzy set which
is more general than fuzzy set. Molodtsov [3] initiated the theory of soft sets as a new
mathematical tool for dealing with uncertainties which traditional mathematical tools cannot
handle. Maji et al. [4, 5] have further studied the theory of soft sets and used this theory to
solve some decision-making problems. Alkhazaleh et al. [6] introduced soft multiset as a
generalisation of Molodtsov’s soft set. Alkhazaleh and Salleh [7] defined the concept of soft
expert set and they gave an application of this concept to decision making. Also Maji et al.
[8] introduced the concept of fuzzy soft set and studied its properties and also Roy and Maji
used this theory to solve some decision-making problems [9]. Majumdar and Samanta [10]
defined and studied the generalised fuzzy soft sets, where the degree is attached with the
parameterizat ion of fuzzy sets while defining a fuzzy soft set. In 2010 Baesho [11] introduced
the concept of generalised intuitionistic fuzzy soft sets, where the degree is attached with the
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parameterization of fuzzy sets while defining an intuitionistic fuzzy soft set (see also Baesho
et al. [12]). Dinda et al. [13] introduced the same concept independently, and Agarwal et
al. [14] introduced the same concept in 2011. Alkhazaleh et al. defined in [15] the concept
of fuzzy parameterized interval-valued fuzzy soft set and gave its applications in decision
making and medical diagnosis. Alkhazaleh et al. [16] defined the concept of possibility fuzzy
soft set and gave its applications in decision making andmedical diagnosis. Maji [17] defined
the concept of intuitionistic fuzzy soft set, and Liang and Shi in [18] defined some new
operations on intuitionistic fuzzy soft sets and studied some results relating to the properties
of these operations. Salleh [19] gave a brief survey from soft set to intuitionistic fuzzy soft
set. In this paper, we generalise the concept of possibility fuzzy soft set to the possibility
intuitionistic fuzzy soft set. In our generalisation, a possibility of each element in the universe
is attached with the parameterization of fuzzy sets while defining an intuitionistic fuzzy soft
set. We also give some applications of the possibility intuitionistic fuzzy soft set in decision-
making problem and medical diagnosis.

2. Preliminaries

In this section we recall some definitions and properties regarding intuitionistic fuzzy soft set
and a possibility fuzzy soft set required in this paper.

Let U be a universe set and E be a set of parameters. Let P(U) denote the power set
ofU and A ⊆ E.

Definition 2.1 (see [12]). Consider U and E as a universe set and a set of parameters,
respectively. Let P(U) denote the set of all intuitionistic fuzzy sets of U. Let A ⊆ E.
A pair (F, E) is an intuitionistic fuzzy soft set over U, where F is mapping given by
F : A → P(U).

Definition 2.2 (see [2]). An intuitionistic fuzzy set (IFS) A in a nonempty setU (a universe of
discourse) is an object having the form A = {〈x, μA(x), vA(x)〉 : x ∈ U}, where the functions
μA(x) : U → [0, 1], vA(x) : U → [0, 1], denotes the degree of membership and degree of
nonmembership of each element x ∈ U to the setA, respectively, and 0 ≤ μA(x) + vA(x) ≤ 1
for all x ∈ U.

The following definitions and propositions are due to Alkhazaleh et al. [16].

Definition 2.3. LetU = {x1, x2, . . . , xn} be the universal set of elements andE = {e1, e2, . . . , em}
be the universal set of parameters. The pair (U,E) will be called a soft universe. Let F : E →
IU and μ be a fuzzy subset of E, that is μ : E → IU, where IU is the collection of all fuzzy
subsets of U. Let Fμ : E → IU × IU be a function defined as follows:

Fμ(e) =
(
F(e)(x), μ(e)(x)

)
, ∀x ∈ U. (2.1)

Then Fμ is called a possibility fuzzy soft set (PFSS in short) over the soft universe (U,E). For
each parameter ei, Fμ(ei) = (F(ei)(x), μ(ei)(x)) indicates not only the degree of belongingness
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of the elements of U in F(ei), but also the degree of possibility of belongingness of the
elements of U in F(ei), which is represented by μ(ei). So one can write Fμ(ei) as follows:

Fμ(ei) =
{(

x1

F(ei)(x1)
, μ(ei)(x1)

)
,

(
x2

F(ei)(x2)
, μ(ei)(x2)

)
, . . . ,

(
xn

F(ei)(xn)
, μ(ei)(xn)

)}
.

(2.2)

Sometimes one writes Fμ as (Fμ, E). If A ⊆ E one can also have a PFSS (Fμ,A).

Definition 2.4. Let Fμ and Gδ be two PFSSs over (U,E). Fμ is said to be a possibility fuzzy soft
subset (PFS subset) of Gδ and one writes Fμ ⊆ Gδ if

(i) μ(e) is a fuzzy subset of δ(e), for all e ∈ E,

(ii) F(e) is a fuzzy subset of G(e), for all e ∈ E.

Definition 2.5. Let Fμ and Gδ be two PFSSs over (U,E). Then Fμ and Gδ are said to be equal
and we write Fμ = Gδ if Fμ is a PFS subset of Gδ and Gδ is a PFS subset of Fμ. In other words,
Fμ = Gδ if the following conditions are satisfied:

(i) μ(e) is equal to δ(e), for all e ∈ E,

(ii) F(e) is equal to G(e), for all e ∈ E.

Definition 2.6. A PFSSs is said to be a possibility null fuzzy soft set, denoted by φ0, if φ0 : E →
IU × IU such that

φ0(e) =
(
F(e)(x), μ(e)(x)

)
, ∀e ∈ E, (2.3)

where F(e) = 0, and μ(e) = 0, for all e ∈ E.

Definition 2.7. A PFSSs is said to be a possibility absolute fuzzy soft set, denoted by A1, if A1 :
E → IU × IU such that

A1(e) =
(
F(e)(x), μ(e)(x)

)
, ∀e ∈ E, (2.4)

where F(e) = 1 and μ(e) = 1, for all e ∈ E.

Definition 2.8. Union of two PFSSs Fμ and Gδ, denoted by Fμ
⋃̃

Gδ, is a PFSSs Hν : E →
IU × IU defined by

Hν(e) = (H(e)(x), ν(e)(x)), ∀e ∈ E, (2.5)

such that H(e) = s(F(e), G(e)), and ν(e) = s(μ(e), δ(e))where s is an s-norm.
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Definition 2.9. Intersection of two PFSSs Fμ and Gδ, denoted by Fμ
⋂̃

Gδ, is a PFSSs Hν : E →
IU × IU defined by

Hν(e) = (H(e)(x), ν(e)(x)), ∀e ∈ E (2.6)

such that H(e) = t(F(e), G(e)) and ν(e) = t(μ(e), δ(e))where t is a fuzzy t-norm.

Proposition 2.10. Let Fμ be a PFSSs over (U,E). Then the following results hold:

(i) Fμ
⋃̃

Fμ = Fμ,

(ii) Fμ
⋂̃

Fμ = Fμ,

(iii) Fμ
⋃̃

Aμ = Aμ,

(iv) Fμ
⋂̃

Aμ = Fμ,

(v) Fμ
⋃

∼
φμ = Fμ,

(vi) Fμ
⋂̃

φμ = φμ.

Proposition 2.11. Let Fμ,Gδ, and Hν be any three PFSSs over (U,E), then the following results
hold:

(i) Fμ
⋃̃

Gδ = Gδ
⋃̃

Fμ,

(ii) Fμ
⋂̃

Gδ = Gδ
⋂̃

Fμ,

(iii) Fμ
⋃̃

(Gδ
⋃̃

Hv) = (Fμ
⋃̃

Gδ)
⋃̃

Hv,

(iv) Fμ
⋂̃

(Gδ
⋂̃

Hv) = (Fμ
⋂̃

Gδ)
⋂̃

Hv.

Definition 2.12. Similarity between two GFSSs Fμ and Gδ, denoted by S(Fμ,Gδ), is defined as
follows:

S
(
Fμ,Gδ

)
= M(F(e), G(e)) ·m(

μ(e), δ(e)
)

(2.7)

such that, M(F(e), G(e)) = maxiMi(F(e), G(e)), where

Mi(F(e), G(e)) = 1 −
∑n

j=1

∣∣Fij(e) −Gij(e)
∣∣

∑n
j=1

∣∣Fij(e) +Gij(e)
∣∣ ,

m
(
μ(e), δ(e)

)
= 1 −

∑∣∣μ(e) − δ(e)
∣∣

∑∣∣μ(e) + δ(e)
∣∣ .

(2.8)

Definition 2.13. Similarity between two PFSSs Fμ and Gδ, denoted by S(Fμ,Gδ), is defined as
follows:

S
(
Fμ, Gδ

)
= M(F(e), G(e)) ·M(

μ(e), δ(e)
)
, (2.9)
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such that, M(F(e), G(e)) = maxi Mi(F(e), G(e)) and M(μ(e), δ(e)) = maxi Mi(μ(e), δ(e))
where

Mi(F(e), G(e)) = 1 −

n∑

j=1

∣
∣Fij(e) −Gij(e)

∣
∣

n∑

j=1

∣
∣Fij(e) +Gij(e)

∣
∣
, (2.10)

Mi

(
μ(e), δ(e)

)
= 1 −

n∑

j=1

∣
∣μij(e) − δij(e)

∣
∣

n∑

j=1

∣
∣μij(e) + δij(e)

∣
∣
. (2.11)

Definition 2.14. If (Fμ,A) and (Gδ, B) are two PFSSs then “(Fμ,A) AND (Gδ, B)”, denoted by
(Fμ,A) ∧ (Gδ, B), is defined by

(
Fμ,A

) ∧ (Gδ, B) = (Hλ,A × B), (2.12)

where Hλ(α, β) = (H(α, β)(x), ν(α, β)(x)), for all (α, β) ∈ A × B, such that H(α, β) =
t(F(α), G(β)) and ν(α, β) = t(μ(α), δ(β)), for all (α, β) ∈ A × B, where t is a t-norm.

Definition 2.15. If (Fμ,A) and (Gδ, B) are two PFSSs then “(Fμ,A) OR (Gδ, B)”, denoted by
(Fμ,A) ∨ (Gδ, B), is defined by

(
Fμ,A

) ∨ (Gδ, B) = (Hλ,A × B), (2.13)

where Hλ(α, β) = (H(α, β)(x), ν(α, β)(x)), for all (α, β) ∈ A × B, such that H(α, β) =
s(F(α), G(β)) and ν(α, β) = s(μ(α), δ(β)), for all (α, β) ∈ A × B, where s is an s-norm.

Proposition 2.16. Let Fμ and Gδ be any two GFSSs over (U,E). Then the following holds:

(i) S(Fμ,Gδ) = S(Gδ, Fμ),

(ii) 0 ≤ S(Fμ,Gδ) ≤ 1,

(iii) Fμ = Gδ ⇒ S(Fμ,Gδ) = 1,

(iv) Fμ ⊆ Gδ ⊆ Hλ ⇒ S(Fμ,Hλ) ≤ S(Gδ,Hλ),

(v) Fμ
⋂̃

Gδ = φ ⇔ S(Fμ,Gδ) = 0.

3. Possibility Intuitionistic Fuzzy Soft Sets

In this section we generalise the concept of possibility fuzzy soft sets as introduced by
Alkhazaleh et al. [16]. In our generalisation of a possibility fuzzy soft set, a possibility of each
element in the universe is attached with the parameterization of fuzzy sets while defining an
intuitionistic fuzzy soft set.
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Definition 3.1. LetU = {x1, x2, . . . , xn} be the universal set of elements and E = {e1, e2, . . . , em}
be the universal set of parameters. The pair (U,E) will be called a soft universe. Let F : E →
(I × I)U × IU where (I × I)U is the collection of all intuitionistic fuzzy subsets of U and IU is
the collection of all fuzzy subsets of U. Let p be a fuzzy subset of E, that is, p : E → IU and
let Fp : E → (I × I)U × IU be a function defined as follows:

Fp(e) =
(
F(e)(x), p(e)(x)

)
, where F(e)(x) =

(
μ(x), ν(x)

) ∀x ∈ U. (3.1)

Then Fp is called a possibility intuitionistic fuzzy soft set (PIFSS in short) over the soft
universe (U,E). For each parameter ei, Fp(ei) = (F(ei)(x), p(ei)(x)) indicates not only the
degree of belongingness of the elements of U in F(ei), but also the degree of possibility of
belongingness of the elements of U in F(ei), which is represented by p(ei). So we can write
Fp(ei) as follows:

Fp(ei) =
{(

x1

F(ei)(x1)
, p(ei)(x1)

)
,

(
x2

F(ei)(x2)
, p(ei)(x2)

)
, . . . ,

(
xn

F(ei)(xn)
, p(ei)(xn)

)}
.

(3.2)

Sometime we write Fp as (Fp, E). If A ⊆ E we can also have a PIFSS (Fp,A).

Example 3.2. Let U = {x1, x2, x3} be a universe set. Let E = {e1, e2, e3} be a set of parameters
and let p : E → IU. We define a function Fp : E → (I × I)U × IU as follows:

Fp(e1) =
{(

x1

(0.4, 0.3)
, 0.7

)
,

(
x2

(0.7, 0.1)
, 0.5

)
,

(
x3

(0.5, 0.2)
, 0.6

)}
,

Fp(e2) =
{(

x1

(0.5, 0.1)
, 0.6

)
,

(
x2

(0.6, 0)
, 0.5

)
,

(
x3

(0.6, 0.3)
, 0.5

)}
,

Fp(e3) =
{(

x1

(0.7, 0)
, 0.5

)
,

(
x2

(0.6, 0.2)
, 0.5

)
,

(
x3

(0.5, 0.1)
, 0.7

)}
.

(3.3)

Then Fp is a PIFSS over (U,E). In matrix notation we write

Fp =

⎛

⎜⎜
⎝

(0.4, 0.3), 0.7

(0.5, 0.1), 0.6

(0.7, 0), 0.5

(0.7, 0.1), 0.5

(0.6, 0), 0.5

(0.6, 0.2), 0.5

(0.5, 0.2), 0.6

(0.6, 0.3), 0.5

(0.5, 0.1), 0.7

⎞

⎟⎟
⎠. (3.4)

Definition 3.3. Let Fp andGq be two PIFSSs over (U,E). Fp is said to be a possibility intuitionistic
fuzzy soft subset (PIFS subset) of Gq and one writes Fp ⊆ Gq if

(i) p(e) is a fuzzy subset of q(e), for all e ∈ E,

(ii) F(e) is an intuitionistic fuzzy subset of G(e), for all e ∈ E.
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Example 3.4. Let U = {x1, x2, x3} be a universe set. Let E = {e1, e2, e3} be a set of parameters
and let p : E → IU. We define a function Fp : E → (I × I)U × IU as follows:

Fp(e1) =
{(

x1

(0.2, 0.1)
, 0.4

)
,

(
x2

(0.6, 0.3)
, 0.5

)
,

(
x3

(0.5, 0.4)
, 0.6

)}
,

Fp(e2) =
{(

x1

(0.7, 0.2)
, 0.5

)
,

(
x2

(0.6, 0.4)
, 0.6

)
,

(
x3

(0.8, 0.2)
, 0.6

)}
,

Fp(e3) =
{(

x1

(0, 0.7)
, 0.1

)
,

(
x2

(0.5, 0.1)
, 0.3

)
,

(
x3

(0.3, 0.3)
, 0.1

)}
.

(3.5)

Let Gq : E → (I × I)U × IU be another PIFSS over (U,E) defined as follows:

Gq(e1) =
{(

x1

(0.3, 0)
, 0.6

)
,

(
x2

(0.7, 0.2)
, 0.6

)
,

(
x3

(0.6, 0.3)
, 0.7

)}
,

Gq(e2) =
{(

x1

(0.8, 0.1)
, 0.6

)
,

(
x2

(0.7, 0.3)
, 0.7

)
,

(
x3

(0.9, 0.1)
, 0.8

)}
,

Gq(e3) =
{(

x1

(0.1, 0.6)
, 0.2

)
,

(
x2

(0.6, 0)
, 0.5

)
,

(
x3

(0.5, 0.1)
, 0.2

)}
.

(3.6)

It is clear that Fp is a PIFS subset of Gq.

Definition 3.5. Let Fp and Gq be two PIFSSs over (U,E). Then Fp and Gq are said to be equal
and one writes Fp = Gq if Fp is a PIFS subset of Gq and Gq is a PIFS subset of Fp.

In other words, Fp = Gq if the following conditions are satisfied:

(i) p(e) is equal to q(e), for all e ∈ E,

(ii) F(e) is equal to G(e), for all e ∈ E.

Definition 3.6. A PIFSS is said to be a possibility null intuitionistic fuzzy soft set, denoted by φ0,
if φ0 : E → (I × I)U × IU such that

φ0(e) =
(
F(e)(x), p(e)(x)

)
, ∀e ∈ E, (3.7)

where F(e) = (0, v(e)), and p(e) = 0, for all e ∈ E.

Definition 3.7. A PIFSS is said to be a possibility absolute intuitionistic fuzzy soft set, denoted by
A1, if A1 : E → (I × I)U × IU such that

A1(e) = (F(e)(x), P(e)(x)), ∀e ∈ E, (3.8)

where F(e) = (1, 0) and P(e) = 1, for all e ∈ E.
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Example 3.8. Let U = {x1, x2, x3} be a universe set. Let E = {e1, e2, e3} be a set of parameters
and let p : E → IU. We define a function Fp : E → (I × I)U × IU as follows:

Fp(e1) =
{(

x1

(0, 0.3)
, 0
)
,

(
x2

(0, 0.5)
, 0
)
,

(
x3

(0, 0.6)
, 0
)}

,

Fp(e2) =
{(

x1

(0, 1)
, 0
)
,

(
x2

(0, 0.2)
, 0
)
,

(
x3

(0, 0.3)
, 0
)}

,

Fp(e3) =
{(

x1

(0, 0.2)
, 0
)
,

(
x2

(0, 0.6)
, 0
)
,

(
x3

(0, 0.9)
, 0
)}

.

(3.9)

Then Fp is a possibility null intuitionistic fuzzy soft set.
Let p : E → IU, and we define the function Fp : E → (I × I)U × IU which is a PIFSS

over (U,E) as follows:

Fp(e1) =
{(

x1

(1, 0)
, 1
)
,

(
x2

(1, 0)
, 1
)
,

(
x3

(1, 0)
, 1
)}

,

Fp(e2) =
{(

x1

(1, 0)
, 1
)
,

(
x2

(1, 0)
, 1
)
,

(
x3

(1, 0)
, 1
)}

,

Fp(e3) =
{(

x1

(1, 0)
, 1
)
,

(
x2

(1, 0)
, 1
)
,

(
x3

(1, 0)
, 1
)}

.

(3.10)

Then Fp is a possibility absolute intuitionistic fuzzy soft set.

4. Union and Intersection of PIFSS

In this section we introduce the definitions of union and intersection of PIFSS, derive some
properties and give some examples.

Definition 4.1. Union of two PIFSSs Fp and Gq, denoted by Fp
⋃̃

Gq, is a PIFSSs Hr : E →
(I × I)U × IU defined by

Hr(e) = (H(e)(x), r(e)(x)), ∀e ∈ E, (4.1)

such that H(e) = ∪
Atan

(F(e), G(e)) and r(e) = s(p(e), q(e)), where ∪
Atan

is Atanassov union and

s is an s-norm.
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Example 4.2. Let U = {x1, x2, x3} and E = {e1, e2, e3}. Let Fμ be a PIFSS defined as follows:

Fp(e1) =
{(

x1

(0.3, 0.4)
, 0.1

)
,

(
x2

(0.7, 0.1)
, 0.4

)
,

(
x3

(0.2, 0.6)
, 0.6

)}
,

Fp(e2) =
{(

x1

(0.2, 0.6)
, 0.3

)
,

(
x2

(0.2, 0.5)
, 0.2

)
,

(
x3

(0.1, 0.3)
, 0.4

)}
,

Fp(e3) =
{(

x1

(0.7, 0.1)
, 0.1

)
,

(
x2

(0.2, 0.5)
, 0
)
,

(
x3

(0.5, 0.3)
, 0.6

)}
.

(4.2)

Let Gq be another PIFSS over (U,E) defined as follows:

Gq(e1) =
{(

x1

(0.1, 0.4)
, 0.3

)
,

(
x2

(0.3, 0.3)
, 0.6

)
,

(
x3

(0, 0.5)
, 0.2

)}
,

Gq(e2) =
{(

x1

(0, 0.1)
, 0.1

)
,

(
x2

(0.6, 0.1)
, 0.6

)
,

(
x3

(0.7, 0)
, 0.6

)}
,

Gq(e3) =
{(

x1

(0, 0)
, 0.3

)
,

(
x2

(0.2, 0.1)
, 0.8

)
,

(
x3

(0.3, 0.1)
, 0.2

)}
.

(4.3)

By using the Atanassov union which is the basic intuitionistic fuzzy union we have

Hr(e1) =
{(

x1

(max(0.3, 0.1),min(0.4, 0.4))
,max(0.1, 0.3)

)
,

(
x1

(max(0.7, 0.3),min(0.1, 0.3))
,max(0.4, 0.6)

)
,

(
x1

(max(0.2, 0),min(0.6, 0.5))
,max(0.6, 0.2)

)}
,

Hr(e1) =
{(

x1

(0.3, 0.4)
, 0.3

)
,

(
x2

(0.7, 0.1)
, 0.6

)
,

(
x3

(0.2, 0.5)
, 0.6

)}
.

(4.4)

Similarly we get

Hr(e2) =
{(

x1

(0.2, 0.1)
, 0.3

)
,

(
x2

(0.6, 0.1)
, 0.6

)
,

(
x3

(0.7, 0)
, 0.6

)}
,

Hr(e3) =
{(

x1

(0.7, 0)
, 0.3

)
,

(
x2

(0.2, 0.1)
, 0.8

)
,

(
x3

(0.5, 0.1)
, 0.6

)}
.

(4.5)

Remark 4.3. The Atanassov union can be replaced by any S-norm which is a general
intuitionistic fuzzy union (see Fathi [20]).
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Definition 4.4. Intersection of two PIFSSs Fp andGq, denoted by Fp
⋂̃

Gq, is a PIFSSsHr : E →
(I × I)U × IU defined by

Hr(e) = (H(e)(x), r(e)(x)), ∀e ∈ E (4.6)

such thatH(e) = ∩
Atan

(F(e), G(e)) and r(e) = t(p(e), q(e)), where ∩
Atan

is Atanassov intersection

and t is a t-norm.

Example 4.5. Consider Example 4.2 where Fp and Gq are PIFSSs defined as follows:

Fp(e1) =
{(

x1

(0.3, 0.2)
, 0.2

)
,

(
x2

(0.4, 0.1)
, 0.3

)
,

(
x3

(0, 0.1)
, 0.4

)}
,

Fp(e2) =
{(

x1

(0, 0.1)
, 0.1

)
,

(
x2

(0.2, 0.6)
, 0.4

)
,

(
x3

(0.3, 0)
, 0.2

)}
,

Fp(e3) =
{(

x1

(0.7, 0.1)
, 0.3

)
,

(
x2

(0.1, 0.2)
, 0.1

)
,

(
x3

(0.4, 0.1)
, 0.4

)}
,

Gq(e1) =
{(

x1

(0.7, 0.1)
, 0.3

)
,

(
x2

(0.1, 0.2)
, 0.1

)
,

(
x3

(0.4, 0.1)
, 0.4

)}
,

Gq(e2) =
{(

x1

(0.1, 0.6)
, 0.1

)
,

(
x2

(0.3, 0.2)
, 0.3

)
,

(
x3

(0.8, 0)
, 0.4

)}
,

Gq(e3) =
{(

x1

(0, 0.5)
, 0.4

)
,

(
x2

(0.1, 0.4)
, 0.1

)
,

(
x3

(0.9, 0)
, 0.3

)}
.

(4.7)

By using the Atanassov intersection which is the basic intuitionistic fuzzy union we have

Hr(e1) =
{(

x1

(min(0.3, 0.7),max(0.2, 0.1))
,min(0.2, 0.3)

)
,

(
x1

(min(0.4, 0.1),max(0.1, 0.2))
,min(0.3, 0.1)

)
,

(
x1

(min(0, 0.4),max(0.1, 0.1))
, min(0.4, 0.4)

)}
,

=
{(

x1

(0.3, 0.2)
, 0.2

)
,

(
x2

(0.1, 0.2)
, 0.1

)
,

(
x3

(0, 0.1)
, 0.4

)}
.

(4.8)

Similarly we get

Hr(e2) =
{(

x1

(0, 0.6)
, 0.1

)
,

(
x2

(0.2, 0.6)
, 0.3

)
,

(
x3

(0.3, 0)
, 0.2

)}
,

Hr(e3) =
{(

x1

(0, 0.5)
, 0.3

)
,

(
x2

(0.1, 0.4)
, 0.1

)
,

(
x3

(0.4, 0.1)
, 0.3

)}
.

(4.9)
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Remark 4.6. The Atanassov intersection can be replaced by any T-norm which is a general
intuitionistic fuzzy intersection (see Fathi [20]).

Proposition 4.7. Let Fp, Gq, and Hr be any three PIFSSs over (U,E), then the following results
hold:

(i) Fp
⋃̃

Gq = Gp
⋃̃

Fq,

(ii) Fp
⋂̃

Gq = Gp
⋂̃

Fq,

(iii) Fp
⋃̃

(Gq
⋃̃

Hr) = (Fp
⋃̃

Gq)
⋃̃

Hr ,

(iv) Fp
⋂̃

(Gq
⋂̃

Hr) = (Fp
⋂̃

Gq)
⋂̃

Hr .

Proof. The proof is straightforward by using the fact that the union and intersection of fuzzy
sets and intuitionistic fuzzy sets are commutative and associative.

Proposition 4.8. Let Fp be a PFSSs over (U,E). Then the following results hold:

(i) Fp
⋃̃

Fp = Fp,

(ii) Fp
⋂̃

Fp = Fp,

(iii) Fp
⋃̃

Ap = Ap,

(iv) Fp
⋂̃

Ap = Fp.

Proof. The proof is straightforward by using the definitions of union and intersection.

Proposition 4.9. Let Fp,Gq, andHr be any three PIFSS over (U,E). Then the following results hold:

(i) Fp
⋃̃

(Gq
⋂̃

Hr) = (Fp
⋃̃

Gq)
⋂̃

(Fp
⋃̃

Hr),

(ii) Fp
⋂̃

(Gq
⋃̃

Hr) = (Fp
⋂̃

Gq)
⋃̃

(Fp
⋂̃

Hq).

Proof. (i) For all x ∈ E,

λF(x)∪̃(G(x)∩̃H(x))(x) = ∪{λF(x)(x), λ(G(x)∩̃H(x))(x)
}

= ∪{λF(x)(x),∩
(
λG(x)(x), λH(x)(x)

)}

=
{〈x,max

(
μF(x)(x),min

(
μG(x)(x), μH(x)(x)

))
,

min
(
νF(x),max

(
νG(x)(x), νH(x)(x)

))〉 : x ∈ U
}

=
{〈x,min

(
max

(
μF(x)(x), μG(x)(x)

)
,max

(
μF(x)(x), μH(x)(x)

))
,

max
(
min

(
νF(x)(x), νG(x)(x)

)
,min

(
νF(x)(x), νH(x)(x)

))〉 : x ∈ U
}

= ∩(∪(λF(x)∪G(x)(x)
)
, λF(x)∪H(x)(x)

)

= λ(F(x)∪G(x))∩(F(x)∪H(x))(x),

(4.10)
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γμ(x)∪̃(δ(x)∩̃ν(x))(x) = max
{
γp(x)(x), γ(q(x)∩̃r(x))(x)

}

= max
{
γp(x)(x),min

(
γq(x)(x), γr(x)(x)

)}

= min
{
max

(
γp(x)(x), γq(x)(x)

)
,max

(
γp(x)(x), γr(x)(x)

)}

= min
{
γ(μ(x)∪δ(x))(x), γ(μ(x)∪ν(x))(x)

}

= γ(μ(x)∪δ(x))∩(μ(x)∪ν(x))(x).

(4.11)

We can use the same method in (i).

5. AND and OR Operations on PIFSS with
Applications in Decision Making

In this section we introduce the definitions of AND and OR operations on possibility
intuitionistic fuzzy soft sets. Applications of possibility fuzzy soft sets in decision-making
problem are given.

Definition 5.1. If (Fμ,A) and (Gδ, B), are two PIFSSs then “(Fμ,A) AND (Gδ, B)” denoted by
(Fμ,A) ∧ (Gδ, B) is defined by

(
Fμ,A

) ∧ (Gδ, B) = (Hλ,A × B), (5.1)

where Hλ(α, β) = (H(α, β)(x),∧(α, β)(x)), for all (α, β) ∈ A × B, such that H(α, β) = T(F(α),
G(β)) and ∧(α, β) = t(μ(α), δ(β)), for all (α, β) ∈ A × B, where T is a T-norm and t is a t-norm.

Example 5.2. Suppose the universe consists of three machines x1, x2, x3 that is, U =
{x1, x2, x3} and there are three parameters E = {e1, e2, e3} which describe their performances
according to certain specific task. Suppose a firm wants to buy one such machine depending
on any two of the parameters only. Let there be two observations Fμ and Gδ by two experts
defined as follows:

Fμ(e1) =
{(

x1

(0, 0.1)
, 0.1

)
,

(
x2

(0.2, 0.6)
, 0.4

)
,

(
x3

(0.3, 0)
, 0.2

)}
,

Fμ(e2) =
{(

x1

(0, 0.1)
, 0.2

)
,

(
x2

(0.1, 0.3)
, 0.6

)
,

(
x3

(0.8, 0)
, 0.1

)}
,

Fμ(e3) =
{(

x1

(0.3, 0.1)
, 0.4

)
,

(
x2

(0, 0.5)
, 0.1

)
,

(
x3

(0.5, 0)
, 0.2

)}
,

Gδ(e1) =
{(

x1

(0.1, 0.6)
, 0.1

)
,

(
x2

(0.3, 0.2)
, 0.3

)
,

(
x3

(0.8, 0)
, 0.4

)}
,

Gδ(e2) =
{(

x1

(0, 0)
, 0.3

)
,

(
x2

(0.2, 0.4)
, 0.2

)
,

(
x3

(0.6, 0)
, 0.1

)}
,

Gδ(e3) =
{(

x1

(0.6, 0)
, 0.7

)
,

(
x2

(0.3, 0.1)
, 0.4

)
,

(
x3

(0, 0)
, 0.4

)}
.

(5.2)
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By using the Atanassov intersection which is the basic intuitionistic fuzzy union we have

Hv(e1, e1) =
{(

x1

(min(0, 0.1),max(0.1, 0.6))
,min(0.1, 0.1)

)
,

(
x1

(min(0.2, 0.3),max(0.6, 0.2))
,min(0.4, 0.3)

)
,

(
x1

(min(0.3, 0.8),max(0, 0))
, min(0.2, 0.4)

)}
.

Hλ(e1, e1) =
{(

x1

(0, 0.6)
, 0.1

)
,

(
x2

(0.2, 0.6)
, 0.3

)
,

(
x3

(0.3, 0)
, 0.2

)}
.

(5.3)

Similarly we get

Hλ(e1, e2) =
{(

x1

(0, 0.1)
, 0.1

)
,

(
x2

(0.2, 0.6)
, 0.2

)
,

(
x3

(0.3, 0)
, 0.1

)}
,

Hλ(e1, e3) =
{(

x1

(0, 0.1)
, 0.7

)
,

(
x2

(0.2, 0.6)
, 0.4

)
,

(
x3

(0, 0)
, 0.2

)}
,

Hλ(e2, e1) =
{(

x1

(0, 0.6)
, 0.1

)
,

(
x2

(0.1, 0.3)
, 0.3

)
,

(
x3

(0.6, 0)
, 0.1

)}
,

Hλ(e2, e2) =
{(

x1

(0, 0.1)
, 0.2

)
,

(
x2

(0.1, 0.4)
, 0.2

)
,

(
x3

(0.6, 0)
, 0.1

)}
,

Hλ(e2, e3) =
{(

x1

(0, 0.1)
, 0.2

)
,

(
x2

(0.1, 0.3)
, 0.4

)
,

(
x3

(0, 0)
, 0.1

)}
,

Hλ(e3, e1) =
{(

x1

(0.1, 0.6)
, 0.1

)
,

(
x2

(0, 0.5)
, 0.1

)
,

(
x3

(0.5, 0)
, 0.2

)}
,

Hλ(e3, e2) =
{(

x1

(0, 0.1)
, 0.3

)
,

(
x2

(0, 0.5)
, 0.1

)
,

(
x3

(0.5, 0)
, 0.1

)}
,

Hλ(e3, e3) =
{(

x1

(0.3, 0.1)
, 0.4

)
,

(
x2

(0, 0.5)
, 0.1

)
,

(
x3

(0, 0)
, 0.2

)}
.

(5.4)

In matrix notation we have

(
Fμ,A

) ∧ (Gδ, B) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

((0, 0.6), 0.1)

((0, 0.1), 0.1)

((0, 0.1), 0.7)

((0, 0.6), 0.1)

((0.2, 0.6), 0.3)

((0.2, 0.6), 0.2)

((0.2, 0.6), 0.4)

((0.1, 0.3), 0.3)

((0.3, 0), 0.2)

((0.3, 0), 0.1)

((0, 0), 0.2)

((0.6, 0), 0.1)
((0, 0.1), 0.2) ((0.1, 0.4), 0.2) ((0.6, 0), 0.1)

((0, 0.1), 0.2)

((0.1, 0.6), 0.1)

((0, 0.1), 0.3)

((0.3, 0.1), 0.4)

((0.1, 0.3), 0.4)

((0, 0.5), 0.1)

((0, 0.5), 0.1)

((0, 0.5), 0.1)

((0, 0), 0.1)

((0.5, 0), 0.2)

((0.5, 0), 0.1)

((0, 0), 0.2)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.5)
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Now to determine the best machine we first calculate the difference between the membership
and non-membership values and then we mark the highest numerical grade (indicated in
parenthesis) in each row. Now the score of each of such machine is calculated by taking the
sum of the products of these different numerical grades with the corresponding value of λ.
The machine with the highest score is the desired machine. We do not consider the different
numerical grades of the machine against the pairs (ei, ei), i = 1, 2, 3, as both parameters are
the same.

Matrix of different numerical grades is shown below:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(−0.6, 0.1) (−0.4, 0.3) (0.3, 0.2)

(−0.1, 0.1) (−0.4, 0.2) (0.3, 0.1)

(−0.1, 0.7) ( −0.4, 0.4) (0, 0.2)

(−0.6, 0.1) (−0.2, 0.3) (0.6, 0.1)

(−0.1, 0.2) (−0.3, 0.2) (0.6, 0.1)

(−0.1, 0.2) (−0.2, 0.4) (0, 0.1)

(−0.5, 0.1) (−0.5, 0.1) (0.5, 0.2)

(−0.1, 0.3) (−0.5, 0.1) (0.5, 0.1)

(0.2, 0.4) (−0.5, 0.1) (0, 0.2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.6)

Grade Table

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

H xi highest numerical grade λi

(e1, e1) x3 × ×
(e1, e2) x3 0.3 0.1

(e1, e3)

(e2, e1)

(e2, e2)

(e2, e3)

(e3, e1)

(e3, e2)

(e3, e3)

x3

x3

x3

x3

x3

x3

x1

0

0.6

×
0

0.5

0.5

×

0.2

0.1

×
0.1

0.2

0.1

×

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.7)

Score (x1) = 0,

Score (x2) = 0,

Score (x3) = (0.3×0.1)+(0×0.2)+(0.6×0.1)+(0×0.1)+(0.5×0.2)× (0.5×0.1) = 0.24.

Then the firm will select the machine with the highest score. Hence, they will buy
machine x3.



Advances in Decision Sciences 15

Definition 5.3. If (Fμ,A) and (Gδ, B) are two PIFSS then “(Fμ,A) OR (Gδ, B)”, denoted by
(Fμ,A) ∨ (Gδ, B), is defined by

(
Fμ,A

) ∨ (Gδ, B) = (Hλ,A × B), (5.8)

where Hλ(α, β) = (H(α, β)(x),∨(α, β)(x)) for all (α, β) ∈ A × B, such that H(α, β) =
S(F(α), G(β)) and ∨(α, β) = s(μ(α), δ(β)), for all (α, β) ∈ A × B, where S is an S-norm and
s is an s-norm.

Example 5.4. Let U = {x1, x2, x3}, E = {e1, e2, e3} consider Fμ and Gδ as in Example 5.2.
Suppose now the firm wants to buy a machine depending on any one of two parameters.
Then we have (Fμ,A) ∨ (Gδ, B) = (Hλ,A × B)where

H(e1, e1) =
{(

x1

(max(0, 0.1),min(0.1, 0.6))
,max(0.1, 0.1)

)
,

(
x1

(max(0.2, 0.3),min(0.6, 0.2))
,max(0.4, 0.3)

)
,

(
x1

(max(0.3, 0.8),min(0, 0))
, max(0.2, 0.4)

)}
,

Hλ(e1, e1) =
{(

x1

(0.1, 0.1)
, 0.1

)
,

(
x2

(0.3, 0.2)
, 0.4

)
,

(
x3

(0.8, 0)
, 0.4

)}
.

(5.9)

Similarly we get

Hλ(e1, e2) =
{(

x1

(0, 0.1)
, 0.3

)
,

(
x2

(0.2, 0.4)
, 0.4

)
,

(
x3

(0.6, 0)
, 0.2

)}
,

Hλ(e1, e3) =
{(

x1

(0.6, 0)
, 0.7

)
,

(
x2

(0.3, 0.1)
, 0.4

)
,

(
x3

(0.3, 0)
, 0.4

)}
,

Hλ(e2, e1) =
{(

x1

(0.1, 0.1)
, 0.2

)
,

(
x2

(0.2, 0.3)
, 0.6

)
,

(
x3

(0.8, 0)
, 0.4

)}
,

Hλ(e2, e2) =
{(

x1

(0, 0.1)
, 0.3

)
,

(
x2

(0.2, 0.3)
, 0.6

)
,

(
x3

(0.8, 0)
, 0.1

)}
,

Hλ(e2, e3) =
{(

x1

(0.6, 0)
, 0.7

)
,

(
x2

(0.3, 0.1)
, 0.6

)
,

(
x3

(0.8, 0)
, 0.4

)}
,

Hλ(e3, e1) =
{(

x1

(0.3, 0.1)
, 0.4

)
,

(
x2

(0.3, 0.2)
, 0.1

)
,

(
x3

(0.8, 0)
, 0.4

)}
,

Hλ(e3, e2) =
{(

x1

(0.3, 0)
, 0.1

)
,

(
x2

(0.2, 0.4)
, 0.2

)
,

(
x3

(0.6, 0)
, 0.2

)}
,

Hλ(e3, e3) =
{(

x1

(0.6, 0)
, 0.7

)
,

(
x2

(0.3, 0.1)
, 0.4

)
,

(
x3

(0.5, 0)
, 0.4

)}
.

(5.10)
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In matrix notation we have

(
Fμ,A

) ∨ (Gδ, B) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

((0.1, 0.1), 0.1)

((0, 0.1), 0.3)

((0.6, 0), 0.7)

((0.1, 0.1), 0.2)

((0.3, 0.2), 0.4)

((0.2, 0.4), 0.4)

((0.3, 0.1), 0.4)

((0.2, 0.3), 0.6)

((0.8, 0), 0.4)

((0.6, 0), 0.2)

((0.3, 0), 0.4)

((0.8, 0), 0.4)
((0, 0.1), 0.3) ((0.2, 0.3), 0.6) ((0.8, 0), 0.1)

((0.6, 0), 0.7)

((0.3, 0.1), 0.4)

((0.3, 0), 0.1)

((0.6, 0), 0.7)

((0.3, 0.1), 0.6)

((0.3, 0.2), 0.1)

((0.2, 0.4), 0.2)

((0.3, 0.1), 0.4)

((0.8, 0), 0.4)

((0.8, 0), 0.4)

((0.6, 0), 0.2)

((0.5, 0), 0.4)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.11)

Now to determine the best machine we first calculate the difference between the membership
and non-membership values and then we mark the highest numerical grade (indicated in
parenthesis) in each row. Now the score of each of such machine is calculated by taking the
sum of the products of these different numerical grades with the corresponding value of λ.
The machine with the highest score is the desired machine. We do not consider the different
numerical grades of the machine against the pairs (ei, ei), i = 1, 2, 3, as both parameters are
the same.

Matrix of different numerical grades is shown below:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(0, 0.1) (0.1, 0.4) (0.8, 0.4)

(−0.1, 0.3) (−0.2, 0.4) (0.6, 0.2)

(0.6, 0.7) (0.2, 0.4) (0.3, 0.4)

(0, 0.2) (−0.1, 0.6) (0.8, 0.4)

(−0.1, 0.3) (−0.1, 0.6) (0.8, 0.1)

(0.6, 0.7) (0.2, 0.6) (0.8, 0.4)

(0.2, 0.4) (0.1, 0.1) (0.8, 0.4)

(0.3, 0.1) (−0.2, 0.2) (0.6, 0.2)

(0.6, 0.7) (0.2, 0.4) (0.5, 0.4)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.12)
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Grade Table

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

H xi highest numerical grade λi

(e1, e1) x3 × ×
(e1, e2) x3 0.6 0.2

(e1, e3)

(e2, e1)

(e2, e2)

(e2, e3)

(e3, e1)

(e3, e2)

(e3, e3)

x1

x3

x3

x3

x3

x3

x3

0.6

0.8

×
0.8

0.8

0.6

×

0.7

0.4

×
0.4

0.4

0.2

×

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.13)

Score (x1) = (0.6 × 0.7) = 0.42,

Score (x2) = 0,

Score (x3) = (0.6 × 0.2) + (0.8 × 0.4) + (0.8 × 0.4) + (0.8 × 0.4) + (0.6 × 0.2) = 1.2.

Then the firm will select the machine with the highest score. Hence, they will buy
machine x3.

6. An Application of PIFSS in Decision Making

In this section we present an application of PIFSS in decision making problem. We shall use
the algorithm introduced by Dinda et al. [13]. Suppose that there are three schools in universe
U = {x1, x2, x3}and the parameter set E = {e1, e2, e3, e4, e5, e6}, each, ei, 1 ≤ i ≤ 6 indicates a
specific criterion for the schools

e1 stands for “international”.
e2 stands for “English”.
e3 stands for “high efficiency”.
e4 stands for “ modern”.
e5 stands for “full day”.
e6 stands for “half day”.
Suppose Madam X wants to pick a good school for her son on the basis of her wishing

parameters among those listed above. Our aim is to find out the most appropriate school for
her son.

Suppose the wishing parameters of Madam X is A ⊆ E where A = {e1, e3, e6}.
Let p : E → IU be a fuzzy subset of E, defined by Madam X.
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Consider the PIFSS defined as follows:

Fμ(e1) =
{(

x1

(0.3, 0.5)
, 0.1

)
,

(
x2

(0.5, 0.3)
, 0.4

)
,

(
x3

(0.3, 0.4)
, 0.5

)}
,

Fμ(e2) =
{(

x1

(0, 0.8)
, 0.1

)
,

(
x2

(1, 0)
, 0.3

)
,

(
x3

(0.9, 0.1)
, 0.2

)}
,

Fμ(e3) =
{(

x1

(0.6, 0.3)
, 0.4

)
,

(
x2

(0.5, 0.4)
, 0.3

)
,

(
x3

(0.6, 0.3)
, 0.1

)}
.

(6.1)

Now we introduce the following operations:

(i) for membership function: α(ei) = μi + γi − μiγi,

(ii) for non-membership function β = υiγi, for i = 1, 2, 3.

Actually we have taken these two operations to ascend the membership value and
descend the non-membership value of F(ei) on the basis of the degree of preference of
Madam X. Then the PIFSS Fμ(ei) reduced to an intuitionistic fuzzy soft set Ψ(ei) given as
follows:

Ψ(e1) =
{

x1

(0.37, 0.05)
,

x2

(0.78, 0.12)
,

x3

(0.65, 0.2)

}
,

Ψ(e2) =
{

x1

(0, 0.08)
,

x2

(1, 0)
,

x3

(0.92, 0.02)

}
,

Ψ(e3) =
{

x1

(0.76, 0.12)
,

x2

(0.65, 0.12)
,

x3

(0.64, 0.03)

}
.

(6.2)

Definition 6.1 (see [13]). A comparison table is a square table in which number of rows and
number of columns are equal and both are labeled by object name of the universe such as
x1, x2, ..., xn and the entries are cij , where cij = the number of parameters for which the value
of xi exceeds or equal to the value of xj .

Algorithm 6.2.

(i) Input the set A ⊆ E of choice of parameters of Madam X.

(ii) Consider the reduced intuitionistic fuzzy soft set.

(iii) Consider the tabular representation of membership function andnon-membership
function (see Table 1 and Table 4 respectively).

(iv) Compute the comparison table membership function andnon-membership func-
tion (see Table 2 and Table 5 respectively).

(v) Compute the membership score and non-membership score (see Table 3 and
Table 6 respectively).

(vi) Compute the final score by subtracting non-membership score frommembership
score (see Table 7).

(vii) Find the maximum score, if it occurs in ith row then Madam X will choose school
xi.
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Table 1: Tabular representation of membership function.

U e1 e3 e6

x1 0.37 0 0.76

x2 0.78 1 0.65

x3 0.65 0.92 0.64

Table 2: Comparison table of the above table.

x1 x2 x3

x1 3 1 1

x2 2 3 3

x3 2 0 3

Table 3:Membership score table.

Row sum (a) Column sum (b) Membership score (a − b)

x1 5 7 −2
x2 8 4 4

x3 5 −7 −2

Table 4: Tabular representation of non-membership function.

e1 e3 e6
x1 0.05 0.08 0.12

x2 0.12 0 0.12

x3 0.2 0.02 0.03

Decision:

Madam X will choose the school x2. In case, if she does not want to choose x2 due to certain
reasons, her second choice will be x1.

7. Similarity between Two Possibility Intuitionistic Fuzzy Soft Sets

Similarity measures have extensive application in several areas such as pattern recognition,
image processing, region extraction, and coding theory and so forth. We are often interested
to know whether two patterns or images are identical or approximately identical or at least
to what degree they are identical.

Several researchers have studied the problem of similarity measurement between
fuzzy sets, intuitionistic fuzzy sets and Liang and Shi [18] have studied the similarity
measures on intuitionistic fuzzy sets. Shawkat et al. [16] have studied the similarity between
two possibility fuzzy soft sets.

In this section we introduce a measure of similarity between two PIFSSs. The set
theoretic approach has been taken in this regard because it is easier for calculation and is
a very popular method too.
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Table 5: Comparison table of the above table.

x1 x2 x3

x1 3 2 2

x2 2 3 1

x3 1 2 3

Table 6: Non-membership score table.

Row sum (c) Column sum (d) Non-membership score (c − d)

x1 7 6 1

x2 6 7 −1
x3 6 6 0

Table 7

Membership score (m) Non-membership score (n) Finale score (m − n)

x1 −2 1 3

x2 4 −1 5

x3 −2 0 −2
Clearly the maximum score is 5 scored by the school x2

Definition 7.1. Similarity between two PIFSSs Fμ and Gδ, denoted by S(Fμ,Gδ), is defined as
follows:

S
(
Fμ,Gδ

)
= M(F(e), G(e)) ·M(

μ(e), δ(e)
)
, (7.1)

such that

M(F(e), G(e)) = max
i

Mi(F(e), G(e)), M
(
μ(e), δ(e)

)
= max

i
Mi

(
μ(e), δ(e)

)
, (7.2)

where

Mi(F(e), G(e)) = 1 − 1
p
√
n

p

√√√
√

n∑

i=1

(
φF(e)(i) − φG(e)(i)

)p 1 ≤ p ≤ ∞, (7.3)

such that and

φF(e)(i) =
μF(e) + νF(e)

2
, φG(e)(i) =

μG(e) + νG(e)

2
,

Mi

(
μ(e), δ(e)

)
= 1 −

∑n
j=1

∣∣μij(e) − δij(e)
∣∣

∑n
j=1

∣∣μij(e) + δij(e)
∣∣ .

(7.4)

Definition 7.2. Let Fμ andGδ be two PIFSSs over (U,E). We say that Fμ andGδ are significantly
similar if S(Fμ,Gδ) ≥ 1/2.
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Proposition 7.3. Let Fμ and Gδ be any two PIFSSs over (U,E). Then the following holds:

(i) S(Fμ,Gδ) = S(Gδ, Fμ),

(ii) 0 ≤ S(Fμ,Gδ) ≤ 1,

(iii) Fμ = Gδ ⇒ S(Fμ,Gδ) = 1,

(iv) Fμ ⊆ Gδ ⊆ Hλ ⇒ S(Fμ,Hλ) ≤ S(Gδ,Hλ),

(v) Fμ
⋂̃

Gδ = φ ⇔ S(Fμ,Gδ) = 0.

Proof. The proof is straightforward and follows from Definition 6.1.

Example 7.4. Consider Example 4.2 where Fμ and Gδ are defined as follows:

Fμ(e1) =
{(

x1

(0.3, 0.4)
, 0.1

)
,

(
x2

(0.7, 0.1)
, 0.4

)
,

(
x3

(0.2, 0.6)
, 0.6

)}
,

Fμ(e2) =
{(

x1

(0.2, 0.6)
, 0.3

)
,

(
x2

(0.2, 0.5)
, 0.2

)
,

(
x3

(0.1, 0.3)
, 0.4

)}
,

Fμ(e3) =
{(

x1

(0.7, 0.1)
, 0.1

)
,

(
x2

(0.2, 0.5)
, 0
)
,

(
x3

(0.5, 0.3)
, 0.6

)}
,

Gδ(e1) =
{(

x1

(0.1, 0.4)
, 0.3

)
,

(
x2

(0.3, 0.3)
, 0.6

)
,

(
x3

(0, 0.5)
, 0.2

)}
,

Gδ(e2) =
{(

x1

(0, 0.1)
, 0.1

)
,

(
x2

(0.6, 0.1)
, 0.6

)
,

(
x3

(0.7, 0)
, 0.6

)}
,

Gδ(e3) =
{(

x1

(0, 0)
, 0.3

)
,

(
x2

(0.2, 0.1)
, 0.8

)
,

(
x3

(0.3, 0.1)
, 0.2

)}
.

(7.5)

Here

M1
(
μ(e), δ(e)

)
= 1 −

∑3
j=1

∣∣μ1j(e) − δ1j(e)
∣∣

∑3
j=1

∣∣μ1j(e) + δ1j(e)
∣∣

= 1 − |(0.1 − 0.3)| + |(0.4 − 0.6)| + |(0.6 − 0.2)|
|(0.1 + 0.3)| + |(0.4 + 0.6)| + |(0.6 + 0.2)| = 0.39.

(7.6)

Similarly we get M2(μ(e), δ(e)) = 0.38 and M3(μ(e), δ(e)) = 0.3. Then

M
(
μ(e), δ(e)

)
= max

(
M1

(
μ(e), δ(e)

)
,M2

(
μ(e), δ(e)

)
,M3

(
μ(e), δ(e)

))
= 0.39,

M1(F(e), G(e)) = 1 − 1
p
√
n

p

√√√
√

n∑

i=1

(
φF(e)(i) − φG(e)(i)

)p

= 1 − 1√
3

√
((0.35 − 0.25) + (0.4 − 0.3) + (0.4 − 0.25)) = 0.66.

(7.7)
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Table 8:Model PIFSS for swamp fever.

Fμ e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

y (1, 0) (0, 1) (0, 1) (1, 0) (1, 0) (1, 0) (1, 0) (0, 1) (1, 0) (1, 0)

μy 1 1 1 1 1 1 1 1 1 1

n (0, 1) (1, 0) (1, 0) (0, 1) (0, 1) (0, 1) (0, 1) (1, 0) (0, 1) (0, 1)

μn 1 1 1 1 1 1 1 1 1 1

Table 9: PIFSS for the sick person.

Gα e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

y (0.3, 0) (0, 0.7) (0.5, 0.1) (0.3, 0) (0.4, 0) (0.1, 0) (0, 0) (0.7, 0.1) (0, 0) (0.4, 0.2)

μy 0.1 0.2 0.1 0 0.5 0.1 0.2 0.2 1 0.4

n (0.6, 0.2) (0.1, 0) (0.4, 0) (0.6, 0) (0.4, 0.2) (0.6, 0.3) (08, 0) (0.1, 0.3) (0.8, 0) (0.5, 0.3)

μn 0.5 0.3 0.2 0.1 0.3 0.2 0.4 0.1 0.5 0

Similarly we get M2(F(e), G(e)) = 0.63 and M3(F(e), G(e)) = 0.48. Then

M(F(e), G(e)) = max(M1(F(e), G(e)),M2(F(e), G(e)),M3(F(e), G(e))) = 0.66. (7.8)

Hence the similarity between the two PIFSS Fμ and Gδ is given by

S
(
Fμ,Gδ

)
= M(F(e), G(e)) ·M(

μ(e), δ(e)
)
= 0.66 × 0.39 ∼= 0.26. (7.9)

8. Application of Similarity Measure in Medical Diagnosis

In the following example we will try to estimate the possibility that a sick person having
certain visible symptoms is suffering from swamp fever. For this we first construct a model
possibility intuitionistic fuzzy soft set for swamp fever and the possibility intuitionistic fuzzy
soft set of symptoms for the sick person. Next we find the similarity measure of these two
sets. If they are significantly similar then we conclude that the person is possibly suffering
from swamp fever.

Let our universal set contain only two elements “yes” and “no,” that is, U =
{y, n}. Here the set of parameters E is the set of certain visible symptoms. Let E =
(e1, e2, e3, e4, e5, e6, e7, e8, e9, e10), where e1 = trembling, e2 = cough with chest congestion,
e3 =muscles pain, e4 = nausea, e5 = headache, e6 = low heart rate (bradycardia), e7 = pain
upon moving the eyes, e8 = fever, e9 = a flushing or pale pink rash comes over the face, e10 =
vomiting.

Our model possibility intuitionistic fuzzy soft set for swamp fever Fμ is given in
Table 8 and this can be prepared with the help of a physician.

After talking to the sick person we can construct his PIFSS Gδ as in Table 9. Now we
find the similarity measure of these two sets (as in Example 7.4), here S(Fμ,Gδ) ∼= 0.38 < 1/2.
Hence the two PIFSSs are not significantly similar. Therefore we conclude that the person is
not suffering from swamp fever.
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9. Conclusion

In this paper we have introduced the concept of possibility intuitionistic fuzzy soft set
and studied some of its properties. Applications of this theory have been given to solve a
decision-making problem. Similarity measure of two possibility intuitionistic fuzzy soft sets
is discussed and an application of this to medical diagnosis has been shown.

Acknowledgments

The authors would like to acknowledge the financial support received from Universiti
KebangsaanMalaysia under the research grants UKM-ST-06-FRGS0104-2009 and UKM-DLP-
2011-038. The authors also wish to gratefully acknowledge all those who have generously
given their time to referee our paper submitted to Advances in Decision Sciences.

References

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965.

[2] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 20, no. 1, pp. 87–96, 1986.

[3] D. Molodtsov, “Soft set theory-first results,” Computers and Mathematics with Applications, vol. 37, no.
4-5, pp. 19–31, 1999.

[4] P. K. Maji, A. R. Roy, and R. Biswas, “Soft set theory,” Computers and Mathematics with Applications,
vol. 45, no. 4-5, pp. 555–562, 2003.

[5] P. K. Maji, A. R. Roy, and R. Biswas, “An application of soft sets in a decision making problem,”
Computers and Mathematics with Applications, vol. 44, no. 8-9, pp. 1077–1083, 2002.

[6] S. Alkhazaleh, A. R. Salleh, and N. Hassan, “Soft multisets theory,” Applied Mathematical Sciences, vol.
5, no. 72, pp. 3561–3573, 2011.

[7] S. Alkhazaleh and A. R. Salleh, “Soft expert set,” Advances in Decision Sciences, vol. 2011, Article ID
757868, 12 pages, 2011.

[8] P. K. Maji, A. R. Roy, and R. Biswas, “Fuzzy soft sets,” Journal of Fuzzy Mathematics, vol. 9, no. 3, pp.
589–602, 2001.

[9] A. R. Roy and P. K. Maji, “A fuzzy soft set theoretic approach to decision making problems,” Journal
of Computational and Applied Mathematics, vol. 203, no. 2, pp. 412–418, 2007.

[10] P. Majumdar and S. K. Samanta, “Generalised fuzzy soft sets,” Computers and Mathematics with
Applications, vol. 59, no. 4, pp. 1425–1432, 2010.

[11] M. Baesho, Generalised intuitionistic fuzzy soft sets, MSc Research Project, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 2010.

[12] M. Baesho, A. R. Salleh, and S. Alkhazaleh, “Generalised intuitionistic fuzzy soft sets,” in Proceedings
of the National Seminar on Application of Science and Mathematics, pp. 136–168, Universiti Tun Hussein
Onn Malaysia, 2010.

[13] B. Dinda, T. Bera, and T. K. Samanta, “Generalised intuitionistic fuzzy soft sets and its application in
decision making,” . In press, http://arxiv.org/abs/1010.2468.

[14] M. Agarwal, M. Hanmandlu, and K. K. Biswas, “Generalized intuitionistic fuzzy soft set and its
application in practical medical diagnosis problem,” in Proceedings of the IEEE International Conference
on Fuzzy Systems, pp. 2972–2978, 2011.

[15] S. Alkhazaleh, A. R. Salleh, and N. Hassan, “Fuzzy parameterized interval-valued fuzzy soft set,”
Applied Mathematical Sciences, vol. 5, no. 65–68, pp. 3335–3346, 2011.



24 Advances in Decision Sciences

[16] S. Alkhazaleh, A. R. Salleh, and N. Hassan, “Possibility fuzzy soft set,” Advances in Decision Sciences,
vol. 2011, Article ID 479756, 18 pages, 2011.

[17] P. K. Maji, “More on intuitionistic fuzzy soft sets,” in Proceedings of the 12th International Conference on
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC ’09), pp. 231–240, 2009.

[18] Z. Liang and P. Shi, “Similarity measures on intuitionistic fuzzy sets,” Pattern Recognition Letters, vol.
24, no. 15, pp. 2687–2693, 2003.

[19] A. R. Salleh, “From soft sets to intuitionistic fuzzy soft sets: a brief survey,” in Proceedings of the
International Seminar on the Current Research Progress in Sciences and Technology (ISSTech ’11), Universiti
Kebangsaan Malaysia—Universitas Indonesia, Bandung, Indonesia, 2011.

[20] M. Fathi, On intutionistic fuzzy sets, MSc Research Project, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 2007.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


